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Abstract: A new general class of distributions (S-
class of distributions) for time-frequency signal
analysis is proposed. This class is derived by
generalising recently defined S-distribution. It is
possible to define the S-counterpart distribution
for each known distribution from the Cohen
class, such that some of the performances may be
improved. This class of distributions may be
treated as a variant of the author’s L-class of
distributions, but it may satisfy unbiased energy
conditions, time marginal as well as the frequency
marginal in the case of asymptotic signals. A
method for the realisation of the S-distribution
which will be, in the case of multicomponent
signals, equal to the sum of S-distributions of
each component separately, is presented. Theory
is illustrated by examples.

1 Introduction

Time—frequency analysis has been intensively studied
lately. The whole variety of tools for time—frequency
analysis, mainly rendered in the form of energy distri-
butions in the time-frequency plane, has been proposed
(an extensive list may be found in review papers [1, 2]).
The oldest and most widely used method for time—fre-
quency signal analysis is based on a straightforward
extension of the Fourier transform, by using a window
function to extract the signal’s spectral content at and
around a given time instant. It is referred to as the
short time Fourier transform and belongs to linear sig-
nal transformations. Many performances of the time-
frequency representation may be improved using quad-
ratic distributions. The first quadratic representation
was based on the Wigner distribution (originally
defined in quantum mechanics and introduced into sig-
nal processing by Ville). Since then, many other quad-
ratic distributions have been defined. Cohen has shown
that all shift-covariant quadratic time—frequency distri-
butions are just special cases of a general class of distri-
butions, obtained for a particular choice of an
arbitrary function (kernel), [1-4]. Out of the Cohen
class, the Wigner distribution is the only one (with a
signal independent kernel) which produces the ideal
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energy concentration along instantaneous frequency for
the linear frequency modulated signals, [4-7].

To improve distribution concentration, when the
instantaneous frequency is a polynomial function of
time, polynomial Wigner distributions are proposed [8].
A similar idea for improving the distribution concen-
tration for signals whose phase is polynomial up to the
fourth order, was presented in [9]. To improve distribu-
tion concentration for a signal with an arbitrary non-
linear instantaneous frequency, The L-Wigner
distribution was proposed and studied in [6, 7, 9, 10].
This distribution is generalised to the L-class of distri-
butions in [7, 11]. The polynomial Wigner distribution,
as well as the L-Wigner distributions, are closely
related to the time-varying higher-order spectra [10, 12,
13]. They do not preserve the usual marginal properties
[1, 2, 6], but they do satisfy the generalised forms of the
marginals. For example, the time marginal in the L-
Wigner distribution is the generalised power [x(£)*,
rather than |x(¢)]*. Here, we will present a new S-class
of distributions which may achieve high concentration
at the instantaneous frequency, as high as distributions
from the L-class, while at the same time satisfying the
energy unbiased condition, time marginal and, for
asymptotic signals, frequency marginal property.

2 S-distribution

The scaled variant of the L-Wigner distribution (S-dis-
tribution) of a signal x(¢) is defined by [14, 15].

SDy(t,w) = /:r[” (t+ 57 ) ot (t= o ) emmdr
1)

where xt(¢) is the modification of x(f) obtained by
multiplying the phase function by L, while keeping the
amplitude unchanged

2l (t) = A(t)edbo®) )

The Wigner distribution is obtained from eqn. 1 with L
= 1. All integrals are from —w to .

The S-distribution satisfies the time marginal prop-
erty, the unbiased energy condition and, for asymptotic
signals, the frequency marginal property. The integral
of SD,(t, w) over o is equal to signal power |x()P

%/SDL(t,w)dw
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From eqn. 3, it is obvious that the unbiased energy
condition is satisfied, as well

iﬁ//SDL(t7w)dtdw:/|x(t)}2dt:

where £, 18 the energy of signal x().
The frequency domain form of SD,(z, w) is

/XL (Lw—i— 0) X7 (Lw— g) e?%df

(4)
where X;(w) is the Fourier transform of x7)(r). The
integral of SD,(r, w) over time is

SDL(t w

/ SDp(t,w)dt = L| X1 (Lw)|?
T

According to the stationary phase method [16], we
have

Xp(Lw) = / (e 7tetgy

t

= / At)el M emilwt gy
t

2my
Lg" (to)

The above relation holds for any signal with continu-
ous A(f) if L — . For asymptotic signals [16, 17](sig-
nals whose amplitude variations are much slower than
the phase variations |4'(7)] << [¢'(7)|) holds for any L.
Note that ¢, is a function of w defined by ¢'(¢;) — w = 0,
with ¢"'(zo) = 0. From eqn. 5 it is easy to conduce that,
for asymptotic signals

LIXy(Lw)|* = | X (w)[?

meaning that the S-distributions, in this case, satisfy
the frequency marginal property as well.

For asymptotic signals, according to eqn. 5, we may
also write V[L/j1X (Lw) = X'(w) meaning that the fre-
quency domain form eqn. 4, for these signals, assumes
a form dual to eqn. 1

1 6
_ 1 [ xn O x
SD.(t,w) 27r/X (w—|—2L)X <w
[
(6)

This relation shows that all properties valid in the time
domain remain valid in the frequency domain, for
asymptotic signals.

_ A(t())ejL[d’(to)—wto]

(5)
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3 S-class of distributions

3.1 Definition

To generalise the S-distribution into a class of distribu-
tions, preserving the marginal properties, let us define
an arbitrary two-dimensional function Sy(¢, w) with a
two-dimensional Fourier transform 4AG;(0, 1)

SL(t,w) = -;——//AGL(@,T)e—ij_I_jetdedT
n
g T
AGL(8,7) = -2_1; / / St (t,w)ed ™I dtdw (7)
T w
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The integral of S;(f, w) over time and frequency is
equal to signal x(¢) energy if and only if AG;(0, 0) = E
(energy condition). The proof is evident from the sec-
ond part of eqn. 7 and the uniqueness of the Fourier
transform. Thus, if we know only one distribution sat-
isfying AG(0, 0) = E,, then any other function having
a two-dimensional Fourier transform MG;(6, 17) =
c1(6, ©) AGL(0, ©) satisfies the unbiased energy condi-
tion if arbitrary function ¢;(6, 1), called the kernel, has
the unity value at the origin ¢;(0, 0) = 1. Function S;(z,
w) satisfies time and frequency marginal propertics if

AGL(0,0) = 2171_ {/ SL(@(,U)CZW} e~ 7%t
:/yx (1) Pe=
1 :
AG1L(0,7) = o ) / Si(t,w)dt | 7 dw

_ /|X )77 du

It is evident that the marginal properties are deter-
mined by the values of 4G7(6, t) along 6 and 7 axes
only. This means that if function S;(¢, w) satisfies mar-
ginal properties, then any other function with two-
dimensional Fourier transform MGy (0, 1) = ¢z (6, T)
AG(8, 7), such that ¢;(6, 0) = 1 and ¢;(0, 7) = 1, satis-
fies marginals as well.

A general function, satisfying the same marginal
properties as Sz(¢, w) will be denoted by SC; (¢, w) and
referred to as the S-class of distribution. According to
the above consideration, it is defined by

//CL 9 T AGL(9 7')6 JWT'Hetd@dT

////CL (0,7)S1 (u,v)el VT30 3T I gy dudfdT

6 1Tvu
(®)

Taking the S-distribution eqn. 1 as the basic function
for generalisation (Sy(z, w) = SD;(z, w)) in eqn. 8, we
get the S-class in the form

///CLGTx[L] u—i——) *2]

_ L —jwT ,—70(u—t)

X (u 2L>e e dudfdr
9)

For L = 1 this class of distributions reduces to the

Cohen class [1, 2].

The distribution in eqn. 8 is an inverse two-dimen-
sional Fourier transform of the product of ¢(6, 7) and
AG(6, 1), thus it may be expressed as a two-dimen-
sional convolution of the Fourier transform of ¢;(60, 1),
denoted by HL(t ) and SD; (¢, w)

//HL t—u,w—v)SDy(u,v)dudv
(10)

All distributions from the S-class may be treated as
smoothed versions of the S-distribution. Expressions in

SCr(t,w)

SCp(t,w)

SCL(t w
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eqns. 9 and 10, as well as the complete theory pre-
sented in the paper, may be easily extended to the time-
scale energy distributions [6, 18]

// <— Wo — av) SDy(u,v)dudv

where a 1s a scale factor a = wy/w.

For the asymptotic signals, using eqn. 6 of the S-dis-
tribution, we get the S-class in terms of the signal’s
Fourier transform

///cLaTxm (U+i)X*H

I . .
. 760t ,—jT{w—v)
X (v _2L> e’te dvd@dr
(11)

SCLta

SCL(t w

3.2 Properties
Properties of distributions belonging to the S-class, will
be listed in order as they appeared in [2]. Many of them
may be proved in a straightforward manner, as in the
Cohen class or the L-class of distributions [1, 2, 11],
which is defined by

LDy (t,w) = ///CLwT

_ L —jwT ,—j0(u—t)
X (u 2L) e e dudfdr
These properties will be given without proofs, or any
additional explanation. Attention will be paid only to
those for which the S-class behaves in a qualitatively
different manner than the Cohen class.

U+—> e

P;: A distribution from the S-class of distributions is
real if its S-generalised autocorrelation function

SRAL(t,7) = //CL(QT (- ) ot

T mit(u—t)

X <u + 5 L) e dfdu
(12)

is Hermitian, SRA;(¢, ) = SRA; (¢, — 7). This condi-

tion is satisfied for ¢,(6, ©) = ¢; (- 8, —7).

P,, P;: The S-class of distributions is time and fre-

quency shift invariant if the kernel ¢;(6, 1) is not time
(¢) and frequency (w) dependent.

P,: Time marginal is satisfied for distributions with
cr(6, 0y = 1.

Ps: If ¢;(0, ©) = 1, then the frequency marginal is satis-
fied for asymptotic signals.

Pg: The time moments property is satisfied for distribu-
tions with ¢;(6, 0) = 1.

P;: The frequency moments property holds for asymp-
totic signals if ¢;(0, 7) = 1.

Pg: If distribution SC,(¢, w) corresponds to x(z), then
SCr(at, wla) is a distribution of Vla|x(af), a = 0, pro-
vided that ¢;(a6, va) = ¢;(6, ©).

Py: For signal x(r) = A(f)exp(jp(¢)), the mean frequency
JwSCp(t, w)dw

(W)t =

[ SCL(t,w)dw

is invariant with respect to L and it is equal to the
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instantaneous frequency ¢'(t), if

Ocr,(8,7) —0
or 7=0 B

Here, we will show that not only is the mean frequency
equal to the instantaneous frequency, but also that for
any signal, we may get a distribution whose signal
power is completely concentrated at the instantaneous
frequency.

Frequency modulated signals representation: The ideal
distribution, concentrated along instantaneous fre-
quency is defined by 2m4%8w — ¢'(£)) or by A*W(w —
¢'(¢)) if a finite time interval, determined by the window
w(t) = FTY{W(w)}, is used. For signal x(1) = A&,
this form may be obtained in the Cohen class of distri-
butions, only if the instantaneous frequency is a linear
function ¢'(¢) = ar + b. Distribution which produces
this concentration is the Wigner distribution (or pseudo
Wigner distribution). If the instantaneous frequency
variations are of a higher order than linear, then no
distribution (with signal independent kernel) from the
Cohen class can produce the ideal concentration.
Theorem 1: The S-class of distributions for L — o is
equal to the ideal form 4%())W(w — ¢'(2)) for any signal
x(1) = A(H)d*? if derivatives of the phase function ¢(¢)
are finite, A(r) is continuous and lim; ., ¢;(6, ©) =
w(t), where w(t) = FT-'{ W(w)} is a finite duration win-
dow.

Proof For a signal of the form x(7) = A(1)e/*"), expand-
ing ¢(u = /2L) into a Taylor series around u up to the
third-order term, we get

2
SCr(t A(t ///CLGTeW(“)T

. ‘3>(u+r1)+¢( ) (u— rzn
x e’ 31L

cr(6,0) =1 and

03T 0% Jydhdy

(13)
where 7, 7, are variables 0 < |1 5| < [#2L]. If ¢(7) and
¢™(7), n > 3 are finite and variable T may assume only
finite values, then for a large L we have

¢ (u+7)+ B (u—m) T3\
Jim exp ( 3112 5) 71!
and A(t + 72L)A(t — 7/2L) = AX({), so we get

SCp(t ':vA2 ///cL(GT

x e1#' (W7 gift—jwT=30u gy 4o dr
(14)

In this way the S-class of distributions locally linearises
the instantancous frequency characteristics. Eqn. 14
may be written in the form

SCL(t,w) %Az(t)/HL(t—u,w—qﬁ’(u))du (15)
where IT,(t, w) is a two-dimensional Fourier transform
of ¢;(8, 7. If lim;_,, ¢;(6, T = w(t), then for large L
I, (t, ) = ) W(w) and SCL(t, ) = AZOW(w — ¢(1)).
This form corresponds to the ideal distribution concen-
tration.

P,o: For asymptotic signals, the mean delay
JtSCp(t,w)dt
t

o = [ SCL(t,w)dt
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is equal to the group delay —d(arg[ X(w)])/dw, if ¢;(0, 1)
=1 and dcz(6, 1)/30)9-9 = 0. Proof is the same as in Py
having in mind duality between eqns. 9 and 11. Note
also that for asymptotic signals the group delay is an
inverse function of instantaneous frequency d(arg
[X(@)do = ¢ (w).

Py;: If a signal is time-limited to |7] < T, then SCi(z, w)
is limited to the same time interval if C;(z, T) = FT{cy
(6, D} = 0 for |t/1] > 1/(2L).

Pyy: If an asymptotic signal is band-limited to || < w,,
then the S-class of distributions is band-limited to the
same bandwidth if C;(68, w) = FT {c;(8, ©)} = 0 for |w/
0] > 1/(2L).

P;5: The inner product of the S-class cross-distribution
of signals x(f) and y(¢) is equal to the product of ener-
gies of these signals muiltiplied by L: (SCy,(z, w),
SC,,(t, w)) = L(x(2), x(8)) (p(0), y(0)*, for |c.(6, D= L.
P4 If signals x(¢) and A(f) are asymptotic then S-class
distribution of the convolution of these signals (x(z) *
A(%)) is equal to a convolution in time of distributions
of each signal separately, for cz(0, 7)ci (6, 1)) = c;(6, T
+ Tz)‘

P;s: For the product of signals, x(2)A(f), we have that, if
cr (01, Tcr(6h, T) = ¢;(6; + 6,, 1), then the S-class of
distributions 18 equal to a convolution in frequency of
the distributions of each signal separately, SC,, 1(f, )
= SC, (¢, 0)ey, SCpr(t, w).

P If we replace an asymptotic signal with its scaled
Fourier transform v[|¢/2a{]X(ct), ¢ = 0, then its S-class
of distributions is equal to SCr(-w/c, ct), for c¢;(-cz,
6/c) = ¢ (0, 7).

Py7: The Fourier transform of an asymptotic signal x(f)
convolved with V[jc/2a{lé”? is equal to VjX(w)e /),
S-class of distributions of this convolution, according
to eqn. 11, is SC(t — w/ec, w), with ¢;(6, T + Oc) =
cr(6, 7).

P Multlphcatlon of an arbitrary signal x(¢) by chirp
signal &2 results in SCy(t, w — cf), if ¢(6 + ez, T) =
CL(Q T)

Pyo: The order recursion relation holds for the S-class
of distribution:

Theorem 2: For the unity amplitude signals, an Lth
order distribution, belonging to the S-class, may be
obtained from its L/2th order form if ¢;(6, 7) = cypn(u,
2) ¢p (8 — u, ©2) for any u.

Proof: The two-dimensional Fourier transform eqn. 7
of the S-distribution eqn. 1 is

AGL(8,7) :/ [L] (t + ﬁ) plhl (t - -2%> eIt

t

For the unity amplitude signals x!X(r) = xX(¢), thus we
have

AGL(0,7) = AGL2(0,7/2)0 AG L /2(0,7/2)

where * is a convolution in 8. According to the theo-
rem’s kernel constraint, it follows that

MGL(6,7) = MGpr2(0,7/2)xe MG /5(0,7/2)
Taking a two-dimensional Fourier transform of both
sides, we get

dA
SCr(t,w) = [ SCpya(t,w+A)SCLa(t,w — A)? (16)
by

60

This result will be used in the realisation of the distri-
butions belonging to the S-class, in the case of multi-
component signals, as well as to avoid signal
oversampling.

Corollary: For the unity amplitude signals, any Lth
order distribution may be expressed in terms of the L/
2th order S-distribution.

Proof: Eqn. 16 is valid for the S-distribution. Inserting
this relation into eqn. 10 we get any distribution
expressed in terms of the L/2th order S-distribution.

Finally, let us emphasise that properties P;, P,, Ps,
P4, P6> Pg, Pg, Plln P13, P15, P18 and P19 may be satisfied
for any signal, while the remaining ones may be ful-
filled only for asymptotic signals.

4  Specific distributions

Some particular distributions belonging to the S-class
will be briefly presented in this Section.

4.1 S-distribution

The S-distribution, which is the most important mem-
ber of this class, is already presented in Section 2. Since
it is taken as a basis for the generalisation, obviously
its kernel 1s ¢;(6, 7) = 1, or for its pseudo form ¢;(6, 7)
= wz (7). The properties and applications of the S-distri-
bution are studied in [14, 15]. The numerical realisation
will be described in the following Sections.

4.2 S-Rihaczek distribution
Distribution from the S-class corresponding to the
Rihaczek distribution is defined as

SRDL(t’w) = /l’[l’l (t 4 %) x*[lz} (t)e—jwrd,r (17)

The kernel for this distribution is ¢;(8, 1) = ¢%?L. For
a frequency modulated signal x(r) = Adexp(j¢(z)), with
#t) = a + bt + ct¥/2, we get

— @' (£)w FT {7/ |
Llim SRD(t,w) = 2r A% (w — ¢/ (1))

SRDp(t,w) = A%5(w

The convergence toward the ideal concentration, in this
case, is of the order of 1/L, which is worse than in the
S-distribution.

4.3 S-spectrogram and S-short time Fourier
transform
The squared modulus of the S-short time Fourier trans-
form (S-STFT) will be referred to as the S-spectro-
gram. It is defined by

2

SSPy(tw) = / wi (e (4 ) emar| - (18)

T

We will focus attention only on the time and frequency
resolutions of this distribution. First assume that signal
x(7) is short, concentrated at ¢ = 0 into an interval Az
— 0. If window w(¢) is time limited to |¢| < 7/2 (where
T >> Ai), then the S-STFT is time limited to |7 < 7/
(2L), i.e. its duration is d = 7/L. If we now assume a
sinusoidal signal x(#) = exp(jwyf) and the same window,
we get SSP(w, 1) = |Wi(w — wy)>. For example, let the
window be rectangular. The width of its Fourier trans-
form Wi(w) (the width of its main lobe) is D = 4a4/T.
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The product of durations d and D (the form of uncer-
tainty principle in this case) is dD = 4a/L. This relation
states that the S-STFT, with a given L, cannot be local-
ised in the time—frequency plane with arbitrary small d
and D simultaneously (representing the resolutions in
time and frequency directions). But, the previous rela-
tion permits an important conclusion: By increasing L,
the product dD can be made arbitrarily small meaning
there are arbitrary high resolutions in both directions,
simultaneously.

5 On the realisation

5.1 Direct method

The direct method is based on the straightforward
application of a distribution definition. For the S-
distribution, eqn. 1 with eqn. 2, signal x(¢) should be
modified into xX(r), as well as oversampled L times
with respect to the sampling interval in distribution
with L = 1. The number of samples that are used for
calculation may be kept unchanged. Regarding the last
assumption, this method is not computationally much
more demanding than the realisation of any ordinary
(L = 1) distribution. In the case of multicomponent sig-
nals, this method will produce sigal power concentrated
at the resulting instantaneous frequency, according to
theorem 1 [14].

5.2 Recursive method: S-reduced
interference distributions

Although the Wigner distribution itself satisfies most of
the desired properties in the time-frequency representa-
tion of a signal, it is rarely used in its original form.
The main reason lies in the very emphatic crossterm
effects. These effects may be even more emphasised in
the L-class distribution for L > 1, since the Lth power
of signal may increase the number of cross-terms [10,
11]. Unfortunately, some of these terms behave as the
regular autoterms, [13]. Thus, the straightforward gen-
eralisation of the RID distributions (Choi-Williams,
Zao—Atlas-Marks, Born-Jordan, Sinc, ... [1, 2]) would
reduce ouly a limited number of crossterms resulting
from the product of x*(¢t + #/2L) and x**(+—1/2L). For
the L-distributions, we have achieved reduction (or
complete removal) of all crossterms using the recursive
S-method, as well as avoiding signal oversampling [6, 7,
10, 19, 20]. This method, although very efficient in the
realisation of the L-class of distributions, if applied in a
straightforward manner on the S-class would produce
qualitatively the same result as the direct realisation,
i.e. the obtained distribution would be completely con-
centrated at the signal’s resulting instantaneous fre-
quency [14]. However, we will present here its modified
version which will be efficient in the realisation of the
S-class of distributions.

The basic idea is very simple. If the signal does not
have unity amplitude, then instead of convolving
SCpp(t, w + A) and SCpx(t, 0 — A) in eqn. 16, we will
convolve SCyp(t, w + A) and SC3 (t, @ — A). Super-
script ™ denotes a normalised version of distribution
SCrp(t, w), ie. distribution SC;x(t, w) if all signal
components had unity amplitude. In this way, we get a
distribution of the order of L with amplitude of the
order of L/2, i.e. we have resolved the problem of how
not to increase the order of amplitude during the recur-
sions. Starting from the distribution that is crossterms-
free, we may control (reduce or remove) the crossterms
in the subsequent iterations using function P(A) in
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eqn. 16 (which is of a lowpass filter type [7, 10]), while
the order of signal amplitude is kept uncharged. The
modified form of eqn. 16 is

d/\

SCMy(t,w) /P(A SC1pa(t,w + NSCYY (t,w — N

(19)

Here, we will provide some additional details on the
realisation of eqn. 19. Consider a multicomponent

signal
P
= ai(t)
i=1

Our aim is to obtain a distribution such that, theoreti-
cally, it is equal to a sum of the distributions of each
component separately, i.e.

SCthw ZSCLIz(t w)
=1
The marginal properties, in this case, are

P
— /SCLZ tw)dw = |oi(t)]?

=1

and
P

/ SCp (W)t = 3 [Xi(w)? (20)
¢ =1

Let us start from the short time Fourier transform of

x(©)
STFT(t,w) = /w(r)x(t +7)e T dr

T

:/w(r)A(t+T)ej¢’(t+T)ej‘”dT (21)

As it 1s known, this transform does not have cross-
terms, in the time—frequency plane, between separated
signal components. To produce higher-order distribu-
tions we will need an amplitude normalised version of
STFT{(t, w) which will be denoted by STFT"(¢, w) and
defined as

STFT™(t,w) = / w(r)e? ) g9 g

If amplitude A(7) is slow-varying, we may easily get
STFTU)t, w) from STFT(t, w) as

STFT(t,w) % (22)

where A(r) = V[E/()E,] and E(t) = 12x [ |STFT
(, w)’dw. In the derivation of the above equation Par-
seval’s theorem is used (127x [ |STFT(t, w)do =
[dw(DA(t + v)|*dv). The slow-varying amplitude A(f)
means that w(t)A(t + 1) = w(7)A(¢). This condition may
be written in a less restrictive form. Assume, for exam-
ple a Hanning window w(r) and A(z + 1) = A(f) +
A'(tytv + A" (H7%2. The scaling factor in eqn. 22
remains the same if A%(¢) >> [4"2(f) + A(DA"(D)/6.17 +
A"X(1)/120, i.e. if A(2), A'(r), A"(¢) are of the same order.
In the example, we will see that the results will not be
significantly degraded even if this condition is not satis-
fied.

STFT™(t,w) =
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If the signal is multicomponent, with slow-varying
amplitudes of each component, as well as with compo-
nents separated along the frequency axis for any ¢ (i.e.
signal components lie, along o, inside regions ;, which
do not overlap), then

P
E
(n) = —Y T, 2
STFT™(t,w) ; STFT(t,w) 0 Mo, (w) (23)
where Ig () is equal to unity for w inside Q; and zero
outside. In the numerical realisation, the values of
STFT™(t, w) outside Q, were not assumed to be zero,
but they are left unchanged with respect to their origi-
nal values, producing the spectrogram as a final result
outside Q,.
Knowing STFT(t, w) and STFT"(t, w), we may
easily realise distribution
Sy (t,w) :/w2 (%) A <t + %) ej¢(t+§)e—j¢(t—§)e*jw7—d7_

-

according to the S-method, as

Sy (t,w) = % / P(O)STFT(t,w+0)STFT*™(t,0 — 0)db

9

(24)
where P(8) is a frequency domain window function,
which has to be wide enough to ensure the integration
over autoterms and narrow enough to avoid crossterms
[7, 10]. Recently, we proposed a very simple signal-
dependent and self-adaptive window P(6) [19]. After we
get crossterms free S;(¢, w), then we may get the S-dis-
tribution for L = 2

5Dt = [ (D) 40+ )4~

:
w I26(t4 ) g 320(t=F) g=dw 4r

convolving two Si(z, ) as

SDy(t,w) = %/P((‘))Sl(t,w L 0)S, (tw—0)d8  (25)
0

where again P(6), eliminates (reduces) crossterms, while
the autoterms are the same as in the original S-distribu-
tion of the order of two. This procedure may be contin-
ued up to any order of the S-distribution. Namely,
convolving SD,(t, ) and its normalised version
SD, (1, w), we get SD,(t, w), and so on. Efficiency of
the proposed realisation (as well as some other details
on the realisation itself) will be demonstrated, in the
next Section, using a very complex numerical example,
including signal components which do not fully comply
with the described conditions.

6 Example

As an example, consider a real multicomponent signal
2(t) = e 40" cog[180m (¢ — 0.5)° + 507t]
+ 05674705 ¢og(20mt) ‘
+0.707e*0(t=05)% ¢o5(50mt2 4 1507t)  (26)

within the interval [0, 1]. For the numerical realisation
we have used a Hanning window w(z) of unity width
with N = 256 samples, as well as a rectangular window
P(6) with signal-dependent width. The realisation is
done according to the procedure described in Section
5.2. Here, we will provide some additional details.
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(a) First we have to determine regions Q,, to obtain the
scaling factors in eqn. 23. For this purpose we assume
reference level R;,,(f) for a given instant ¢, as Ry(f) =
max{|STFT(t, w)]*}/Q?. Regions Q; are defined by the
compact regions where |STFT(t, w)* > Ry(t). Factor
Q defines reference level. For non-noisy signals its
value may be very high. But, in the noisy cases, to
avoid false autoterm detection, this factor should not
be too large. We found a very appropriate value for
non-noisy, as well as for noisy, signals Q% = 25 (or the
values around this, for example, from Q% = 10 to Q? =
50, since the quality of a distribution presentation is
not too sensitive to this parameter). Region €2; starts at
the first  where |[STFT(t, w)]> > Ry, (f), but to avoid
the break of region Q; in the noisy cases, as well as in
the cases when the amplitude of a single autoterm
changes sign, we assumed that Q; ends not if a single
value of |[STFT(t, w)}* is below Ry,(¢), but if three sub-
sequent values of |STFT(t, w)]? (at (k — DAw, kAw and
(k + 1)Aw) are less than the reference level.

(b) After we have found regions Q; then the scaling
factors for each region, according to eqn. 23, are deter-
mined.

(¢) Convolution of STFT(t, w) and its normalised ver-
sion STFT"(z, w) is calculated according to eqn. 24.
Here, we have used the signal-dependent rectangular
window P(6) width. For a given w inside Q, integra-
tion over 6 (determined by the width of P(6)) is per-
formed until any w + 6 or w — 6 is outside Q;. In this
way we completely avoid the possibility of crossterms
between nonoverlapping autoterms. Also, the accumu-
lation of noise is kept at the lowest possible level,
avoiding all summations outside an autoterm, [19].

(d) Finally, convolving two Sj(¢, w), according to
eqn. 25, we get crossterm-free S-distribution of the
order of two. Since a high autoterm concentration is
achieved in S;(z, w), then a very narrow window P(6)
in eqn. 25 may be used. Even with P(6) = ad(6) we get
very good results for all considered signals. Thus, in
this step, this window form is assumed in all examples.

(e) If one wants to get the S-distribution of a higher
order than L = 2 (corresponding to fourth-order distri-
butions) then the steps from a to d have to be repeated
starting from SD,(¢, w) instead of STFI(z, w), and so
on, for L =48, ...

The Wigner distribution of the analytic part of a sig-
nal eqn. 26 is presented in Fig. la. The analytic part is
used to avoid crossterms between positive and negative
frequency components. The S-method (autoterms
almost as in the Wigner distribution, but without cross-
terms, [7, 10, 19]) is presented in Fig. 1b. Here, we did
not use the analytic part of the signal, since the cross-
terms between components of positive and negative fre-
quencies are eliminated in the same way as the other
crossterms. Crossterm free S-distribution, with L = 2, is
shown in Fig. 1¢. Further improvement of the concen-
tration may be achieved using the distributions with L
=4 and L = 8 (Fig. 1d). To illustrate the distributions’
convergence we provided logarithmic scale plots at
instant ¢ = 0.5, in Figs. 2-5. Note that in all examples,
the sampling interval is taken according to the sam-
pling theorem. The reference level factor is Q? = 50.
For some additional examples, including noisy signals
as well as signals whose components intersect, we refer
the reader to [14, 15]. In the noisy cases the reference
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Fig.1 Time—frequency representation of multicomponent signal
a Wigner distribution of signal’s analytic part

b S-distribution with L = 1 (S-method)

¢ Crossterms-free S-distribution with L = 2

d S-distribution with L = §
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clear %PROGRAM

global Ew

N=256; Q=sqrt(50); Ew=sum((hanning(N)).*2)/N;
1=-0.5:1/N:1.5; y=sigsd(t); n=0;

for k=1:4:(length(y)-N}; k, n=n+1;
STFT=fftshift(fft(y(lkck+N-1).*(hanning(N}))}/N;
STFT=STFT(N/2+1:N);
SPEC=[SPEC;abs(STFT).A2};
SD1(n,))=css(STFT,Q,0);

W=css(STFT.Q,1); SD2(n,’)=css(W,1,0);
SD4(n,))=css(SD2(n,:),Q,1);
SD8(n,))=css(SD4(n,?),Q,1);

end, mesh(SD1,[10 80]), pause, mesh(SD4,[10 80])

function W=css(S,Q,U)
% S-input sequence; Q-level factor
% For normalization U=1, otherwise U=0
N=iength(S); R=max(abs(S))/Q; b=0; E=zeros(1,N);
for k=3:N-1
if (abs(S(k))>R)|(max(abs(S(k-1:k+1)))>R & b~=0)
b=b+1; E(kK)=E(k-1)+abs(S(k))*2;
else, E(k-b:k-2)=E(k-2)*ones(1,b-1); b=0;
end, end
F=sqrt(E/Ew);
for k=1:N, if (F(k)==0 | U==0), F(k)=1; end, end,
for k=1:N
W(k)=(abs(S(k)).*2)/F(k)*2; SmC=1; i=0;
while (SmC==1 & i<N), i=i+1; p=k+i; m=k-i;
if (m>0 & p<N), if (E(p)>0 & E(m)>0}
W(k)=W(k)+2*real(S(p)*conj(S(m))}/F(m)*2;
else, SmC=0; end, else, SmC= d
end, end, end

function y=sigsd(t);
y=exp(-4*(t-.5).#2).*cos(180*pi*(t-.5) .»3+50"pi*t);
end

Fig.6 MATLAB program (including function files) for the S-distribu-
tions realisation

factor could have smaller values, for example 0 = 16
or Q% = 25. A very short and self-contained MATLAB
program, according to the above algorithm is presented
in Fig. 6.

7 Conclusions

The S-class of distribution, as a generalisation of the S-
distribution, is proposed. A method for the efficient
realisation of the S-class of distributions is presented.
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Theory is illustrated using a numerical example. The
proposed distributions may achieve arbitrary high con-
centration at the instantaneous frequency, satisfying
the marginal properties. Out of the known distribu-
tions, this was possible only in the very special case of
the linear frequency modulated signal using the Wigner
distribution.
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