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Abstract

A criterion that can provide a measure of time}frequency distribution concentration is proposed. In contrast to the
norm-based concentration measures it does not need normalization in order to behave properly when cross-terms are
present, and also it does not discriminate low concentrated components with respect to the highly concentrated ones
within the same distribution. This measure has been used for the automatic window selection in the spectrogram, as well
as in "nding the optimal distribution that can be produced in a transition from the spectrogram toward the pseudo
Wigner distribution. � 2001 Elsevier Science B.V. All rights reserved.

1. Introduction

E$cient time}frequency distribution concen-
tration measurement can provide a quantitative
criteria to evaluate performances of di!erent distri-
butions and can be used for adaptive and auto-
matic parameters selection in time}frequency
analysis, without interference by a user. Measures
for distribution concentration of monocomponent
signals date back to [4,9,10,17]. For more complex
signals, some quantities in the statistics were the
inspiration for de"ning measures for time}fre-
quency distributions concentration in the form of
the ratio of distribution norms by Jones and Parks
[12], and the ReH nyi entropy by Williams et al.
[8,15,18]. Distribution energy was also used, "rst
by Baraniuk and Jones, for optimal kernel distribu-

tions design [2,3,6,7,11]. Common for all of these
measures is that they are based on the distribution
norms, i.e., sums over the distribution values raised
to a power greater than one. They provided good
quantitative measure of the auto-terms concentra-
tion. Norms themselves failed to behave in the
desired way when the cross terms appeared. Vari-
ous and e$cient modi"cations were used in order
to take into account the appearance of nondesir-
able oscillatory zero-mean distribution values. The
distribution norm has been divided by a lower-
order norm in [12,15], while some strict constraints
were imposed on the kernel form in [2]. However,
even the normalized forms of the norm-based
measures are not quite appropriate for the cases
where there are two or more components (or re-
gions in time}frequency plane of a single compon-
ent) of approximately equal energies (importance)
whose concentrations are very di!erent. The
norm-basedmeasures, due to raising of distribution
values to a high power (fourth, in [12], third, in
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[8,15]) will favor distributions with `peakya com-
ponents [12]. It means that if one component (re-
gion) is `extremely highlya concentrated, and all
the others are `very poorlya concentrated, then
they will not look for a compromise, for example,
when all components are `very wella concentrated.
In order to deal with this kind of problem, that
are present in time}frequency analysis, Jones
and Parks [12] introduced local concentration
measure, that locally measures concentration, and
increases the calculation complexity.
Here, we will present a simple measure for distri-

butions concentration, that can overcome some of
the mentioned drawbacks. It behaves well with
respect to the auto-terms, cross-terms and does not
discriminate low concentrated components against
very concentrated ones during the optimization
procedure. Its application will be demonstrated
for automatic determination of the `best window
lengtha for the spectrogram or `the optimal num-
ber of termsa in the S-method (SM) [16]. It could
be used in other similar problems in time}fre-
quency analysis.

2. A concentration measure

Consider time}frequency representation of a sig-
nal x(t) denoted by P

�
(t,�). Assume that P

�
(t,�)

satis"es the unbiased energy condition
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��
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�

��

P
�
(t,�) dtd�"E

�
.

Let us, just for the beginning, assume that
P
�
(t,�)O0 only for (t,�)3D

�
(t,�). For a large p we

have that

M
�
O�
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�
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�P
�
(t,�)����dtd�P ��

�� �����

1 dtd�

"S
�
, (1)

where S
�
is the area of D

�
(t,�).

As a criterion for the distributions-concentration
measure we will assume: Among several given un-
biased energy distributions, the best concentrated is
the one having the smallest S

�
.

The basic idea for form (1) comes from an obvi-
ous de"nition of the time-limited signals duration
[19]. If a signal x(t) is time limited within the
interval t3[t

�
, t

�
], i.e., x(t)O0 only for t3[t

�
, t

�
],

then the duration of x(t) is d"t
�
!t

�
. It can be

written as d"lim
���

��
��

�x(t)����dt.
Value of M

�
raised to the pth power will be

referred to as the concentration measure. Its dis-
crete form is

M[P
�
]OM�

�
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�
�
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�
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�P
�
(n, k)�����
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with ��
�	�

��
�	�

P
�
(n, k)"1 being the normalized

unbiased energy constraint, and p'1.
P
�
: For nonnegative P

�
(n, k), and any p'1, the

constrained maximal value of M[P
�
] is reached

for the maximally spread function P
�
(n, k)"1/N�

for all n, k. The global in"num is reached for
the maximally concentrated function P

�
(n, k)"

�(n!n


, k!k



), 1)n



, k



)N.

Any function P
�
(n, k) uniformly spread over

N
�
)N points has the measure M[P

�
] greater

than any other function over the same number of
points, including any other function uniformly
spread over N

�
points, if N

�
'N

�
and p'1. The

ratio of measures for uniform functions is
(N

�
/N

�
)���.

Note that M[P
�
] does not satisfy the `triangle

inequalitya condition to be a norm of P
�
(n, k) for

p'1. It would be a norm for 0(p)1, only, when
the opposite conclusion would hold: Greater
measure value better concentration.
P
�
: If P

�
(n, k) additionally assumes oscillatory

zero-mean values (cross-terms) within a region
which does not overlap with its basic values (auto-
terms) then its measure M[P

�
] will be increased.

This will mean worse concentration measure, for
p'1. For norms, p(1, it will go in the same
direction as the concentration improvement, thus
the normalizations would be necessary [12,15].
P
�
: If P

�
(n, k) is spread over two separate regions

with N
�

and N
�

points having values 1/(2N
�
)

and 1/(2N
�
), respectively (two-component signal

with the same energy of components), with a very
di!erent concentration N

�
�N

�
, then M[P

�
]"

�
�
N���

�
[1#(N

�
/N

�
)�������]�. For a large order

norm [8,12,15], when 0(p�1, the measure
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Fig. 1. Spectrogram for various window lengths and its measure
M�

�
. The lowest M�

�
is achieved for N"88, being the best

window length choice according to this measure.

M[P
�
] is dominated with the component-N

�
con-

centration and it is almost not sensitive to the
component-N

�
concentration. However, for p'1,

the measure proposed here, produces theoretically
(N

�
/N

�
)�������PN

�
/N

�
, and both components

contribute with almost equal weights.
In reality, there is no sharp edge between

P
�
(n, k)O0 and P

�
(n, k)"0, so the value of (2)

could, for very large p, be sensitive to small values
of P

�
(n, k). The robustness may be achieved by

using lower-order forms, for example, with p"2
or 4.

3. Applications and examples

1. Consider the spectrogram

SPEC
	
(n, k)"

1

E
�STFT(n,k)��,

where STFT(n, k)"DFT


�w(m)x(n#m)� is the

short-time Fourier transform; E is the energy of the
lag window w(m). Among several spectrograms, cal-
culated with di!erent window lengths or forms, the
best one according to the proposed measure with
p"2, will be that which minimizes

w�"arg min
	 �

�
�
�	�

�
�
�	�

�SPEC
	
(n, k)�����

�
. (3)

Let us illustrate this by an example. Consider the
signal

x
�
(t)"cos(50 cos(�t)#10�t�#70�t)

#cos(25�t�#180�t), (4)

sampled at ¹" �
��


. The Hanning window w(m)
with di!erent lengths is used in the spectrogram
calculation. The results are shown in Fig. 1. For
wide lag windows, signal nonstationarity makes the
spectrogram very spread in the time}frequency
plane, having relatively large measure M[P

�
]"

M�
�
(Fig. 1(a) and (b)). For narrow lag window its

Fourier transform is very wide, causing spread dis-
tributions and large M�

�
(Fig. 1(d) and (e)). Obvi-

ously between these two extreme situations there is
a window that produces an acceptable trade-o!
between the signal nonstationarity and small win-
dow length e!ects. The measure M�

�
is calculated

for a set of spectrograms with N"32 up to 256
window length, Fig. 1(f ). The minimal value, mean-
ing the best concentrated spectrogram, according
to this measure, is achieved for N"88, Fig. 1(f ).
The spectrogram with N"88 is shown in Fig. 1(c).
2. The same procedure will be used for the best

frequency window length ¸ determination in the
S-method (SM), whose discrete form [16] can be
written using recursive relation

SM
�
(n, k)

"SM
���

(n, k)

#2Re�STFT(n, k#¸)STFTH(n, k!¸)� (5)

with SM


(n, k)"SPEC(n,k). Distributions

SM
�
(n, k) should be properly scaled in order to

satisfy unbiased energy condition.
As it is known, the SM relates to the most impor-

tant time}frequency representations: the spectro-
gram and the pseudo Wigner distribution (WD).
The optimal distribution SM�(n, k), on our way
from ¸"0 (the spectrogram) toward ¸"N/2 (the
WD), is the one calculated with ¸ producing the

L. Stankovic& / Signal Processing 81 (2001) 621}631 623



Fig. 2. The SM for various values of parameter ¸ and its
measure M�

�
. The lowest M�

�
is achieved for ¸"9, being the

best choice according to this measure. Note that ¸"9 corres-
ponds to the analog cuto! frequency of 0.07�



, where �



is

maximal frequency in the time}frequency plane.

Fig. 3. The SM for various values of parameter ¸ and its
measure M�

�
. The lowest M�

�
is achieved for ¸"8, being the

best choice according to this measure.

minimal value of M[P
�
],

¸�"arg min
�
�

�
�
�	�

�
�
�	�

�SM
�
(n, k)�����

�
. (6)

Here, instead of �SM
�
(n, k)� a nonnegative part of

SM
�
(n, k) could, and will be, used in examples. The

same signal is used for the illustration of the SM.
Since this method is a WD-based method, the best
results will be achieved with a wide lag window in
the STFT calculation, N"256. The spectrogram
(¸"0) is shown in Fig. 2(a). By increasing of ¸, the
SM improves concentration of the spectrogram
toward the WD quality, meaning lower measure
M�

�
, Fig. 2(b) and (c). After ¸ has reached the value

equal to the distance between the auto-terms,
cross-terms start to appear, increasingM�

�
, Fig. 2(d)

and (e). Minimal M�
�
means a trade-o! between the

auto-terms concentration and the cross-terms ap-
pearances, Fig. 2(f). The SM with ¸ corresponding
to minimal M�

�
is shown in Fig. 2(c).

The proposed measure is illustrated on the signal
whose components intersect:

x
�
(t)"cos(30�t�#128�t)#cos(!30�t�#128�t).

(7)

Here, there are not separate regions for the auto-
terms concentration and the cross-terms appear-
ance. The proposed measure has to decide when the
auto-terms are concentrated enough and the
cross-terms starts to dominate, Fig. 3.
Finally, the measure is illustrated on time}fre-

quency analysis of the real data pressure signal
in the BMW engine with speed 2000[rot/min],
Fig. 4.
The proposed measure can be generalized for the

on-line recursive time}frequency distribution realiz-
ations, [1,5,16], by applying it over frequency only,
for a given time instant, m�

�
(n)"(��

�	�
�P

�
(n, k)����)�.

The same properties as for M�
�
hold, but m�

�
(n) re-

sults in time-varying `optimala parameters, that
can additionally improve time}frequency repres-
entation in highly nonstationary signal cases.

4. Optimization

Parameters optimization may be done by
a straightforward computation of a distribution
measureM[P

�
] for di!erent parameter values. The

624 L. Stankovic& / Signal Processing 81 (2001) 621}631



Fig. 4. Concentration measure illustration on time}frequency
analysis of a car engine pressure signal. Signal, and its S-method
based time}frequency representations are given. Time is rescaled
into corresponding crank-angle. The best choice according to
this measure was ¸"3.

best choice according to this criterion (optimal dis-
tribution with respect to this measure) is the distri-
bution that produces the minimal value of M[P

�
].

In the cases, when one has to consider a wide region
of possible parameter values for the distribution
calculation (like for example window lengths in
spectrogram), this approach can be numerically
ine$cient. Then, some more sophisticated optim-
ization procedures, like the one using the steepest
descend approach, can be used. It will be described
in this section.
The gradient of M[P

�
] with respect to a distri-

bution's generalized parameter, denoted by �, is

�M[P
�
]

��
"��

�

��
�

�

��

�P
�
(t,�)�����

���

��
�

��
�

�

��

�P
�
(t,�)���������(t,�) dtd�,

(8)

where

�(t,�)"
��P

�
(t,�)�
��

"Re�
P
�
(t,�)

�P
�
(t,�)�

�P
�
(t,�)

�� �. (9)

The continuous forms, rather than the discrete
ones, are given since the derivatives, that will be
used, are well-de"ned only for this kind of vari-
ables. Let us consider the factor �(t,�) in the cases
of spectrogram and S-method.
In the spectrogram the optimization parameter

� is the window width �"¹. For the rectangular
window of the length ¹, we get

�(t,�)"
��STFT

�
(t,�)��

��

"2Re�STFT�
(t,�)

�STFT
�
(t,�)

�¹ �
"Re�STFT

�
(t,�)[x(t#¹/2)e���
��

#x(t!¹/2)e��
��]�. (10)

For the S-method, the optimization parameter is
the frequency-domain windowwidth �"=

�
. Here

we get

�(t,�)"
��SM

�
(t,�)�

��

"2Re�sign(SM�
(t,�))

�SM
�
(t,�)

�=
�

�
"sign(SM

�
(t,�))

�Re�STFT
�
(t,�#=

�
/2)

�STFT
�
(t,�#=

�
/2)�. (11)

Discrete forms of these functions can easily be
obtained, just by sampling the distributions and
the function �(t,�). The iterations, starting from
the very low-concentrated distribution toward
the maximally concentrated one, i.e., toward the
measure minimum, can be done according to

�

��

"�



!	
�M[P

�
]

��
, (12)

where 	 is the step, which should be chosen in
the same way as the step in the other adaptive
algorithms. It should not be too small, since the
convergence would be too slow, and should not be
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Table 1
Window width in spectrogram during the iterations

Iteration m" 0 1 2 3 4 5

For x
�
(t), �



" 16 20 68 82 84 86

For x
�
(t), �



" 16 20 76 90

too large to miss the minimum, or cause the diver-
gence.
In discrete implementations, the gradient

�M[P
�
]/�� can also very e$ciently be approxi-

mated based on M[P
�
] calculated with the con-

sidered �


andM[P

�
] calculated with the previous

parameter value �

��

,

�

��

"�



!	
M[P

�
; �



]!M[P

�
; �


��
]

�



!�

��

, (13)

where M[P
�
; �



] means a measure of distribution

P
�
calculated by using parameter value �



.

Example. The optimization procedure will be illus-
trated on the signals x

�
(t) and x

�
(t) from the pre-

vious section. The spectrogram will be used in
illustrations, since in the S-method, the conver-
gence with respect to ¸ is already fast, and the
minimum is anyway reached in few iterations. The
optimal window length in spectrogram, with re-
spect to this measure, is obtained in few iterations
by using (13), starting from the very narrow win-
dow. The results for �



,N, as a function of iter-

ation number, are given in Table 1. Note that
N"16 and 20 in the initial and "rst iteration, are
assumed. The next value of �


��
,N is calculated

according to (13). The algorithm is stopped when
��


��
!�



�(2, since even number of samples are

used in the realization. Note that the obtained
optimal value is within $2 of the value obtained
by direct calculation. The value of parameter 	"�

�
has been used in all examples.

5. Review of the existing measures and their
comparison with the proposed measure

Here we will brie#y review the existing measures
of time}frequency distributions concentration. For

each of them, we will point out a drawback that
lead us to consider and propose another form of
measure for time}frequency distributions concen-
tration.
1. Ratio of norms based measures. Jones and

Parks proposed [12] the fourth power of the
¸
�
norm of time}frequency distribution divided by

the ¸
�
norm:

M
��

"�
�

�
�

P�
�
(n, k)���

�

�
�

P�
�
(n, k)�

�
.

This norm is similar to `kurtosisa in statistics.
They have also concluded that other measures
based on the ratio of norms ¸

�
/¸

�
, p'q would

behave in a similar manner. The main property of
this measure is that `the fourth power in the nu-
merator favors a peaky distributiona, [12]. For
multicomponent signals, this property means that if
one component is extremely highly localized, with
respect to other components of the same energy,
the measure will not look for compromise. Jones
and Parks proposed a localized application of this
form, on smaller regions separately. This can im-
prove the results and overcome this problem, but in
a computationally very demanding way.
2. Re&nyi entropy measures. The second class of

time}frequency distribution measures is de"ned in
analogy to the ReH nyi entropy measure. It has been
introduced in time}frequency analysis by Williams
et al. [15,18], with a signi"cant contribution of [8]
in establishing the properties of this measure. ReH nyi
entropy measure applied on time}frequency distri-
bution P

�
(n, k) has the form

R�"
1

1!

log

���
�

�
�

P�
�
(n, k)� (14)

with 
*2 being values recommended for time}fre-
quency distribution measures [8]. For the case

"2 (distribution energy) oscillatory cross-terms
would increase the energy leading to false con-
clusion that the concentration improves. In combi-
nation with some constraints on the time}
frequency distribution kernel, the distribution en-
ergy was used in an interesting way, by Baraniuk
and Jones [3], in order to derive a signal-dependent
time}frequency representation. The case with 
"3
fails to detect the existence of oscillatory zero-mean
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cross-terms (which do not overlap with auto-
terms), since for odd 
 they do not contribute to this
measure. These were the reasons for the introduc-
tion of normalized ReH nyi entropy measures, that
will be described next. It is interesting to note that
the Shannon entropy,

H"!�
�

�
�

P
�
(n, k) log

�
(P

�
(n, k)),

could be recovered from the ReH nyi entropy
measure, from the limit case when 
P1, [8]. How-
ever, the Shannon entropy could not be used for
general time}frequency distributions P

�
(n, k), since

they can assume negative values [8].
3. Normalized Re&nyi entropy measures. In order to

avoid the problem caused by the fact that the ReH nyi
entropy measure with 
"3 does not detect zero-
mean cross-terms, as well as to reduce a distribu-
tion to the unity signal energy case, some kind of
normalization must be done [15]. The normaliz-
ation can be done in various ways, leading to a var-
iety of possible measure de"nition. In [8] two
normalization schemes of the ReH nyi entropy are
proposed:
(a) Normalization with the signal energy produces

RE�"
1

1!

log

��
�

�
�

�
P�
�
(n, k)

�
�
�

�
P
�
(n, k)� with 
*2.

(15)

Behavior of this measure is quite similar to the
nonnormalized measure form, except in its magni-
tude. This kind of normalization is important for
comparison of various distributions, or the same
distribution when it is not energy unbiased, by
de"nition.
(b) Normalization with the distribution volume,

RV
�
"!

1

2
log

��
�

�
�

�
P�
�
(n, k)

�
�
�

�
�P

�
(n, k)��. (16)

If the distribution contains oscillatory values,
then summing them in absolute value means that
large cross-terms will decrease measure RV� . This
indicates smaller concentration, due to cross-terms
appearance. The volume-normalized form of
measure has been used for adaptive kernel design in
[15]. Note that the termwithin logarithm is just the
ratio of norms ¸

�
and ¸

�
, while the logarithm is

a monotone function. Thus, measure (16) can be
considered as ¸

�
/¸

�
, reducing to the general case

in 1. Therefore, it will have the same problem with
components having very di!erent concentration.
4. Uncertainty principle form in time}frequency

analysis. A direct extension of some classical signal
analysis de"nitions to joint time}frequency domain
can be done by using marginal properties. They
read, in analog domain,

�x(t)��"
1

2��
�

��

P
�
(t,�) d�,

�X(�)��"�
�

��

P
�
(t,�) dt.

(17)

Thus, the classical signal analysis results, which are
linear in �x(t)�� or �X(�)��, can easily be extended to
time}frequency analysis. For example, the classical
signal analysis uncertainty principle reads

��
�

��

t��x(t)��dt��
1

2��
�

��

���X(�)��dt�*1/2.

By a simple substitution of �x(t)�� and �X(�)��, ac-
cording to (17), it becomes

�
1

2��
�

��

(t!t
���)�P�

(t,�) d�dt�
��

1

2��
�

��

(�!�
���
)��X(�)��dt�*1/2. (18)

It has been assumed that the signals are of energy
unity, while t

��� and �
���

are the group delay and
instantaneous frequency. The "rst integral repres-
ents the signal local duration, while the second
integral de"nes local (instantaneous) bandwidth
�����

. These forms have been considered in detail by
Cohen [4,5].
Cohen has used the de"nitions of instantaneous

bandwidth and local time duration in order to
de"ne the optimal window width in the spectro-
gram [5]. He showed that the optimal width is
inversely proportional to the instantaneous fre-
quency derivative [5]. However, this result is not of
a signi"cant practical importance, since it can be
used for monocomponent signals (when the instan-
taneous frequency is well de"ned), as well as when
the derivative of the instantaneous frequency is
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a priori known. Another more practical approach
for window width optimization in the spectrogram
of monocomponent noisy signals, which does not
require that the instantaneous frequency is known
in advance, is presented in [13].
In the same way, like in the case of uncertainty

principle, we can try to generalize other one-dimen-
sional classical signal analysis de"nitions, or other
de"nitions from the information theory.
The procedure that can be used for generalization

is:

(i) In the classical signal analysis de"nitions, con-
sider signal power �x(t)�� (spectral energy den-
sity �X(�)��) as the probability density function
in time (frequency). This idea comes from the
quantummechanics, where the absolute square
of the wave function is the position's probabil-
ity density function.

(ii) Assume that time}frequency distribution
P
�
(t,�) can be treated as a joint two-dimen-

sional probability density function.
(iii) According to these assumptions, reintroduce

one-dimensional de"nition into joint two-di-
mensional time}frequency domain.

(iv) Additional modi"cations, interpretations, con-
straints and normalizations are needed in or-
der to get forms that can be used in
time}frequency analysis. For example, several
possible forms of ReH nyi entropy measures, in
time}frequency, have been proposed and used
in various problems.

Example. Let us consider the classic Leipnik en-
tropy measure [14]. By using Zakai's entropy para-
meter �

�
"!��

��
�x(t)�� ln�x(t)�� dt of signal x(t)

[19], and its frequency-domain equivalent �
�
, Leip-

nik proved that for the entropy measures of uncer-
tainty hold: �

�
#�

�
*!ln(1/2). According to the

presented procedure for constructing a time}fre-
quency form, based on a classical signal processing
relation, we get

�
�
"!�

�

��

�s(t)�� ln�s(t)��dt

P!

1

2��
�

��
�

�

��

P
�
(t,�) lnP

�
(t,�) dt d�.

(19)

This is exactly the well-known Shannon entropy. It
has already been discussed in [8] with respect to its
(non) applicability in time}frequency problems. In
a similar way, a logarithm of the general signal
duration (uncertainty) form, proposed by Zakai [19]

Z�"log
�
¹

��"
1

1!

log

�

��
��

(�s(t)��)�dt

(��
��

�s(t)��dt)�
,

according to the proposed procedure, transforms
into the ReH nyi entropy measure,

P

1

1!

log

��
�

��
�

�

��

P�
�
(t,�) dt

d�
2�

,R� ,

where �s(t)�� has been replaced with P
�
(t,�), and the

unity energy of signals (1/2�)��
��

P
�
(t,�) dtd�"1

is assumed.
Note: The Zakai's signal duration has been de-
"ned in signal analysis earlier than the ReH nyi en-
tropy measure in information theory. The Zakai
entropy parameter is contained in the general
Zakai duration, as a limit for 
P1. This is the
expected result, since the same relation holds be-
tween the ReH nyi and the Shannon entropy.
Important remark: Since a general time}frequency

distribution cannot satisfy both ��
��

��
��

P
�
(t,�)

"1 and P
�
(t,�)*0 the obtained measures of

time}frequency distribution concentration will just
formally look like the original entropies or classical
signal analysis forms. However, they do not have
the same properties nor the same conclusions and
results derived in classical signal analysis, informa-
tion theory, or thermodynamics, hold in time}fre-
quency any more. Even calling the obtained forms
`entropiesa can mislead a reader. Note that other
possible transformations could be based on substi-
tution of the probability density function by the
distribution's absolute value �P

�
(t,�)� or by its non-

negative part. The positivity will be preserved
here, but not the unity energy condition. Finally,
we could combine the previous transformation
schemes, within the same relation (like, for example,
in the volume normalized `ReH nyi entropy
measuresa), in order to get a usable measure for
time}frequency distributions concentration.
The full analogy and transformation of classical

results into possible corresponding joint time}fre-
quency forms is beyond the scope of this, or any
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Fig. 5. Simpli"ed distributions and their measures. Columns:
I } Simpli"ed distributions; II } Signal energy; III } Squared
norm two; IV }Normalized norm four (Jones}Parks); V } ReH nyi
information with 
"3; VI } Volume Normalized ReH nyi in-
formation 
"3; VII } Proposed measure. Large-shaded num-
bers are for selected distributions by using corresponding
measure. Rows: 1 }Wigner distribution; 2 }Wigner distribution
without cross-terms; 3 } Spectrogram of two linear FM signals;
4 } A reduced interference distribution (RID); 5 } Spectrogram
of a sum of sinusoid and linear FM signal, using a very wide
window; 6 } Spectrogram of a sum of sinusoid and linear FM
signal, using a compromised window producing `gooda concen-
tration of both components; 7 } A distribution adjusted to the
second signal component. The following notations are used:
¸�"�

�
�

�
P�

�
(n, k), A�"�

�
�

���
(n, k)��.

other single paper. Here, the aim is to provide one
more very simple measure for time}frequency dis-
tributions concentration, that can produce better
results than the already existing measures of
time}frequency distributions concentration, in some
practically important cases.
Numerical comparison: We will now demonstrate

how the proposed measure can overcome some of
the drawbacks of other measures in time}frequency
analysis, pointed out in the short review within this
section.
Various measures of concentration are illus-

trated on two simpli"ed examples, Fig. 5. The "rst
example, presented in Fig. 5 (rows 1}4), corres-
ponds to a time}frequency representation of
a two-component linear frequency modulated sig-
nal. Measures based on the normalized norms,
ReH nyi information, normalized ReH nyi information,
and the one proposed in this paper, are given. From
this table, we can conclude that all, except the third-
order ReH nyi information based measure, would se-
lect as the best, the distribution corresponding to
the Wigner distribution without cross-terms (row
2).
The samemeasures are used in the second simpli-
"ed example, Fig. 5 (rows 5}7). This case corres-
ponds to a two-component signal when the
distribution may be adjusted to one of the compo-
nents (for example, spectrogram applied on a signal
whose one component has a constant frequency
and the other component is linear frequency
modulated). All measures, except the one proposed
in this paper, selected the distribution when one
component is extremely highly concentrated, while
the concentration of the other component is very
low (row 5). The measure proposed in this paper
selected the distribution when both components
are well concentrated (row 6).
Very similar conclusions can be made from the

second example, Fig. 6. The normalized measures
for signal x

�
(t), given by (4), are presented in Fig.

6a. All measures behave in a similar manner, indic-
ating that the spectrogram optimal window width
is around N"88. However, when the second com-
ponent is a pure sinusoid, then the other norms do
not look for a compromise. All of them indicate the
widest possible window as the optimal one, Fig. 6e.
It produces high concentration of sinusoidal com-

ponent, ignoring the concentration of the other
component, Fig. 6(g). The proposed measure
chooses a compromised window width for both
components, Figs. 6(e) and (f ).

6. Conclusion

A very simple criterion that can provide an ob-
jective measure for time}frequency distributions
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Fig. 6. Comparison of the time}frequency distribution
measures. (a) Normalized measure values: 1 } Proposed
measure, 2 } Norm two ¸�

�
, 3 } ReH nyi measure with


"3, 4 } Park}Jones ratio of norms ¸
�
/¸�

�
. (b) Spectrogram

with N"88 being optimal with respect to the proposed
measure, (c) Spectrogram with N"106 being optimal with
respect to the normalized ReH nyi measure, (d) Spectrogram with
N"198 being optimal with respect to the Parks}Jones
measure, (e) Normalized measures as in (a) for the second com-
ponent being pure sinusoid, (f) Spectrogram with N"104 being
optimal with respect to the proposed measure, (g) Spectrogram
with N"512 being optimal with respect to the all other
measures.

concentration is presented. It has been used in
automatic determination of some time}frequency
distributions parameters. A review of the existing
measures of time}frequency distributions concen-
tration, and their comparison with the proposed
measure is given.
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