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Highly Concentrated Time-Frequency Distributions:
Pseudo Quantum Signal Representation

LJubǐsa Stankovíc, Senior Member, IEEE

Abstract—Distributions that are highly concentrated in the
time-frequency plane are presented. Since the idea for these
distributions originated from the Wigner representation in the
quantum mechanics, a review of this representation is done in
the first part of the paper. Abstracting the physical sense of
the quantum mechanics representation, we defined the “pseudo
quantum” signal representation. On the basis of a signal, the
“pseudo wave function” with the corresponding “pseudo particle”
having the “pseudo momentum” } = �hf! is generated. By
varying the value of �hf , one is in a position to influence the con-
centration of the “pseudo quantum” (time-“pseudo momentum”)
signal’s presentation while keeping its most important time-
frequency properties invariant. From this reflection, an efficient
distribution for the time-frequency (time-“pseudo momentum”)
signal analysis is obtained. This distribution produces as high a
concentration in the time-frequency (time-“pseudo momentum”)
plane as the L-Wigner distribution; however, it may satisfy the
marginal properties. The theory is illustrated with examples.

I. INTRODUCTION

CONCENTRATION of a time-frequency distribution is
one of its very important and intensively studied proper-

ties [1], [6], [7], [9], [11], [20]. The Wigner distribution, which
is defined in quantum mechanics [3] and introduced in signal
analysis by Ville [5], is the only one from the Cohen class
of distributions [1], [2] (with signal independent kernel) that
may produce the complete distribution concentration along the
instantaneous frequency when it is a linear function of time
[6], [7]. Concentration improvement, in the case of nonlin-
ear instantaneous frequency, may be achieved using higher
order distributions, like, for example, the polynomial Wigner
distributions [9], [10] or the L-Wigner distributions [7], [8],
[11], [12]. Higher order distributions do not satisfy common
marginal properties [1], [2], but rather their generalized forms.
In this paper, on the basis of quantum mechanics form of
the Wigner distribution, a highly concentrated time-frequency
distribution will be proposed. It will be concentrated as high
as the L-Wigner distribution, but in addition, it will satisfy
unbiased energy condition, time marginal and, for asymptotic
signals, frequency marginal properties.

The paper is organized as follows. In the first part of the
paper, a review of the quantum mechanics Wigner represen-
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tation is provided1 since the highly concentrated distribution
is derived from its analysis. Distribution definition and its
properties are presented next. Finally, a method for the re-
alization of the highly concentrated distribution, in the case
of multicomponent signals (including noisy ones and the ones
that intersect in the time-frequency plane), is presented.

II. REVIEW OF THE QUANTUM

MECHANICS WIGNER REPRESENTATION

Classical equations describing a particle motion are given
by and , where

position,
mass,
momentum of a particle,
potential.

If the initial conditions are not given by and , but
rather by their probability distribution ; then,
the particle dynamics is described by Liouville’s equation:

(1)

Quantum mechanics generalization of Liouville’s equation has
been introduced by Wigner [3], [4] in the form

(2)

where is a constant, , and [J/s]
is the Planck’s constant. The momentum operator is denoted
by , and its form is (for the 1-D case

) in the space of ( ). Expanding
into a Taylor series around we get

(3)

From (3), one may easily conclude that the classical Liouville
equation (1) follows as a limit of its quantum mechanics
extension. This limit appears if the potential is of the form

(potential in the linear oscillator)

1Although Wigner was awarded the Nobel prize in 1963, his theory is not
widely available in quantum mechanics textbooks.
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or if the terms in (3) of order , for , are negligible.
The expression

(4)

may be understood as a quantum correction of the classical
Liouville form [3], [4]. This is a significant property of the
Wigner representation since it may be used to transform the
solutions from the classical to the quantum forms [4] or to deal
with problems with mixed (quantum and classical) variables.

In quantum mechanics, constantappears as a key quantity
in numerous relations. Here, we will mention (and use in the
explanations that follow) only one, which is very familiar to
electrical engineering specialists: An electromagnetic wave
having wavenumber may be treated as a particle with
momentum . When electrical and magnetic field
components are normal to the propagation axis (TEM wave),
we may also write , with .
Constant is present in the original (quantum mechanics) form
of the Wigner distribution as well [3], [4]:

or, for stationary problems

(5)
where . Wavefunction in
the previous equations satisfies the Schroedinger equation

(6)

if satisfies the Wigner quantum equation (2).
It may be shown that the Wigner representation and the
Schroedinger’s one are equivalent, i.e., they uniquely follow
from each other [3], [4].

Here, we will also indicate thatthe uncertainty principle in
the Wigner representationstates that

where and are defined by

when we substitute with and , respectively. The product
of the Wigner distribution standard deviations in directions
of the and axis cannot be arbitrarily small. It is always
greater or equal to , [4].

Any function

(7)

with being -independent is the solution
of the Schroedinger’s (6) if

mV (8)

and

(9)

In light of (9), we mention again that is of order 10 34. The
above forms are known as the pseudo classical approximation
for stationary problems. Thus, for any function (7) satisfying
(9), the Wigner distribution may be written in the form

(10)

The wavefunction defined by (7), along with (9) and (8) and
with , is a form of the Schroedinger’s equation solu-
tion, which was proposed by Wentzel [14]. It is efficiently used
in quantum mechanics problems, especially for transmission
coefficient calculations. Formally, the same form as (7), with

, is used as a wavefunction in the famous Feynman’s
theory of path integrals [15]
(where is -independent, and

is the Lagrange’s operator). The
wavefunction in Bloch’s theorem may be also written in form
(7). We may conclude that (7), although not general, is a very
common form of the wavefunction in quantum mechanics.

III. ON THE SIGNAL ANALYSIS

FORM OF THE WIGNER DISTRIBUTION

In signal analysis, the variables: frequency () and time ()
are used, instead ofand . In the time domain, the operators
are given by and , [1]. The Wigner
distribution of signal with these coordinates is derived as

(11)

The formal mathematical correspondencebetween the quan-
tum mechanics definition (5) and the signal analysis definition
(11) is obvious with , , , and .
The presence of factor is due to different forms of the
Fourier transform commonly used in quantum mechanics and
signal analysis (we intentionally did not want to modify any of
them). This is a natural analogy that was used in the extension
of quantum mechanics concepts and definitions to the signal
analysis (see [1], [16]–[18]). Of course, in signal analysis, a
signal need not to satisfy the Schroedinger equation (6). The
signal is rather obtained as a result of some physical processes
or theoretical analysis. Note also that quantum mechanics is an
inherently probabilistic theory in contrast with signal analysis,
which is a deterministic theory [1].
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For a frequency-modulated signal , the
Wigner distribution (11) assumes the form

Factor produces the ideal distribu-
tion concentration , whereas the term (whose
phase is of the form that formally corresponds to the quantum
correction factor (4))

(12)

produces the spread of distribution around the instantaneous
frequency. Factor is equal to zero if instantaneous frequency

is a linear function, i.e., if , for . In
quantum mechanics, the quantum correction termwas equal
to zero for the potential function such that the terms with

are negligible. This is in agreement with (8),
where linear function corresponds to quadratic function

.

IV. “PSEUDO QUANTUM” SIGNAL REPRESENTATION

We now pose the question: Is it possible to use a form of
the Wigner distribution in the signal analysis other than (11)?
In particular, we look after a form that would keep a constant
corresponding to in (5). This would be of great help in
the signal analysis, especially since here, we are not restricted
to the physical (real world) value of this constant. Thus, we
would have an opportunity to choose its most suitable value.
Now, we will present a reflection that led to that form of the
Wigner distribution.

We have already mentioned that there is a completeformal
mathematicalcorrespondence between quantum mechanics
and signal processing forms of the Wigner distribution. We
have also shown how to get the signal analysis form from the
quantum mechanics one. Now, we will consider the opposite
direction, i.e., generation of a quantum mechanics form of the
Wigner distribution from the signal analysis one. Of course,
the correspondence is again only mathematical formality since
the created “wave function” generally may not correspond to
a true wave function nor the real world value of constant

will be acceptable for the analysis of signals. Let us, for
the sake of argument, transcend the real world and enter the
realm of a thought experiment. Assume that there are fictitious
“spaces” in which may assume some other constant values
and not just the conventional one. This fictitious constants will
be denoted by . Forms associated with this new constant
will be, in the sequel, referred to as “pseudo quantum forms.”
Having in mind this freedom, we may reinterpret the above
signal processing definitions in the following way: On the basis
of the signal given in the signal analysis, we mathematically
generate the “pseudo wave function” with the corresponding

“pseudo particle” having the “pseudo-momentum” .
Thus, signal analysis form of the Wigner distribution (11) may
be treated as a special case of the “pseudo quantum” form of
(5) with (in the “space” where ). Now, we
may pose the question: Why are we restricted to , or
is it possible to obtain any improvement in the signal analysis
using some other values for ?

It is obvious from the quantum mechanics forms that the
uncertainty (which is now of order ) may be decreased by
using smaller values of . If we are able, for a given signal,
to form a “pseudo wave function” having different “pseudo
momentums” in differentfictitious “spaces” (with different
constants ), then we can always go to a “space” with a
small uncertainty and analyze the signal in that “space” (in
its ( ) plane). As a measure of the representation quality,
we may also consider the distribution concentration along
the instantaneous frequency (group delay). This is especially
interesting for a very important class of asymptotic signals
when the uncertainty is always large, even for distributions
that are very highly concentrated along the instantaneous
frequency (group delay) [20]. For example, if a signal is
linear frequency modulated, then the Wigner distribution (11)
in the “space” with produces ideal concentration at its
instantaneous frequency (12). Therefore, in this case, there is
no need to go to any “space” with smaller i.e., smaller
uncertainty. However, if the signal is not linear frequency
modulated, we should go to “space” with smaller in order
to improve the distribution concentration. How far we go with
the decreasing of the depends on how significantly the
nonlinearities are exhibited in the frequency-modulated signal
or, globally, how large the distribution uncertainty is. In this
way,by varying the value of , we are in aposition to influence
the concentration (or uncertainty) of the “pseudo quantum”
signal representation while, as it will be shown, keeping the
most important properties of the time-frequency representation
invariant.

Here, we will present a distribution exhibiting the above
properties. The idea for this distribution is based on the
quantum forms given by (7) and (10). Transformation of a
signal into the “pseudo wave function” is done according to
(7) with , , , . Although
the described transformation is onlyone of the possibilities,
we preferred it because of its

1) quite general form with respect to signal functions,
2) simplicity,
3) presentation efficiency (Section V),
4) convenience in the numerical realization (Section VI).

The other quantum mechanics forms may produce other trans-
formation schemes that will, hopefully, be worth future inves-
tigation for signal processing purposes (for example, using the
wavefunction of the quantum linear oscillator as a transforma-
tion scheme, we would exactly get the L-Wigner distribution).
According to the above considerations, (7) and (10) assume
the signal processing shape

SD

(13)
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with being replaced by signal and by . The
operators in the time domain are given by
and .

For frequency-modulated signal , the
term described by (12), which causes the distribution spread,
is of the form

(14)

For values , this factor is significantly reduced with
respect to (12), meaning significant improvement of the distri-
bution concentration along the instantaneous frequency.2 The
uncertainty limit of distribution (13) is also of order . The
definitions and properties of distribution (13), that will prove
the above statements, are studied in the next section.

V. DEFINITION AND PROPERTIES OF THESD

A. Definition

The windowedform of theScaled variant of the L-Wigner
Distribution (SD) of signal is defined by

SD

(15)
where is the modification of
obtained by multiplying the phase function bywhile keeping
the amplitude unchanged

(16)

Note that the word “windowed” will be used in front of the
SD to indicate presence of window .

B. Properties

1 : The SD is always real.
2 : The distribution defined by (15) satisfies the time

marginal and unbiased energy condition for any:

SD

SD

(17)

where is assumed.
3 : For asymptotic signals (signals whose phase variations

are much faster than its amplitude variations [20]), the fre-
quency marginal

SD

2The true (real-world) value of�h, along with its quantum mechanics form,
would require a signal’s power of order1=�hc � 10

42. It is absolutely
unacceptable in the signal analysis. The values that are used in our papers
ranges fromL = 1=�hf = 1 up toL = 1=�hf = 8:

is satisfied, as well. Fourier transform of is denoted by
. Substituting by in (13), we have

SD

(18)

where . According to the
stationary phase method [20] for asymptotic signals , it
holds that

where is the solution of . Thus, we get
, and the proof directly follows [22].

Note that for asymptotic signals

For these signals, according to (18), we have

SD

(19)
This relation is dual to (13). It means that all properties that
hold in the time domain will be valid, for asymptotic
signals, in the pseudo momentum domain.

4 : The time moments property

SD

is satisfied by (13) for any since .
The frequency moments property is satisfied for asymptotic
signals.

5 : The mean conditional value of the SD, at a particular
instant , defined by

SD

SD

and is invariant with respect to. It is equal to the signal’s
instantaneous frequency

Proof: Observing that

SD

and

SD

the proof directly follows. Note that for , . For
asymptotic signals dual relation holds for the group delay.
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(a) (b)

Fig. 1. Illustration of the regions of support. (a) Spectrogram at a given instantt. (b) Regions of support with the reference level.

6 Theorem: For any signal having
finite derivatives of the phase function and continuous
amplitude , the SD for is completely concentrated
along the instantaneous frequency

SD (20)

where is a finite duration window .
The proof may be found in [22].
7 : If a signal is a time-shifted version of

, then SD SD for any .
8 : The SD of a modulated signal is

SD .
9 : The SD is limited to the same time interval as the signal

itself: If for , then SD for .
10 : The SD is limited in the direction for asymptotic

signals and any to the same interval as ,
i.e., if for , then SD for .
The proof follows from (19).

11 : If we have a product of two signals , then
its SD is equal to the convolution in frequency of the SD’s
of each signal separately. The SD of the product of Fourier
transforms of two asymptotic signals is equal to the time-
domain convolution of the distributions of each signal.

12 : If a signal is multiplied by the chirp signal
, then its SD is SD for any . If

is multiplied by an arbitrary frequency-
modulated signal satisfying the conditions of
Theorem in 6, then for large , we get that SD

. In a dual form, the same is valid
for asymptotic signals.

13 : A 2-D real function is the SD distribution of
a signal if

(21)

where

Proof: If (21) is satisfied, then
, where and are arbitrary functions

of and . It follows that
. Since, for any function , there exists a

function such that , we may write

. From (21), with
and , we get

Since is a real function, it follows that
, where is a real constant. Thus, for

satisfying (21), there exists function such that
and are the Fourier

transform pair. Q.E.D.
14 Generalization: Form (15) may be applied to any dis-

tribution from the Cohen class, defining a class of distributions

(22)

Properties of are studied in detail in [23].

VI. ON THE REALIZATION

Direct realizationis based on the straightforward application
of the SD definition (15), (16). Signal should be modified
into and oversampled times, whereas the number
of samples used for calculation is kept unchanged. Regarding
the last assumption, this method is not computationally much
more demanding than the realization of ordinary ( )
Wigner distribution. In the case of multicomponent signals,
this method will produce signal power concentrated at the
resulting instantaneous frequency, according to the Theorem
in . Some examples with the direct method of realization are
presented in [22]. Here, we will present a method for the SD
realization that will be efficient in the case of multicomponent
signals. This method will also provide that neither oversam-
pling (with respect to the Nyquist rate) nor an analytic signal
application is needed for the realization.

Consider amulticomponent signal
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(a) (b)

Fig. 2. Time-frequency (pseudo-quantum) representation of a Gaussian chirp signal: (a) Wigner distribution and (b) the SD withL = 8.
(A = a = b = 2c = 1).

Our aim is to obtain a distribution such that it is theoretically
equal to the sum of the SD’s of each component separately, i.e.

SD SD (23)

Note that the marginal conditions in this case will be

and . Let us start from the short-

time Fourier transform of in the space with (and
):

STFT

(24)

As it is known, this transform does not have crossterms
between signal components that are separated in the time-
frequency plane. In order to produce a higher order SD, we will
need an amplitude normalized version of STFT , which
will be denoted by STFT and defined as

STFT

If amplitude is slow varying, we may easily get
STFT from STFT as

STFT STFT (25)

where STFT , and is
the energy of window . In the derivation of (25), the
Parseval’s theorem

STFT

with is used.3

3Slow-varying amplitudeA(t) means thatw(�)A(t + �) � w(�)A(t).
This condition may be written in a less restrictive form. Assume, for example,
a Hanning windoww(�) and A(t + �) = A(t) + A

0(t)� + A
00(t)�2=2.

The scaling factor in (25) remains the same ifA2(t) � [A02(t) +

A(t)A00(t)]=6:17+A
002(t)=120, i.e., if A(t); A0(t); A00(t) are of the same

order. In the examples, we will see that the results will not be significantly
degraded even if this condition is not satisfied.

If the signal is multicomponent, with slow-varying ampli-
tudes of each component, and the components are separated
along the frequency axis for any(i.e., they lie along inside
regions which do not overlap), then according to (25)

STFT STFT (26)

where STFT , and
is equal to unity for inside and zero outside

(regions are numerically determined as the compact regions
where STFT is greater than an assumed reference level

; see Fig. 1). Details may be found in [21], [23], and
[24]. In order to realize the SD, let us define an intermediate
distribution as

with . Knowing STFT and STFT ,
we may easily realize a crossterms-free version of
using the S method:

STFT

STFT (27)

where is a frequency domain window function, which
has to be wide enough to ensure the integration over autoterms
and narrow enough to avoid crossterms (see [7], [8], [12], [13],
[21], [23], and [24] for details). For a given, inside , the
optimal window width is determined by the width of
product along . Note that in general,
this product is and dependent, and so is the window
width [21], [23], [24]. After we get crossterms-free ,
then we may get the SD (15) for :

SD
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(a) (b)

(c) (d)

(e)

(f) (g)

Fig. 3. Time-frequency (pseudo-quantum) representation of a multicomponent signal: (a) spectrogram, (b) Wigner distribution of an analytic signal, (c)
S-method, (d) the SD withL = 2 along with marginal properties, (e) the SD withL = 4, (f) the s-method of noisy signal, and (g) the SD with
L = 2 of noisy signal.

convolving two

SD (28)

where, again, eliminates (reduces) crossterms, whereas
the autoterms are the same as in the original SD of order 2.
This procedure may be continued up to any order of the SD.
Namely, convolving SD given by (28) and its normalized
version SD , we get SD with , and so on.

Efficiency of the proposed realization will be demonstrated in
the next section. Further details on the numerical realization
may be also found in [21], as well as in [23] (along with a
very simple MATLAB program for the SD realization).

VII. EXAMPLES

Example 1: The SD of aGaussian chirp signal
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(a) (b)

Fig. 4. Time-frequency (pseudo-quantum) representation of a multicomponent signal whose components intersect. (a) Spectrogram and (b) the SD with
L = 2 along with the time marginal property.

according to (13), is given by

SD

For , we get SD ,
which is just an ideally concentrated distribution along the
instantaneous frequency; see Fig. 2. For a large, if is
large enough so that , we get the distribution
highly concentrated in a very small region around the point

.
Example 2: Consider amulticomponent real signal

where is a Gaussian white noise. Hanning window
of the unity width with samples, as well as a
rectangular window , are used. Regions (and window

widths) are determined on the basis of a reference
level equal to 4% of the maximal spectrogram value for each
considered ; see Fig. 1. The spectrogram of is shown in
Fig. 3(a). Fig. 3(b) and (c) present the Wigner distribution, as
well as the S-method (autoterms as in the Wigner distribution
but without cross-terms [8], [12], [13]). In the case of the
Wigner distribution, an analytic part of the signal is used.
The crossterms-free SD with realized according to the
procedure described in Section VI is shown in Fig. 3(d). Here,
we also presented the marginals obtained from the SD (thick
line), as well as the theoretical ones, according to (23) (thin
lines). Note that does not influence the time marginal
condition, whereas the frequency marginal is smoothed by the
Fourier transform of the resulting window in the SD. Further
concentration improvement may be achieved using the SD
with ; see Fig. 3(e). Note that the third signal component
(very short chirp pulse) is far from satisfying the condition of
constant amplitude within the window , which is required
by (25), but nevertheless, the representation of this component
is in complete agreement with the presented theory.

Example 3—Multicomponent Real Noisy Signal:The case
with a high amount of noise (SNR 4[dB]) added to
the signal fromExample 2is presented in Fig. 3(f) and (g).
SNR is the ratio of total signal and noise energy within the
considered time and frequency interval. For each separate
signal component, this ratio would be 3,3, and 12 dB,
respectively. The S-method of noisy signal is presented in
Fig. 3(f), whereas Fig. 3(g) shows the second-order SD,
realized according to the procedure described in Section VI.

Example 4: Finally, assume amulticomponent signal
whose components intersect:

In the realization of time-frequency presentation of this signal,
the Hanning unity width window is used. The number of
samples was . Rectangular window with signal
dependent width, in (27), as well as in (28),
are used. The spectrogram is shown in Fig. 4(a), whereas
Fig. 4(b) presents the SD with . It may be observed
that the distribution presented in Fig. 4(b) behaves according
to the presented theory everywhere except around the point of
intersection, where crossterms appear. They occurred because
the support regions and overlap in neighborhood of this
point, where both components are considered to be a single
component, with all consequences as in the case of Wigner
distribution.

VIII. C ONCLUSION

Pseudo quantum signal representation is presented. One
possible scheme for the transformation of a signal into “pseudo
wave function” is presented. On the basis of that analysis, the
distribution for time-frequency analysis (SD) is introduced.
This distribution may produce an ideal concentration at the
instantaneous frequency in the case of nonlinear frequency-
modulated signals (or, generally, may produce representation
with arbitrary small uncertainty limit), satisfying the marginal
properties.
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