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Instantaneous Frequency Estimation
Using the Wigner Distribution with
Varying and Data-Driven Window Length

Vladimir Katkovnik, Member, IEEE,and LJubsa Stankowi, Senior Member, IEEE

Abstract—Estimation of the instantaneous frequency (IF) of a linear function of time, various higher order time—frequency
harmonic complex-valued signal with an additive noise using the representations have been introduced [3], [8], [9], [19]. Here,

Wigner distribution is considered. If the IF is a nonlinear function  \va \vill focus our attention on the WD only. If the IF is

of time, the bias of the estimate depends on the window length. i functi f 1 th it timat . th
The optimal choice of the window length, based on the asymptotic a nor'l 'm:j'ar uncton or tume, ?n ! s estima ?’ us!ng ?
formulae for the variance and bias, can be used in order to WD, is biased. In the case of noisy signals, this estimate is

resolve the bias-variance tradeoff. However, the practical value of highly signal and noise dependent [8], [17], [21]. Using the
this solution is not significant because the optimal window Iength asymptotic formulae for the estimation variance and bias, we
depends on the unknown smoothness of the IF. The goal of this ;5 theoretically, find the optimal window length in the WD
paper is to develop an adaptive IF estimator with a time-varying . . .
and data-driven window length, which is able to provide quality apd resolve the bias-variance tradeoff. However, the optimal
close to what could be achieved if the smoothness of the IF wereWindow length depends on the unknown smoothness of the IF,
known in advance. The algorithm uses the asymptotic formula making this approach practically useless. The main goal of this
for the variance of the estimator only. Its value may be easily paper is to develop an adaptive estimator with a time-varying
obtained in the case of white noise and relatively high sampling anq data-driven window length that is able to provide quality
rate. Simulation shows good accuracy for the proposed adaptive h -
algorithm. close to whaF could be achle\{ed if the smoothness of the IF
were known in advance. The idea of the approach developed
in this paper originated from [7], where it was proposed and
. INTRODUCTION justified for the local polynomial fitting of regression. For
complex-valued harmonic with a time-varying phase is#€ time-varying IF estimation, this approach was used in
key model of the instantaneous frequency (IF) concefp{0], where the algorithm with the time-varying and data-
as well as an important model in the general theory griven window length was presented for the local polynomial
time—frequency distributions. It has been utilized for the studyeriodogram. This approach uses only the formula for the
of a wide range of signals, including speech, music, biologicatariance of the estimate, which does not require information
radar, sonar, and geophysical ones [14]. about the IF to be known in advance. Simulations based on
An overview of methods for the IF estimation, as well as afie discrete WD, with several noisy signal examples, show
interpretation of the IF concept itself, is presented in [2] an@ good accuracy of the presented adaptive algorithm, as well
[6]. Beside other efficient techniques for the IF estimation (e.@$ an improvement in the time—frequency representation of
[2], [11], [15], [16]), the time—frequency distribution approaci$ignals with a nonlinear IF.
is interesting and commonly applied [2], [6]. This approach The structure of the paper is as follows: The WD, as an IF
is based on the property of time—frequency distributions &stimator, is considered in Section 1. The asymptotic bias and
concentrate the energy of a signal, in the time—frequency plad@liance of the IF estimate, along with the optimal window
at and around the IF [1], [2], [4], [5], [12]. Out of the generapize for the IF estimation, are also presented in Section II.
Cohen class of time—frequency distributions with a signal-he adaptive estimation of the IF with a time-varying and
independent kernel, the Wigner distribution (WD) produce#ata-driven window length is developed in Section Ill. A
the best concentration along the linear IF [4], [5], [19], [20Jpumerical implementation of the adaptive algorithm, along
In order to improve the concentration when the IF is not with simulation results, is discussed in Section IV. Proofs are
given in the Appendix.
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where The notation
n integer; 1/2 )
T sampling interval; F:/ w(t)e” dt
e(nT) complex-valued white Gaussian noise with i.i.d. 711//22
real and imaginary parts. E— / w?(£)2 dt
Thus, Rée(nT)) and Im(e(nT)) ~ N(0, 02/2) and the total ~1/2
variance of the noise is equal &¢. The IF, by definition, is 1 1/2 2et2
the first derivative of the phase b = (2s+ DIF /1 w(t)t dt ©)
—1/2
w(t) = ¢'(1). (2) has been used in (6)-(8).

A proof of the proposition is given in the Appendix.

In the nonparametric setting of the problem, it is assumed thatComments:
w(t) is an arbitrary smooth differentiable function of time, 1) The main assumption for formulae (6)—(8) is that the

with bounded derivativego ™ (¢)| = [¢+1 ()] < M,.(t). variance and the bias are small (see the Appendix). If
The Pseudo-Wigner distribution (WD) in the discrete-time  the window is rectangular ani — 0, 7" — 0, and
domain is defined by h3/T — oo, then the following explicit formulae can
be given for the variance and the error-coefficients:
>, . 2 2
Wi(w, t) = wi, (nT)y(t+nD)y* (t—nT)e 72T (3) - _ 6o: o: \T
n;oo varaen(t) = ZE\ 1+ oap ) 78
. . E=Fr=1/12
where wy(nT) = T/h - w(nT/h), with w(t) being a real- 3
valued symmetric windowuw(t) = w(~t). The window bs = (2s £ 1)1(25 7 3722 (10)
wp(nT), whose width is denoted by > 0, is used in (3) . . .
for the localization of the estimate. We also assume #ha} Note that the values in (10) may be obtained as special
has a finite length, i.exp(t) = 0, for |¢| > 1/2. cases of the formulae for variance and bias given in [8]
As the WD (3) is a real-valued periodic function, the IF _ for the local polynomial WD.
estimate is a solution of the optimization problem 2) Let us consider the mean squared error (MSE) of the IF
estimate. It follows from (6) and (7) that, for smai|
the main term of the MSE can be given in the form
op(t) = arg[m%x Wh(w, t)} 4)
wCQw

602 2AN\T
E(AGn(1)? = ﬁ <1 + 2&2) 3
where@,, = {w: 0 < |w| < 7/2T} is a basic interval along !

. 2

the frequency axis. o _ _ n <i h2w(2)(t)> _ (11)
The estimation error, at a time-instantis defined as 40

From (11), it is clear that increasing the window length

h increases the bias and decreases the variance. The

optimization of% in (11), minimizing the MSE, results

A(I)h(t) = w(t) - d)h(t)' (5)

The following proposition gives the asymptotic formulae for

in
the variance and bias of the IF estimator (4). 17
Proposition: Let & (¢) be a solution of (4), withh — 0, 7900027 [ 1 207
3 i i Oe Tz
T — 0, andh® /T — co. Then, the variance of the IF estimate hol#) = | Al (12)
is given by o0 |A)2(w®@(2))? '
. o? o! \T E - . . _
var(Aoy(t)) = AP 1+ A7 ) 17 2 (6) This optimal window lengthh(¢) gives the optimal
bias-variance tradeoff, which is usual for nonparamet-
whereas the bias of the estimate can be represented in the fic estimation, depending on the signal-to-noise ratio
forms |A|/o., the sampling intervall’, and the second IF
derivative w®(t). Thus, the optimal choice of length
> h depends on the IF second derivativé® (). This
~ _ 25 (2s) ) - g . .
E(Aon(t) = Z h™2bsw=(2) (7 derivative is unknown because the IF itself is to be
and o=l estimated. Note that if the second derivative) (t) is
X ) _ @ significantly different for different, then the optimiza-
|E(AGL(E))| < P°|by|Ma,  with My = Sup w (t) (8 tion of the estimation accuracy requires a time-varying
window lengthh(t). The improvement in accuracy from
provided thath?|b;| M, and h2*|b,w(2)(¢)| are small for all this time-varyingh(¢) can be significant when compared

s > 1. with any time-invariant lengtth.
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In this paper, we propose a data-driven choice of the timB- Algorithm
varying window length that uses only the formula for the | ot s initially assume that the amplitude of signhland

variance and does not need information about the unkno% standard deviation of noise are known. LetH be an
derivatives of the IF. Moreover, this choice of the Windo"\’ncreasing sequence of the Window length values

length is based on specific statistics that are used in order to

compare the variance of the estimate versus its bias.

I1l. ALGORITHM FOR THE DATA-DRIVEN
WINDOW LENGTH CHOICE

H:{h5|h1<h2<h3<"'<hj}. (18)

In general, any reasonable choice Hf is acceptable. The
relationh, = 2N,7 gives a link between the window length

h, and the number of observation¥,. Here, the lengths

A. Basic Idea

The basic idea follows from the accuracy analysis, which®
was given in the proposition. For the asymptotic case, when

corresponding to the dyadic numbels = 2N,_; will be
ed.
For everyt, the following steps are generated.

the estimation error is small, it can be represented as a sunt) The WD is calculated for all o, € H. Thus, we obtain

of the deterministic (bias) and random component, with the
variance given by (6). The estimation error can be written as

lw(t) — Gn(8)] <|biast, h)| + ro(h)
o2(h) =var(Adn(£))

_603 14 o2 \T
A2 2|A% ) h3

(13)

where the inequality holds with probability’(x), where 2)

x is the corresponding quantile of the standard Gaussian
distribution. Thus,P(x) — 1 as« increases.
It follows from (7) and (8) thatbiagt, )| — 0 ash — 0.
Now, let h = h, be so small that

lbiagt, h,)| < ro(h.). (14)
It follows from (13) that with probabilityP(x)
|w(t) — on, (B)] < 2r0(hs) (15)
ie.,
on, (1) = 260 (hs) < w(t) < @n, (t) +2ra(h,).  (16)
Let us introduce the confidence intervals
D, = [@n, (t) — 260 (hs), on, (t) + 260 (hs)]. (A7)

Then, we can say that for a set bf, which are so small that  3)

(14) and (15) are true, all of the segmeifils have a point in
common, namelyw(t).

Consider an increasing sequencehgf hy < hy < -+ <
hj. Leth,+ be the largest of thosk, for which the segments
D,_; andD, have a point in common. Let us call this window
length A+ “optimal.” We propose to use this optimail,
as a reasonable choice of the window lengthThen, the
IF estimate with the data-driven adaptive window length is
determined aso;, , (1).

The idea behind this choice is clear. If the segmdnis ;
and D, do not have a point in common, then at least one of
the inequalities (15) does not hold, i.e., the bias is too large
as compared with the standard deviation in (14). Thus, the
statistical hypothesis to be tested for the bias is given in the
form of the sequence of inequalities (15). The largest length
hs for which these inequalities have a point in common is

a set of distributions for a fixed time instaht

Wi (w, D)},

and the IF estimates are found as

hs € H

on, (t) = arg L{rel%x Wi (w, t)} .

The upper and lower bounds of the confidence intervals
D, in (17) are built as

U, (t) =, (£) + 2r0(hy)

s

Ly(t) =, (t) — 2k0(hs) (19)
where, according to (13)
602 o2 \T

For the sake of simplicity, we will use = 2 (or the
values just slightly less than this value) in (19), which,
for the Gaussian estimation error, corresponds to the
standard two-sigma rule with the probabilify(2) =
0.95 of inequality (13).

The optimal window length: .+ is determined as the
largests(s = 1, 2, ---, J) when

[Ls—1(8), Us—1 (D] N [Ls (D), Us(t)] # 0

is still satisfied, i.e.,

(21)

(©n, () = &n,_, (D) < 26[o(hs) + o (hs1)]

still holds. Here L, (t) andU,(t) are determined by (19).
This st is the largest of those for which the segments
D, 4 and D,, s < J have a point in common. The
optimal window length is chosen as

h(t) = hsy (t)

and;,,(¢) is the adaptive IF estimator with the data-
driven window for a given instant

considered as a bias-variance compromise, where the bias and) The WD with the optimal window length is

standard deviation are of the same order. For more details,
see [22].

Wt(w, t) = W;L(t)(w, t). (22)
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Fig. 1. Estimation of the step-wise IF. (a) Estimation with the window lergth = 8. (b) Estimation with the window lengthN; = 16. (c) Estimation
with the window length2 N, = 256. (d) IF estimation using the adaptive window length.

Steps 1-4 are repeated for every time instant In contrast to the algorithm described above, the algorithm

Comments on the Algorithm: given in [7] is based on the intersection of all of the segments

a) Provided thafl” is small, the following estimates ot Ds starting froms = 1 up to the largest*, when all of those
and o2 can be used: segments have a point in common. The strong convergence

results given in [7] prove that the estimator with the proposed
o, 1 N ) time-varying and data-driven window length is able to provide
A +or = N Z [y(nT)] (23)  the quality close to the one that could be achieved if the
n=l smoothness of the function to be estimated was known in
where the sum is calculated over Allobservations, and advance.
N is assumed to be large. The variance is estimated byln our algorithm, we use only the sliding pair-wise in-
tersections (21) of the pairs of segmedbds and D,_; for
_ {mediarfjy,(nT) — y((n = DT)[: n =2, ---, N)} s =2,3,---,J. The simulation shows that the results for

0.6745 the IF estimation are accurate and promising. Simulation
b — {mediarf|y;(nT) — yi((n = D)T)|: » =2, ---, N)}  produced for the algorithm [7], using the intersection of all
= 0.6745 confidence intervals as in the regression estimation, showed
52 =(62.4+562)/2 (24) worse accuracy, compared with our algorithm.

where y,.(nT) and y;(nT) are the real and imaginary
parts, respectively, af(n7"), andT is sufficiently small. _ ) ) o _
The averagél/2N) ZN (T —y((n—1)T)? could The discrete-time WD given by (3) is discretized over the
also be used as an estimatecdf However, we prefer frequency and calculated as

IV. NUMERICAL IMPLEMENTATION AND EXAMPLES

the median in (24) as a robust estimate. N.—1

b) We wish to emphasize that the intersection of the seg- W, (k, ) = Z w, (W D)y(IT + D)y (1T — nT)
mentsD;, is a specific method for the bias examination. n=—N,
Originally, the intersection of the confidence intervals . g J2(m/2N:)kn (25)

D, for the window length selection has been proposed
in [7], where it was used for the local polynomial fittingwhere 2N, is the number of samples determined by the
of regression. sampling intervall’ [i.e., signal's maximal expected frequency
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Fig. 2.  Wigner distribution of the signal with a step-wise IF. (a) WD with the window lerxgthh = 16. (b) Adaptive window length as a function of
time n = t/T. (c) WD with the window lengt2 N, = 256. (d) the WD with the adaptive window length.

wm = 7/(27)] and the window length:,, hs = 2N,T. For TABLE |

the dyadic window Iengthﬁs e H, we have Corresponding NORMALIZED MEAN ABSOLUTE ERROR FOR THESTEP-WISE CONSTANT IF
N, € Ny = {N,|N; = 2N,_;}. Starting with a narrow
window, for exampleN; = 4, we calculateiV;,(k, ) for all
N, € {4, 8, 16, 32, 64, 128} up to the widest window (in this 14883 | 0.5078 | 0.3750 | 0.8398 | 1.7266 | 3.2344 | 0.1250
caseN; = 128). For a given instankl’, the IF is estimated as

N,=4|N,=8 | N,=16 | N, =32 | N, =64 | N, = 128 | Adaptive N,

op(IT) = il .arg{max Wi (k, 1)} (26) that for each next (twice wider) window length, we simply
2N,T kCQy replace2N,_; = N, zero values (added by zero padding)

where Q;, = {k: 0 < k < N,} for non-negative-only IF by the real values of(IT + nT)y"(IT — nT). Therefore, the
values. In order to reduce the FFT quantization error in tff@mputations with various window lengths are not completely
cases of smallV,, as well as to have distributions of the sam#dependent, which may be a source of an additional savings
length for differentV,, the producty(I7 +nT)y*(IT —nT) is N computation time.
zero padded up 2, length. That isJ¥,(k, 1) is interpolated The algorithm is tested on several examples._For _each of
in the frequency domain up &V, samples within the period. these, we plotted@N, = h(nT)/T" for the adaptive time-
Then, the discrete WD given by (25) is calculated using th&ying window as a function of time instantand presented

standard FFT routines, and the IF es.timat(.as for the various time-invariant and adaptive
time-varying window lengths. Furthermore, the mean absolute
on(IT) = il .arg[max Wi (k, 1)} errors of the estimations are given for all of the considered

2N;T €Qr cases. In all examples, we assumed the signal of the form

Tf;e qanntizatipn error has the varianc®/12(r /2N ;T')? = y(nT) = A exp(jp(nT)) + £(nT)

7 /(12h3). This variance can be even larger than the variance

in (6). In order to reduce it, we may additionally interpolatevith the IF w(n7") and the phase(nT) =T - > ., w(iT).

the distributionW),(k, [). In the numerical realizations, we didWe also assumed that = 1 and 20 log(A/o.) = 15 (in

this interpolation with a factor of 2. decibels) 4/0. = 5.62). The estimation time interval was
After h .+ is found, according to the IF estimate (26) and the < »7" < 1. A value 1.75 of the parametet, which is

algorithm (19)—(22), the calculation for the time-instant I'T"  slightly less tharnx = 2, turned out to be a good choice for

can be stopped in order to save computational time. Note atbe practical realizations.
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Fig. 3. Estimation of the piecewise linear IF. (a) Estimation with the window leadgfh = 8. (b) Estimation with the window lengt N, = 16. (c)
Estimation with the window lengtR N, = 256. (d) IF estimation using the adaptive window length.

Example 1: Piecewise constant IF with a step at the instant TABLE I
nT = 0.5 NORMALIZED MEAN ABSOLUTE ERROR FOR THEPIECEWISE LINEAR IF
w(nT) = 64r + 327 signnT — 0.5) (27) N,=4|{N,=8|N,=16 | N, =32 | N, =64 | N, =128 | Adaptive N,

is considered in this example. The estimateg(n7) of  1.6484 | 0.5234 | 0.1719 | 0.0430 | 0.1953 | 0.5859 | 0.0352
the IF, with N, = 4, N, = 8, and the widest window
length vV, = 128, are presented in Fig. 1(a)—(c), respectively. ) )
The IF estimated,: () with the adaptive, time-varying in Fig. 2(a),'(c), gnd (d), respectively. We see that in the case
window length is given in Fig. 1(d). The adaptive window?f the ada_pt|ve window length, the WD is highly (_:oncentr_ated
length 2N, = h,:+(nT)/T, as a function of time instant a_llong_ the instantaneous frequency within the entire considered
n, is presented in Fig. 2(b). We may conclude that at tim&§ne interval. o _
far from the point of the jump# = 0.5), the adaptive _Exa_mple 2: The results of the IF_ estlmqnon for tr_mece—_
window definitely tends to a maximum size. However, atise Ilqear frequency modplated signal with a step in the first
and around the jump-poirtt= 0.5, the window is narrowed derivative of the IF at the instamtT” = 0.5
up to the smallest length value. Thus, it demonstrates that w(nT) = 1287 |nT — 0.5| 4 32 (28)
the data-driven window length is really sensitive with respect
to a fast variation of the IF. These results are in complegé€ shown in Fig. 3 and Table II.
agreement with (12). When the IF is fast varying, then the Here, the explanations are similar to those given for Exam-
bias is dominant, and the narrowest window is selected B{e 1. Note that in these two examples, we assumed the IF
the algorithm. Fig. 1(d) shows that the IF estimaig. ((t) values that mainly belong to the discrete time—frequency grid
gives an accurate IF estimation for all time instants- t/7.  (after the described interpolations). Therefore, the quantization
The mean absolute error for the adaptive estimme(t)(t) error was negligible. The WD’s_ Wit_h constant and adaptive
and for the estimates with the time-invariant window length&indow lengths are presented in Fig. 4.
N, =[4, 8, 16, 32, 64, 128] is given in Table I. Note that the ~Example 3: For the nonlinear frequency modulated signal
mean absolute error in Table | is normalized by the frequency w(nT) = 10ma sinh(100(nT — 0.5)) + 64 (29)
stepw/(2N;T),

The WD itself, for the constant window lengths wi¥i, = the IF estimate is presented in Fig. 5 and Table lll. The effects,
8, N, = 128, and for the adaptive window length, is showrwhich are similar to those in Figs. 1 and 3, appear in this
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Fig. 4. Wigner distribution of the signal with a piecewise linear IF. (a) WD with the window leRgth = 16. (b) Adaptive window length as a function
of time n = ¢/T. (c) WD with the window lengtl2 N, = 256. (d) WD with the adaptive window length.

example, although not in such a clear form. Note that thehis expression may be derived in a straightforward manner,
normalized minimal mean absolute error is greater than in tf@lowing the derivations presented in the Appendix. The
previous two examples. This result is due to the discretizatisimulation shows that a significant accuracy improvement can
error, which appears here in full scale. This was not the casebi@ achieved by the time-varying and data-driven choicé of
Examples 1 and 2, where the special IF values were used. Hmal x (i.e., when both of them are used in the optimization).
guantization error may be further decreased by the additionalThe following modification of the technique given in
interpolation. The WD's and adaptive window length are give8ection Il was developed for this problem. Let us introduce
in Fig. 6. two sets of values of the window lengthand the parameter
x as in

V. GENERALIZATION

The presented approach and algorithm may be directly H ={hs |hy <hy <hs < <hs}

extended to the form of the discrete-time WD [8] in P={xrIx1<x2<-<xx}l (32)
Wi(w, t) = Z wr, (nT)y(t+xnT)y*(t — xnT)e ?*xT  Note that in order to avoid the aliasing effects in (30),
n=—oo the sampling interval should be chosen such that =
_ (30)  x/(2xxT), wherew,, is the maximal frequency in the signal’s
wherex > 1 is a constant. spectrum. Note that consequently, the case with y x will

The parametex can be used for an additional improvemengorrespond to the WD (Section V).
of estimation. For the rectangular window and conditions Consider a direct product off andI" as a setd x I’ =
similar to those considered in (11), the MSE of the IF estimate, | y,)|s=1,2, -+, J,r =1, 2, ..., K} of all possible

is of the form [8] pairs (1, x,). Now, let us reorder the elements & x I'
602 5 T in such a way that we get a new séf whose elements
E(AoL(H)? = %(1 + 0_c2>ﬁ g, = 1/(x2h%), ¢ = 1,2,3,---, JK form a decreasing
|A] 2[AP ) x*h sequence
(2) 2
+ <” 40“) (Xh)2> : (31) »
e ={g9,=1/0¢M) g1 29222 gsx}  (33)
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Fig. 5. Estimation of the nonlinear IF. (a) Estimation with the window lerjih, = 8. (b) Estimation with the window lengthN; = 16. (c) Estimation
with the window length2 N, = 256. (d) IF estimation using the adaptive window length.

TABLE Il parametery,. € {1, 2, 4} showing an additional improvement
NORMALIZED MEAN ABSOLUTE ERROR FOR THENONLINEAR IF of the mean absolute error are presented in Fig. 7(0)_

In the discrete realization, in addition to the already de-
scribed interpolation with respect to the window length, an
1.5311 | 0.5444 | 0.2451 | 0.3220 | 0.7532 | 2.2509 | 0.2009 interpolation by factorxy is done in order to reduce the

guantization error and to have the same number of samples
within the basic frequency period.

N,=4 | N,=8 | N,=16 | N,=32 | N, =64 | N, = 128 | Adaptive N,

In this case, the standard deviations
VI. CONCLUSION

602 2
o(gy) = \/ﬁ <1+2|UT°|2>Q(1T (34) The WD with a data-driven and time-varying window
length is developed as an adaptive estimator of the IF. The
choice of the window length is based on the intersection
o . . L o{ the confidence intervals of the IF estimates with the
From the basic idea presented in Section I, it is clear tha ; . )
: . mncreasing window lengths. The developed algorithm uses only
the sequence, can be used instead of the window lengt . . .
. . -~ the formula for the variance of the estimate obtained for the
sequenceh, without any other changes in the algorithm, =~ . . : . . . .
. . . . felatively high sampling rate and white noise. Simulations
Thus, the algorithm described in Section Il can be used In . ) )
. ; . show a good accuracy ability of the adaptive algorithm.
a straightforward manner. The confidence intervalg =

[Ly(t), Uy(t)], as in (19), are found for the sequengg and

also form a decreasing sequence.

the largesty for which D,y N Dy #0,¢=2,3, .-+, JK APPENDIX

still holds gives the optimal adaptive boundary valge, Proof of the Proposition:Let us assume that the estimate

which, according to (33), determines a corresponding pair.(t) in (4) is an interior point of@... The stationary point

(hgts Xt )- of W, (¢, w) is determined by the zero value of the derivative
Let us demonstrate the accuracy improvement when hottof Wy (t, w), which is given as

and x are used in the optimization. For the IF considere@Wh(t’ W) o . .

in Example 1, the adaptive values for the pait®, = ——5—— = Z wr(nT)y(t + nT)y*(t — nT)(—j52nT)

he+(nT)/T and x,+(nT) are presented in Fig. 7(a) and (b). n=—o0

The values of the mean absolute error for differént and ceTIInTe (A.1)
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Fig. 6. Wigner distribution of the signal with a nonlinear IF. (a) WD with the window lerigth, = 16. (b) Adaptive window length as a function of
time n = t/T. (c) WD with the window lengtl2 N, = 256. (d) WD with the adaptive window length.

Note that gives
y(t +nD)y"(t — nT) OWL (¢, w) n Wy (t, w) Au
=m(t+nT)m*(t — nT) + m(t +nT)e*(t — nT) Ow 0 Aw? 0
+&(t + nT)m"(t — nT) + &(t + nT)e (¢ - nT) y D)y L o (as)
0 0

where the main deterministic term is of the form ] o
where o means that the corresponding derivatives are calcu-

lated at the point = ¢/(¢t), A¢(t, nT) = 0, ande(nT) = 0.
The terms W, (t, w)/dw|obae and W, (t, w)/Owlod. in
(A.3) determine the variations a¥W;,(¢, w)/0w caused by
becausep(t + nl’) — ¢(t — nT) = ¢'(t) - 2nT + AP(t, nT).  A¢ ande, respectively.

The Taylor series ofy(t + nT) and ¢(t — »nT') aroundt can The elements of (A.3) are

be used to get two different representations A&ef(t, n7")

m(t +nT)m" (t — nT) = |A[2ed (20T +200n1))

oo

- e ML) _ a2 3 wno)(—j2nD)
Ag(t, nT) =2 w®)(t)- %, 0 n=—oo
—~ (2s+1)! Wi (¢, w) - )
and o |, AP Y wn(nT)(2nT)
(nT)° ¢ (2 2 .
Ad(t, nT) = —L [Pt + 1)+ 0@t —7)] (A2 AW (¢ oo
5 onlt, ) <w | sy =[AP S wn(nT)AG(E, nT)(20T)
0 n=—oo
where0 < 71, 7o < nT. Wi, w)

The linearization 0BW),(t, w)/0w = 0 with respect to the

small I

8. = Z wr(nT)[e(t +nT)e™(t — nT)
0 —
1) estimation errorAgy, (¢); +e(t +nT)m*(t — nT’)

2) residual of the phase deviatiahe; + %t — nTYm(t + nT)|(—52nT)

3) noisee; LemimTew (A.4)
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Fig. 7. Parameters and accuracy in the case of the adaptive generalized Wigner distribution. (a) Adaptive windaNlen@ghParametex as a function
of time n = ¢/T. (c) Normalized mean absolute errors of the IF estimation for different window lengths and parametesus timen = ¢t/7": “*” for
x = 1, “o" for x = 2, “+" for x = 4. The line represents normalized mean absolute error for the adaptive pairs.

Note thatoW(t, w)/dw|o = 0 because of the symmetry ofUsing the same calculations as in [17] and [18], it can be

window w(t). Equation (A.3) then gives shown that the estimation variance, following from (A.5), is
of the form
1 Eh
A@}L(t) = — <Lh(t) + — (AS) 1
2, EE on(t) = L p(=2
Var(Awh(t)) 4F}%|A|4 E( h)
where the notation o2 a2 \ E,
=—=-11 c_ ). A.8
e (o) 7 49
— 2
bn = n:z_:oo wi(nT)(nT) Ash — 0,7 — 0,andh/T —
Ly(t) = wr(nT)A@(t, nTInT o
() n;m WA ) Fpo= Y wy(nT)(nT)* — h’F
Eh = 1 w 65 (A.G) 00
2w | En= Y wi(nT)(nT)? - hTE (A.9)

is used. It can be verified that the expectatiorEgfis equal
to zero E(5;) = 0. According to (A.5), for the estimation where the constants' and £, depending on the window type
bias, we get only, are defined in (9).
Substituting (A.9) into (A.8) proves (6) of the proposition.
Now, let us consider the estimation bias (A.7), where,
according to (A.6) and (A.2)L.(t) may be represented in

_ Lh(t)

Qi) = 5. (A7)
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two different forms: [14] Proc. IEEE Special Issue on Time—Frequency Analysis, vol. 84, Sept.

or

s (/)(25+1)(t) > [15] éggg Quinn, “Estimating frequency by interpolation using Fourier
_ 2542 © 2 )
Ly(t) =2 Z Z wy, (L) (nT)™* coefficients,”IEEE Trans. Signal Processingpl. 42, pp. 1264-1268,
(2s+1)!
s=1 " n=—o0 May 1994.
oo [16] B. G. Quinn and J. M. Fernandes, “A fast efficient technique for the
_ Z B (3)(/)(25+1)(t) estimation of frequency,Biometrika,vol. 78, pp. 489-497, Sept. 1991.
- h [17] P.Raoand F. J. Taylor, “Estimation of the instantaneous frequency using
s=1 the discrete Wigner distributionElectron. Lett.,vol. 26, pp. 246—-248,
) 0 1990.
Bh(S) = Z wh(nT) (nT)Qs-I—Q (A.10) [18] LJ. Stankowt and S. Stankogi “On the Wigner distribution of discrete-
(23 + 1) time noisy signals with application to the study of quantization effects,”
IEEE Trans. Signal Processingol. 42, pp. 1863-1867, July 1994.
. Stankowt, method for improved distribution concentration in
19] LJ. Stankowt, “A hod for i d distributi ion i
the time-frequency analysis of multicomponent signals the L-Wigner
Mo 4 distribution,” IEEE Trans. Signal Processingpl. 43, pp. 1262-1269,
Lu(t) <= > wp(nT)(nT) May 1995.
Ne—oco [20] S. Stankow and LJ. Stankot, “An architecture for realization of a
— MoIB (1 method for time-frequency analysislEEE Trans. Circuits Systyol.
= M2|Br(1)] 44, pp. 600-604, July 1997. . .
sup |w(2) (t)| < Mo, (A.11) [21] K. M. Wo’ng, Estimation of the time-varying frequency Qf a S|gnal:"
t The Crangér-Rao bound and the application of Wigner distributions,
IEEE Trans. Acoust., Speech, Signal Processid, 38, pp. 519-535,

!
n=—oo

oo

It is easy to verify that aé — 0, T — 0, andh/T — May 1990.

[22] LJ. Stankowt and V. Katkovnik, “Algorithm for the instantaneous
By(s) — 2Fb 212 (A.12) frequency estimation using time-frequency distributions with adaptive
window width,” IEEE Signal Processing Lettvol. 5, Sept. 1998.

whereb, is given by (9). Substitution of (A.10)—(A.12) into
(A.7) gives (7) and (8). These conclusions complete the proof
of the proposition.

The authors are very thankful to the Associate Editor ar
reviewers for the comments and the additional references t
helped to improve the paper.
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