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The Least Squares Boundary Residual Method in
Electrostatic and Eddy Current Problems

SVETOZAR JOVICEVIC anp LJUBISA STANKOVIC

Abstract—The applicability of the least squares boundary residual
method (LSBRM) in electrostatic and eddy current problems has been
demonstrated. In each of the treated examples, the method appeared
easy to use and highly accurate. This was also the case in eddy currents
[ d by h ic excitation.

I. INTRODUCTION

ENERALLY, all electromagnetic problems can be
divided into two classes: deterministic and eigen-
value. The numerical methods for solving both can be
grouped in different ways. The most common way is based
on the form of problem solution, where the numerical
methods can be grouped into three classes. In the first, the

solution is given in the form of a set of sought quantities,

found in a discreet set of nodal points. The second gives
the solution as a set of expressions, each of them valid in
a certain subregion. The third gives the solution in the
form of a finite series, valid in the whole region in which
the solution is required.

The finite difference method and all its improved vara-
tions belong to the first class. The finite element method
belongs to the second class, since the solution domain is
divided, most frequently, in triangle subregions. The so-
lution is found as a set of polinomes, each of them valid
in one of the subregions.

The variational approach to the finite difference method
is one of the possible variants, while, in the finite element
method, this approach is necessary. Moreover, with such
an approach it can be shown that these two numerical
methods are identical in some cases, such as in one-di-
mensional and two-dimensional problems with rectangu-
lar boundaries.

Although the finite element method is widely accepted,
still one can face a lot of difficulties in programming. This
method may, in some cases, such as in open boundary
problems, give rather inaccurate results.

The common basis of the third class of numerical meth-
ods is that the solution is sought in a form of a linear
combination of functions. The unknown coefficients are
found from the requirement that the residuum of the error
function is minimal. Among these methods, which give a
continual solution, are the Galerkin method, the Galer-
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kin-Ritz method, the method of moments, and the collo-
cation method. The difference between them is that the
developing coefficients and weighting functions are deter-
mined and chosen in different ways.

The least squares boundary residual method (LSBRM)
is among the methods of the third class. It has been suc-
cessfully used in the electromagnetic scattering and ei-
genvalue problems [1]-[3], as well as acoustic wave
propagation along a periodic metal grating [4]. A new
variant of the method was proposed to analyze planar
transmission lines [5]. More recently, by combining the
LSBRM and the fast Fourier transform (FFT) algorithms
an efficient numerical procedure was demonstrated on dif-
fraction and eigenvalue problems [6]. However, the ap-
plication of the LSBRM in electrostatic and eddy current
problems seems to be less popular than in the microwave
domain, although in many cases it may offer many advan-

tages.

II. DESCRIPTION OF THE METHOD

In the interior of the spatial domain, bounded by sur-
face § = §; + §,, we shall seek the solution which sat-
isfies the homogenous differential equation

L{®(7)} =o0. (1)

The boundary condition on the part S, is of the Dirichlet
type, so that

o(71) = (7). (2)

The solution satisfies the Neumman boundary condition
on S,

ad(7,) R :
—— =% 3
s =) 3)
where 7, and 7, are the radius vectors of the points on §;

and §,.

Let oo (7) (k =1, 2,3, - --) be a set of basis func-
tions of the differential equation (1), so the approximate
solution may be introduced as

N
2(F) = 2 (7). )

We shall determine the unknown coefficients «; from

the requirement that the integral of quadratic deviation

over the boundary surface should be minimal. The quad-
ratic deviation of the approximate solution (4) from
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boundary conditions (2) and (3) is
[2/(F1) - &(F)]

and

3% (7).
= (5)

Multiplying the above expressions by the elements of S,
and S, and summing over both surfaces, we get

|au(7,) -

¢ = |, (@) - e(r)T as

v [o - 20 s ()

where g is a weighting factor of the Neumman boundary
condition.

Inserting the approximate solution (4) into (6), after
squaring and interchanging the summation and integra-
tion, we find

e = g ®,(7,)dS +g S ®,(7,) dS
51 52

N N N
-2 1211 akbk + k;] 1;[ [s 730772793 (7)

where

o N d¢ (7)) 3¢ (7
= Ss ‘Pk(rl)sot(rx)ds'*‘gS M_@_Lz_)ds

s2 On an
(8a)
_ - - - Oeu(72)
bk_ Ql(r,)<pk(r1)dS+g ‘I:'z(rz)Tds
51 52
(8b)

In order to minimize the integral of quadratic deviation
it is necessary to have
‘ e’
— =0 9
B, 9)
The above requirement leads to the following set of linear
equations:

N
g)l aay=b (k=1,2,--+,N) (10)
which we shall rewrite in the form
an "t aw [e31 _ by . (11)
ayy * " any ay by

In some problems it may be necessary to express the
solution in a more general form

®(r) = kgl [ ) + Bitn(7)] (12)

where , ( 7) is another set of basis functions.
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Following the same procedure as above, with the ad-
ditional requirement that

de?

— =0 (13)
9B

gives the set of equations for unknown coefficients o and

Bs

Here, the new coefficients ay, and b; have the same form
as ay and b, in (8a) and (8b), but with ¥, instead of ¢,
while ¢y, are the coupling coefficients between the two sets
of basis functions

6]
6]

low

I 8l

Hakl” ”ck,”

leal -~ llail

. (14)

dei(73) Y(7,) ds.
2 On on

Cy = Sn e (FO)V(F)dS + g S
| (8a)

Thus we have come to the approximate solution which
satisfies the differential equation exactly, while the
boundary condition is satisfied in such a way that the in-
tegral of total quadratic deviation is minimal.

The first step in the application of this method is the
choice of appropriate basis functions, although this choice
is, in many cases, quite evident from the geometry of the
problem. With well-chosen basis functions, the only prac-
tical difficulty appears to be the numerical integration in
(8a) and (8b), which is more or less a routine procedure.
In the problems where the boundary surface or their parts
are plane surfaces, the integrals (8a) and (8b) can usually
be found in closed form. Moreover, in some practical
problems, at least one part of the boundary is parallel to
the coordinate planes, so that the basis functions can be
chosen in a form to satisfy the boundary condition on this
part of the boundary exactly. In principle, this improves
the accuracy of the approximating solution, or at least
makes finding the coefficients a, and b, easier. The ad-
vantage is also that the determinant of (11) is symmetric
in relation to the main diagonal, i.e., ay = ay.

It should be noted that in the most general case, all of
the coefficients in (11) are nonzero, since, even if ¢, is a
set of orthogonal functions on an arbitrary complex sur-
face S, they become nonorthogonal. In special cases when
¢, and their normal derivatives are orthogonal on the
boundary S, all coefficients a,; = 0 and @y, # 0. Thus the
LSBRM method can be understood as the expansion of
the solution & ( #) on nonorthogonal functions in general,
while the- expansion on orthogonal functions (e.g., the
Fourier series) appears as a special case.

It is quite clear that in two-dimensional problems the
domain boundary is a closed line, and consequently the
surface integrals in (8a) and (8b) should be replaced by
line integrals over the cross-section line.
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III. APPLICATION IN ELECTROSTATICS

For Laplace’s differential equation in a Cartesian co-
ordinate system, the basis functions have the form

or(x, 3, 2) = et oxt (16)
where k), k,, and k; are any complex numbers satisfying
condition

K+ k2 + Kk =0. (17)

As an example we shall analyze the two-dimensional
electrostatic problem of a two-conductor line placed in a
grounded metalic rectangular box (Fig. 1) of infinite ex-
tent.

The dimensions of the problem are chosen so that the
proximity effect is very much present. In the accepted co-
ordinate system, instead of the general basis functions
(16), we can take the basis functions of the form

N
®(x,y) = 2 e
k=1

V(x,y)

El oy sin (kxx/d)sh(kxy/d) (18)

by which the boundary conditions are satisfied on three
walls of the box (x = 0, x = d, and y = 0). The problem
can be solved in such a way that half of the real domain
is to be considered, so that along the line L, (the boundary
line of the conductor) the Dirichlet boundary condition
should be fulfilled and along L, (the rest of boundary line)
the Neumann boundary condition is to be met. The coef-
ficients (8a) and (8b) now get the form

ay = SL. ee(x, f(x))ei(x, f(x)) dl

+g SLZ awk(lgyh/Z) 3901(13)”‘/2) dx  (19)
b, = SLl Voi(x, f(x)) dl. (19b)

Here, dl is the element of the line L;. The weighting fac-
tor g is taken to be g = 1. As will be shown later, for
time-dependent problems, the role of this factor will be
very important. .

For a very accurate solution, with dimensions d = h =
2and a = r = 0.25, only N = 5 modes were needed.

As can be seen from Fig. 2(a), the fulfillment of the
boundary condition along L, and L, is practically perfect,
although, bearing in mind the proximity effect and the
small number of modes,.one would not expect so. The
equipotential lines are plotted in Fig. 2(b).

To illustrate the applicability of the method in cylin-
drical electrostatic problems we shall consider the poten-
tial distribution in the capacitor with long cylindric and
ring electrodes (Fig. 3). A good, but rather complicated
solution of a similar problem is achieved in [7] by using
the charge simulation method introduced in [8].
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Fig. 1. Two-conductor line in a rectangular box.
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Fig. 2. (a) Potential and field along the boundary line. (b) Equipotential
lines.

®)

Fig. 3. (a) Cross section of a capacitor with long cylindric and ring elec-
trodes. (b) Equipotential lines.

A solution will be sought in the form
N
&(r, 2) = El e

V(x,y)

N

kgl aklo(xkr/R)e_xkz/R | (20)
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where x; are the roots of Bessel function Jy(r). So, the
boundary condition on the cylindric electrode is satisfied
exactly. Besides, the requirement ¥V — 0 for z — oo is
also fulfilled, but the evenness of the solution in respect
to z is not satisfied. Thus the coefficients «, are deter-
mined from the requirement that Dirichlet’s condition is
satisfied along the line L, and Neumann’s condition along
L,. Here, we took N = 9 modes and for R = 2.4, d =
1.1, and a = 0.4. The equipotential lines were plotted on
Fig. 3(b).

The fulfillment of the boundary condition in this case
is also very high.

IV. EDDY CURRENT PROBLEMS

The skin effect is a frequent problem in electrical en-
gineering, so a large variety of approaches to its solution
has been developed. The skin effect in a multiconductor
system was analyzed in [9] by the use of finite elements.
The Fredholm integral equation and electric vector poten-
tial for eddy currents of a slowly varying field were used
in [10]. Another paper [11] also employed the boundary
integral equation methods for some electromagnetic field
problems. Boundary element techniques for two-dimen-
sional eddy current problems were applied in [12].

The distribution of eddy currents on a cross section of
a long linear conductor, which is exposed to the axial har-
monic magnetic field of angular frequency w, is governed
by the Helmholtz equation

AyH + K*H =0 (21)

with ¥ = v —jwpo. The basis functions of this equation
are

ee(x, y) = /*rhn g g2 =12 (22)
The LSBRM method will be applied to the problem of
a rather complex cross section determined by the line
(x* + y2)2 -2~y =d" - ¢ (23)
where we took a = 1 and ¢ = 1.02.
The boundary condition is H(L) = H,, where H, is the
- amplitude of the external field and L is the boundary line
of the conductor. Having in mind the symmetry of the
cross section on x and y, instead of the general form (22),

" basis functions are to be taken as cos functions, so the
solution is sought in the form

N
H(xs y) = d’(xa y) = k§1 O Px

I

1211 oy cos (knx /A) cos (Vjwpo — (kx/A)y)

where 4 is the periodicity of the solution which was taken
tobe 4 = 1.6.

From (8a) and (8b) the complex coefficients a, and b,
are determined. With wpo = 25 we took N = 13 modes
of series (24) and found that the deviation of the field
along the boundary is less than 0.5 percent.

Fig. 4(a) shows the lines of constant magnetic field am-
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Fig. 4. (a) Lines of constant field amplitudes. (b) Relative field distribu-
tion along y = 0.

plitudes, while in Fig. 4(b), we have plotted the relative
field distribution along the line y = 0.

V. THE TIME-DEPENDENT PROBLEMS
For eddy currents caused by a nonharmonic magnetic

“field, we are to solve the more general equation

oH
AnH — yaE =0. (25)
The basis functions of (25) are
¢mn(x, v, t) — ej(kmx+k,.y)e—[k21/(,w)]’ k’i + k,% - k2
‘ (26)

where k,, and k, are arbitrary real numbers. The approxi-
mate solution should be sought as
M M
H(x,y,t) = 'El ngl QP (XY, 7). (27)
If we denote the boundary condition (external field on
the boundary line of the conductor cross section) by H; (x,
¥, t) and the initial condition (field distribution on ‘the
cross section in ¢ = 0) by Hy(x, y), the integral of quad-
ratic deviation now becomes

e = SL ST [HL(x, ¥y, 1)

M M 2
_ z_] ;1 Oan Pran (%, Y, t)] dl dt
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In the same manner as for system (10) we get a system
for the unknown coeflicients '

ann " anmm o by,
. : | | (29)
aum,n1 " AummM ot bass
where
.kl = SL gr Cmn(x, ¥, 1) ou(x, y, t) dl dt
+ 8 Sw ‘pmn(X, y, 0)‘pk1x7 y, 0) ds
bu = gL STHL(X’ ¥, ) eul(x, y, t) dl dt

+ 8 S; Hy(x, y, 0)ou(x, y, 0) dS. (30)

To illustrate the procedure described we shall consider '

the establishment of a magnetic field in the interior of a
linear rhombic cross-section conductor (Fig. 5), the di-
mensions of which are a = 1, b = 0.5, and the electro-
magnetic constant op = 2.5.

The conductor is exposed to an axial nonharmonic field

Hi(x,y,t) = H(1 — &%) (31)

with ¢ = 0.5.
The basis function can be chosen, because of symme-
try, with respect to the x and y axes, as

@mn(x, ¥, t) = cos (mnx/2a) cos (nwy/2b)
- exp [_(mw/2a)2 + (nw/2b) t]-
(32)

ou

By finding the coefficients (30) and solving system (29)
with M = 7 we get the solution, the accuracy of which
with respect to the boundary condition, is no less than 2.2
percent. The best results were achieved with the weight-
ing factor g = 0.05. The influence of g on the errors in
the boundary and initial condition can be seen from Table
I. The smaller weighting factor produces a smaller error
in the boundary condition and a greater error in the initial
condition and vice versa.

The constant field amplitude lines are plotted in Fig.
5(a) at moment ¢ = 0.1. Fig. 5(b) shows the time depen-
dence of the field in the conductor central point.

It should be noted that for M = 7, because of the double
series (27), the number of unknowns in the system (29) is
49. This may give an impression that the method is too
extensive for these kinds of problems. However, one
should keep in mind that the solving of the problem by
some other numerical method such as the finite difference
method, requires the discretization of the time interval and
finding the nodal field values at each step of time, which
is a much more time-consuming procedure.

.
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Fig. 5. The establishment of the field in a thombic conductor. (a) Constant
field lines at t = 0.1. (b) Field establishing in the central point.

TABLE 1
THE INFLUENCE OF g ON THE ERROR
Error on Error of the
the Boundary Init. Condition
& (%) (%)
0.005 0.8 5.9
0.05 2.2 1.9
0.5 7.4 0.6

The basis functions (22) and 26) have a simple form
and in many cases enable us to find the coefficients in (10)
or (29) in closed form. Besides, they have a general char-
acter and can be applied to the conductor of any cross
section.

VI. CONCLUSION

The applicability of the LSBRM has been demonstrated
on several problems in electrostatics (the Laplace equa-
tion) and eddy currents, both harmonic and nonharmonic
(the Helmholtz and general parabolic equation). In each
of them, the method showed a great advantage over the
other methods. It gave a continual solution, the program-
ming was easy, and the accuracy was very high, even with
a relatively small number of modes. The only difficulty
which might have appeared was the choice of appropriate
basis functions. However, in many problems this choice
is quite obvious. As expected in the nonharmonic eddy
current problems, where both space and time boundary
conditions were included, the weighting factor played an
important role.
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