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For (3) drop the argumentf and write

D = jTd � A0j

A0 = jA0je
j 6 A

Td = jTdje
j 6 T

= ce
j 6 T

:

Then

D = jcej
6 T � jA0je

j 6 A j

= jc� jA0je
j(6 A �6 T )j

which says that the pointjA0je
j(6 A �6 T ) lies on the circle with

centerc, radiusD:

Therefore

j6 A0 � 6 Tdj � sin
�1 D

c
:

Proof of Theorem 1:An outline of the proof is given here; details
can be found in [2].

The alias component (AC) matrix for theM -channel filter bank is

HAC(f) =

1

M

M�1

k=0

Gk(f)

Gk f �
1

M

...

Gk f �
(M � 1)

M

� Fk(f) Fk f �
1

M
� � � Fk f �

(M � 1)

M

that is, then`-element ofHAC(f) is

hn`(f) :=
1

M

M�1

k=0

Gk f �
n

M
Fk f �

`

M
:

Also, letP (f) denote the AC matrix for the ideal systemTd, that is

P (f) =

Td(f) 0 � � � 0

0 Td f �
1

M
� � � 0

...
...

.. .
...

0 0 � � � Td f �
(M � 1)

M

:

Since the gainG(`2) of a linear periodically time-varying system
equals theL1 norm of its AC matrix and since the AC matrix of
Td � T equalsP (f) � HAC(f), we have that

J = kP �HACk1: (4)

The elements on the first row ofHAC(f) are

h0`(f) =
1

M

M�1

k=0

Gk(f)Fk f �
`

M

=A`(f):

Since theL1 norm of each block of a matrix is less than or equal
to the L1 norm of that matrix, by considering the first row of
P (f) � HAC(f), we have from (4) that

k[Td �A0 �A1 � � � �AM�1 ]k1 � J

that is

jTd(f)� A0(f)j
2
+

M�1

k=1

jAk(f)j
2 � J

2
; 8 f:

This is the same as saying

D(f)
2
+AD(f)

2 � J
2
; 8 f:

Maximizing overf gives the inequality to be proved.
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An Architecture for the Realization of a System
for Time-Frequency Signal Analysis

Srdjan Stankovi´c and LJubis̆a Stankovi´c

Abstract—An architecture of the system for time-frequency signal
analysis is presented. This system is based on theS-method, whose special
cases are two the most important distributions: the Spectrogram and the
Wigner distribution. Systems with constant and signal-dependent window
widths are presented.

Index Terms—Spectrogram, time-frequency analysis, VLSI architec-
ture, Wigner distribution.

I. INTRODUCTION

Two of the most important and widely used distributions for
time-frequency signal analysis are: the Spectrogram (SPEC) and the
Wigner distribution (WD), along with its pseudo and smoothed forms
[1], [2]. TheS-method, recently defined in [3], and analyzed in details
in [4]–[9], may produce the representation of a multicomponent signal
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Fig. 1. System for the recursive STFT realization.

Fig. 2. Realization of theS-method with constant windowP (i) width, 2Ld + 1 = 9.

Fig. 3. Realization of control signals for the variable width ofP (i).

such that the distribution of each component is its WD [4]–[6],
[8] but avoiding serious drawbacks of the WD: 1) Cross-terms are
removed (or significantly reduced) [3]–[8]; 2) Signal over sampling,
with respect to the sampling theorem, is not necessary [4], [6], [8];
and 3) Performances in the noisy environment are improved [9]. The
S-method may be realized in a numerically very efficient way (more
efficient than the WD realization itself) [3]. Two special (marginal)

cases of theS-method, which readily follow, are just two the most
frequently used distributions (the SPEC and the WD). In this brief,
systems for hardware realizations of theS-method, with constant and
variable window widths, are presented. It is shown that all appealing
properties of theS-method may be further (significantly) improved
using the variable width windows.

II. REVIEW OF THE S-METHOD

The discrete form definitions of the Short-time Fourier transform
(STFT), whose squared magnitude is called spectrogram, and the
pseudo-Wigner distribution, are given by [1]–[4]

STFT(n; k) =
N=2

i=�(N=2)+1

f(n+ i)w(i)e�j (2�=N) ik (1)

WD (n; k) =

N=2

i=�(N=2)+1

f(n+ i)f�(n� i)

� w(i)w(�i)e�j (2�=N) 2ik
: (2)

In the WD definition we omitted a factor of 2 in order to simplify the
notation, as well as assumed a real windoww(i). Relation between
(1) and (2) may be easily derived as

WD (n; k) =
1

N

N=2

i=�(N=2)+1

�(i)STFT(n; k + i)

� STFT� (n; k � i) (3)
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Fig. 4. Realization of theS-method with variable windowP (i) width and 2L
dmax

= 9.

Fig. 5. Block diagram of a complete system for time-frequency signal analysis.

where�(i) = 1, for all i exceptjij = N=2, when�(�N=2) = 1

2
.

Relation (3) was used as a basis for the derivation of theS-method,
whose discrete form is defined by

SM(n; k) =

L

i=�L

P (i)STFT(n; k + i)STFT� (n; k � i): (4)

TheS-method, for a real and symmetric windowP (i) = P �(�i),
may also be written in the form

SM(n; k) =SPEC(n; k) + 2

L

i=1

� RefP (i)STFT(n; k + i)STFT� (n; k � i)g: (5)

Through a suitable selection of the windowP (i) it is possible to
get the autoterms of multicomponent signals such that they remain
unchanged with respect to the WD, while the entire elimination (or
reduction) of cross-terms is reached (more details on the window
P (i)may be found in [3]–[9], as well as in Section IV). Let us observe
that: 1) forP (i) = �(i) we get the SPEC; and 2) forP (i) = 1=N

the WD follows [in this case�(i) should be included].

III. A RCHITECTURE FORSIGNAL INDEPENDENT REALIZATION

Here, we will present a system for theS-method realization using
signal independent windows. First, a signal has to be transformed into
the STFT. Assuming a rectangular windoww(i), this may be done
in a recursive manner [3], [4], [6], [10], [11], [16], [17] according to

STFTr(n; k) = f n+
N

2
� f n�

N

2
(�1)k

+ STFTr(n� 1; k)e
j2�k=N

: (6)

Architecture of the system, for a givenk, is given in Fig. 1.
Complete system containsN of these blocks, withk = 0, 1, 2,
� � � N � 1. The coefficientsa

�1; a0; a1 are, for example, (0, 1, 0),
(0.25, 0.5, 0.25), or (0.23, 0.54, 0.23) for the rectangular, Hanning
or Hamming windoww(i), respectively. Once, we have obtained
the STFT, theS-method (5) may be realized by the system whose
architecture is presented in Fig. 2 [for a rectangular windowP (i)

whose width is2Ld + 1 = 9].

IV. A RCHITECTURE FORSIGNAL DEPENDENT REALIZATION

In the previous section, we considered the system in which the
width of windowP (i) is not dependent of the signal. Theoretically,
this width should be such that the summation over all nonzero values
of the STFT is performed in (5), for each signal component. For
example, if the STFT of each signal component, for a given instant
n, is M samples wide, then the windowP (i) width should be
2Ld + 1 � M . The optimal value, with respect to the calculation
complexity [3], cross-terms elimination [3]–[8], and noise influence
[9], is the smallest possible one producing the auto term shape the
same as the WD does, i.e.,Ld = (M � 1)=2. However, if the
time-frequency analysis is performed for a multicomponent signal,
whose widths of the STFT’s components are different and equal
M1; M2; � � � ; Mp, then the signal independent windowP (i) should
have the width2Ld+1 =Mmax = max fM1; M2; � � � ; Mpg. But,
for the entire time-frequency plane(n; k), except at the central points
of the widest component, the windowP (i) will be overlong. This
will have a negative influence to the time-frequency representation,
with respect to the previous three essential aspects (noise, cross-
terms, and calculation complexity). These are the reasons why we
will introduce the system with signal dependent windowP (i) width,
denoted by2Ld(k) + 1. The value ofLd(k) should follow the
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(a)

(b)

(c)

(d)

Fig. 6. Time-frequency representation of a multicomponent signal. (a) Spectrogram. (b) Wigner distribution. (c) Signal independentS-method. (d) Signal
dependentS-method. Noisy signal representations are given on the right-hand side.

widths of the STFT of the signal’s components. It should include
the summation in (5) over the terms where STFT(n; k + i) and
STFT� (n; k � i) are different from zero. But, the variable width
of P (i) should exclude the summation where one or both of the
previous components are equal to zero, and in addition, it should
stop the summation outside a component. In this way we will not
pick up the noise by summation over the points that are not needed
with respect to the signal presentation quality. Also, the cross terms,
between nonoverlapping components in the time-frequency plane,
will be completely avoided. Obviously, the number of the numerical
operations will be decreased with respect to the constant window
P (i) width, as well. For example, if we apply this method to a

monocomponent signal withjSTFT(n; k)j > 0 only for jk � k0j �

2 and a givenn, then the windowP (i) should have the width such
thatLd(k) = 0 for all k, exceptLd(k0) = 2 andLd(k0 � 1) = 1.

The variable windowP (i) width will be realized using logic
circuits that will turn off all lines i � i0 for a given k when
any STFT(n; k + i0) or STFT� (n; k � i0) are equal to zero or,
in practical applications, less than an assumed reference valueRn

(index n is to indicate that this level will, in general, be timen
dependent). We defined the reference value as a fraction of the
maximal value of jSTFT(n; k)j for all k and a givenn, i.e.,
Rn = maxk jSTFT(n; k)j=Q, where 1 � Q < 1. Obviously,
for Q = 1 the SPEC will be obtained, whileQ ! 1 will produce
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the WD (in the example, which follows, we usedQ = 5). The logic
circuits should provide such control signals that will allow summation
in (5), up to theLd(k). Let us denote byxi(i = 0, 1, � � � ; N � 1)

the outputs from the comparator circuit, Fig. 3:

xi =
1 for jSTFT(n; i)j > Rn

0 for jSTFT(n; i)j � Rn
: (7)

Switchers’ control signals (which will or will not allow theith
summation in (5), for a givenk, Fig. 4) are defined by

ci =

i

m=1

xk+mxk�m for i = 1; 2; � � � ; Ldmax (8)

where we assumed (without loss of generality) that the maximal
possible windowP (i) width is 2Ldmax + 1. The spectrogram value
will be forwarded to the output, even ifjSTFT(n; k)j � Rn for all
k, so c0 � 1. The architecture of logic circuits that will produce the
control signals, is presented in Fig. 3. Its position, within the entire
system, is given in Fig. 5.

In the case of a high noise, the valuexi = 0 (jSTFT(n; i)j � Rn)
may occur even if nonnoisy valuejSTFT(n; k)j is greater than the
reference value. In this case, we may just disregard this, being aware
that the value of spectrogram is forwarded to the output anyway (as
we did in the example), or to introduce a slightly more complicated
logic function which will stop the summation in (5) only after two
subsequent zeros ofxi and xi+1 are detected. In the second case,
control signalsci are defined by an expression formally the same as
(8) with xm being replaced by�m = xm+xm+1, where “+” denotes
a logical OR operation. This form may be used not only in the case
of noisy signals, but also if the STFT may assume zero (or less than
referenceRn) value within a single auto term.

The system presented here may be directly applied for the L-
Wigner distribution [4]–[6], [15] realizations.

V. EXAMPLE

Consider a multicomponent noisy signal:

x(t) = f(t) + n(t)

= e
j1400t

+ e
j680(t�0:1)

+ 4e
�[150(t�0:8)]

e
j187:5t

+ n(t): (9)

The variance of a Gaussian white noisen(t) is �2n =
1

2
. The

Hanning windoww(i)w(�i) in the WD of the widthT = 0.25, is
used. Approximately, the Hanning windoww(i)w(�i) is obtained
with a0 = 0.6366, a�1 = 0.2122, a�2 = �0.042 44 in Fig. 1.
Signal is sampled atT=N in the STFT and theS-method, while
at T=(2N) in the WD, with N = 128. The SPEC of signal (9)
is shown in Fig. 6(a). One may observe that: 1) All distribution
components are spread in the time-frequency plane, except the one
representing pure sinusoid; 2) The cross terms do not exist; 3) The
noise is especially exhibited just in the region where the spectrogram
is different from zero. In the WD, Fig. 6(b), all components are
highly concentrated, but the cross terms are present, as well as the
noise over the entire time-frequency plane. TheS-method, Fig. 6(c),
produces the same signal representation as the WD does, but the cross
terms are significantly reduced (they appear only in a tiny region
when two components are very close) and the noise influence is
decreased. Its significant presence may be spotted only in the region
around the signal’s components, defined by2Ld + 1 = 9. Complete

elimination of the cross terms (for nonoverlapping components), as
well as further reduction of the noise, is achieved by the variable
(and self-adaptive) windowP (i) width in the S-method, Fig. 6(d)
Reference valueRn = maxk jSTFT (n; k)j=5 andLdmax = 4 are
used. An application of the proposed method to the time-frequency
analysis of real seismic signals is presented in [18] and [19].

VI. CONCLUSION

The systems for signal independent and signal dependent time-
frequency analysis are presented. These systems produce better time-
frequency signal representation than the spectrogram and the Wigner
distribution, regarding to the most essential aspects, such as noise
influence, cross-terms, over sampling and calculation complexity.

REFERENCES

[1] L. Cohen, “Time-frequency distributions—A review,”Proc. IEEE,vol.
77, pp. 941–981, July 1989.

[2] F. Hlawatsch and G. F. Broudreaux-Bartels, “Linear and quadratic time-
frequency signal representation,”IEEE Signal Processing Mag.,pp.
21–67, Apr. 1992.

[3] LJ. Stankovíc, “A method for time-frequency analysis,”IEEE Trans.
Signal Processing, vol. 42, pp. 225–229, Jan. 1994.

[4] , “An analysis of some time-frequency and time-scale distribu-
tions,” Ann. Telecommun.,, vol. 49, pp. 505–517, Sept./Oct. 1994.

[5] , “A multitime definition of the Wigner higher order distribution: L-
Wigner distribution,”IEEE Signal Processing Lett., vol. 1, pp. 106–109,
July 1994.

[6] , “A method for improved energy concentration in the time-
frequency signal analysis using the L-Wigner distribution,”IEEE Trans.
Signal Processing,vol. 43, pp. 1262–1268, May 1995.
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[12] LJ. Stankovíc and S. Stanković, “Auto-term representation by the

reduced interference distributions: A procedure for kernel design,”IEEE
Trans. Signal Processing, vol. 44, pp. 1557–1564, June 1996.

[13] , “On the Wigner distribution of discrete-time noisy signals with
application to the study of quantization effect,”IEEE Trans. Signal
Processing, vol. 42, pp. 1863–1867, July 1994.

[14] W. Martin and P. Flandrin, “Wigner–Ville spectrum analysis of non-
stationary processes,”IEEE Trans. Acoust., Speech, Signal Processing,,
vol. ASSP-33, pp. 1461–1470, Dec. 1985.
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