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Instantaneous Frequency Estimation
Using the Wigner Distribution with

Varying and Data-Driven Window Length
Vladimir Katkovnik, Member, IEEE,and LJubǐsa Stankovíc, Senior Member, IEEE

Abstract—Estimation of the instantaneous frequency (IF) of a
harmonic complex-valued signal with an additive noise using the
Wigner distribution is considered. If the IF is a nonlinear function
of time, the bias of the estimate depends on the window length.
The optimal choice of the window length, based on the asymptotic
formulae for the variance and bias, can be used in order to
resolve the bias-variance tradeoff. However, the practical value of
this solution is not significant because the optimal window length
depends on the unknown smoothness of the IF. The goal of this
paper is to develop an adaptive IF estimator with a time-varying
and data-driven window length, which is able to provide quality
close to what could be achieved if the smoothness of the IF were
known in advance. The algorithm uses the asymptotic formula
for the variance of the estimator only. Its value may be easily
obtained in the case of white noise and relatively high sampling
rate. Simulation shows good accuracy for the proposed adaptive
algorithm.

I. INTRODUCTION

A complex-valued harmonic with a time-varying phase is a
key model of the instantaneous frequency (IF) concept,

as well as an important model in the general theory of
time–frequency distributions. It has been utilized for the study
of a wide range of signals, including speech, music, biological,
radar, sonar, and geophysical ones [14].

An overview of methods for the IF estimation, as well as an
interpretation of the IF concept itself, is presented in [2] and
[6]. Beside other efficient techniques for the IF estimation (e.g.,
[2], [11], [15], [16]), the time–frequency distribution approach
is interesting and commonly applied [2], [6]. This approach
is based on the property of time–frequency distributions to
concentrate the energy of a signal, in the time–frequency plane,
at and around the IF [1], [2], [4], [5], [12]. Out of the general
Cohen class of time–frequency distributions with a signal-
independent kernel, the Wigner distribution (WD) produces
the best concentration along the linear IF [4], [5], [19], [20].
In order to improve the concentration when the IF is not a
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linear function of time, various higher order time–frequency
representations have been introduced [3], [8], [9], [19]. Here,
we will focus our attention on the WD only. If the IF is
a nonlinear function of time, then its estimate, using the
WD, is biased. In the case of noisy signals, this estimate is
highly signal and noise dependent [8], [17], [21]. Using the
asymptotic formulae for the estimation variance and bias, we
can, theoretically, find the optimal window length in the WD
and resolve the bias-variance tradeoff. However, the optimal
window length depends on the unknown smoothness of the IF,
making this approach practically useless. The main goal of this
paper is to develop an adaptive estimator with a time-varying
and data-driven window length that is able to provide quality
close to what could be achieved if the smoothness of the IF
were known in advance. The idea of the approach developed
in this paper originated from [7], where it was proposed and
justified for the local polynomial fitting of regression. For
the time-varying IF estimation, this approach was used in
[10], where the algorithm with the time-varying and data-
driven window length was presented for the local polynomial
periodogram. This approach uses only the formula for the
variance of the estimate, which does not require information
about the IF to be known in advance. Simulations based on
the discrete WD, with several noisy signal examples, show
a good accuracy of the presented adaptive algorithm, as well
as an improvement in the time–frequency representation of
signals with a nonlinear IF.

The structure of the paper is as follows: The WD, as an IF
estimator, is considered in Section II. The asymptotic bias and
variance of the IF estimate, along with the optimal window
size for the IF estimation, are also presented in Section II.
The adaptive estimation of the IF with a time-varying and
data-driven window length is developed in Section III. A
numerical implementation of the adaptive algorithm, along
with simulation results, is discussed in Section IV. Proofs are
given in the Appendix.

II. BACKGROUND THEORY

Consider the problem of the IF estimation from the discrete-
time observations

with

(1)
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where

integer;
sampling interval;
complex-valued white Gaussian noise with i.i.d.
real and imaginary parts.

Thus, Re and Im and the total
variance of the noise is equal to . The IF, by definition, is
the first derivative of the phase

(2)

In the nonparametric setting of the problem, it is assumed that
is an arbitrary smooth differentiable function of time,

with bounded derivatives .
The Pseudo-Wigner distribution (WD) in the discrete-time

domain is defined by

(3)

where , with being a real-
valued symmetric window, . The window

, whose width is denoted by , is used in (3)
for the localization of the estimate. We also assume that
has a finite length, i.e., , for .

As the WD (3) is a real-valued periodic function, the IF
estimate is a solution of the optimization problem

(4)

where is a basic interval along
the frequency axis.

The estimation error, at a time-instant, is defined as

(5)

The following proposition gives the asymptotic formulae for
the variance and bias of the IF estimator (4).

Proposition: Let be a solution of (4), with ,
, and . Then, the variance of the IF estimate

is given by

var (6)

whereas the bias of the estimate can be represented in the
forms

(7)

and

with (8)

provided that and are small for all
.

The notation

(9)

has been used in (6)–(8).
A proof of the proposition is given in the Appendix.
Comments:

1) The main assumption for formulae (6)–(8) is that the
variance and the bias are small (see the Appendix). If
the window is rectangular and , , and

, then the following explicit formulae can
be given for the variance and the error-coefficients:

var

(10)

Note that the values in (10) may be obtained as special
cases of the formulae for variance and bias given in [8]
for the local polynomial WD.

2) Let us consider the mean squared error (MSE) of the IF
estimate. It follows from (6) and (7) that, for small,
the main term of the MSE can be given in the form

(11)

From (11), it is clear that increasing the window length
increases the bias and decreases the variance. The

optimization of in (11), minimizing the MSE, results
in

(12)

This optimal window length gives the optimal
bias-variance tradeoff, which is usual for nonparamet-
ric estimation, depending on the signal-to-noise ratio

, the sampling interval , and the second IF
derivative . Thus, the optimal choice of length

depends on the IF second derivative . This
derivative is unknown because the IF itself is to be
estimated. Note that if the second derivative is
significantly different for different , then the optimiza-
tion of the estimation accuracy requires a time-varying
window length . The improvement in accuracy from
this time-varying can be significant when compared
with any time-invariant length .



KATKOVNIK AND STANKOVI Ć: INSTANTANEOUS FREQUENCY ESTIMATION USING THE WIGNER DISTRIBUTION 2317

In this paper, we propose a data-driven choice of the time-
varying window length that uses only the formula for the
variance and does not need information about the unknown
derivatives of the IF. Moreover, this choice of the window
length is based on specific statistics that are used in order to
compare the variance of the estimate versus its bias.

III. A LGORITHM FOR THE DATA-DRIVEN

WINDOW LENGTH CHOICE

A. Basic Idea

The basic idea follows from the accuracy analysis, which
was given in the proposition. For the asymptotic case, when
the estimation error is small, it can be represented as a sum
of the deterministic (bias) and random component, with the
variance given by (6). The estimation error can be written as

bias

var

(13)

where the inequality holds with probability , where
is the corresponding quantile of the standard Gaussian

distribution. Thus, as increases.
It follows from (7) and (8) thatbias as .
Now, let be so small that

bias (14)

It follows from (13) that with probability

(15)

i.e.,

(16)

Let us introduce the confidence intervals

(17)

Then, we can say that for a set of, which are so small that
(14) and (15) are true, all of the segments have a point in
common, namely, .

Consider an increasing sequence of,
. Let be the largest of those for which the segments

and have a point in common. Let us call this window
length “optimal.” We propose to use this optimal
as a reasonable choice of the window length. Then, the
IF estimate with the data-driven adaptive window length is
determined as .

The idea behind this choice is clear. If the segments
and do not have a point in common, then at least one of
the inequalities (15) does not hold, i.e., the bias is too large
as compared with the standard deviation in (14). Thus, the
statistical hypothesis to be tested for the bias is given in the
form of the sequence of inequalities (15). The largest length

for which these inequalities have a point in common is
considered as a bias-variance compromise, where the bias and
standard deviation are of the same order. For more details,
see [22].

B. Algorithm

Let us initially assume that the amplitude of signaland
the standard deviation of noise are known. Let be an
increasing sequence of the window length values

(18)

In general, any reasonable choice of is acceptable. The
relation gives a link between the window length

and the number of observations . Here, the lengths
corresponding to the dyadic numbers will be
used.

For every , the following steps are generated.

1) The WD is calculated for all of . Thus, we obtain
a set of distributions for a fixed time instant

and the IF estimates are found as

2) The upper and lower bounds of the confidence intervals
in (17) are built as

(19)

where, according to (13)

(20)

For the sake of simplicity, we will use (or the
values just slightly less than this value) in (19), which,
for the Gaussian estimation error, corresponds to the
standard two-sigma rule with the probability

of inequality (13).
3) The optimal window length is determined as the

largest when

(21)

is still satisfied, i.e.,

still holds. Here, and are determined by (19).
This is the largest of those for which the segments

and , have a point in common. The
optimal window length is chosen as

and is the adaptive IF estimator with the data-
driven window for a given instant.

4) The WD with the optimal window length is

(22)
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(a) (b)

(c) (d)

Fig. 1. Estimation of the step-wise IF. (a) Estimation with the window length2Ns = 8. (b) Estimation with the window length2Ns = 16. (c) Estimation
with the window length2Ns = 256. (d) IF estimation using the adaptive window length.

Steps 1–4 are repeated for every time instant.
Comments on the Algorithm:

a) Provided that is small, the following estimates of
and can be used:

(23)

where the sum is calculated over allobservations, and
is assumed to be large. The variance is estimated by

median

median

(24)

where and are the real and imaginary
parts, respectively, of , and is sufficiently small.
The average could
also be used as an estimate of. However, we prefer
the median in (24) as a robust estimate.

b) We wish to emphasize that the intersection of the seg-
ments is a specific method for the bias examination.
Originally, the intersection of the confidence intervals

for the window length selection has been proposed
in [7], where it was used for the local polynomial fitting
of regression.

In contrast to the algorithm described above, the algorithm
given in [7] is based on the intersection of all of the segments

starting from up to the largest , when all of those
segments have a point in common. The strong convergence
results given in [7] prove that the estimator with the proposed
time-varying and data-driven window length is able to provide
the quality close to the one that could be achieved if the
smoothness of the function to be estimated was known in
advance.

In our algorithm, we use only the sliding pair-wise in-
tersections (21) of the pairs of segments and for

. The simulation shows that the results for
the IF estimation are accurate and promising. Simulation
produced for the algorithm [7], using the intersection of all
confidence intervals as in the regression estimation, showed
worse accuracy, compared with our algorithm.

IV. NUMERICAL IMPLEMENTATION AND EXAMPLES

The discrete-time WD given by (3) is discretized over the
frequency and calculated as

(25)

where is the number of samples determined by the
sampling interval [i.e., signal’s maximal expected frequency
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(a) (b)

(c) (d)

Fig. 2. Wigner distribution of the signal with a step-wise IF. (a) WD with the window length2Ns = 16. (b) Adaptive window length as a function of
time n = t=T . (c) WD with the window length2Ns = 256. (d) the WD with the adaptive window length.

] and the window length , . For
the dyadic window lengths , we have corresponding

. Starting with a narrow
window, for example , we calculate for all

up to the widest window (in this
case ). For a given instant , the IF is estimated as

(26)

where for non-negative-only IF
values. In order to reduce the FFT quantization error in the
cases of small , as well as to have distributions of the same
length for different , the product is
zero padded up to length. That is, is interpolated
in the frequency domain up to samples within the period.
Then, the discrete WD given by (25) is calculated using the
standard FFT routines, and

The quantization error has the variance
. This variance can be even larger than the variance

in (6). In order to reduce it, we may additionally interpolate
the distribution . In the numerical realizations, we did
this interpolation with a factor of 2.

After is found, according to the IF estimate (26) and the
algorithm (19)–(22), the calculation for the time-instant
can be stopped in order to save computational time. Note also

TABLE I
NORMALIZED MEAN ABSOLUTE ERROR FOR THESTEP-WISE CONSTANT IF

that for each next (twice wider) window length, we simply
replace zero values (added by zero padding)
by the real values of . Therefore, the
computations with various window lengths are not completely
independent, which may be a source of an additional savings
in computation time.

The algorithm is tested on several examples. For each of
these, we plotted for the adaptive time-
varying window as a function of time instantand presented
the IF estimates for the various time-invariant and adaptive
time-varying window lengths. Furthermore, the mean absolute
errors of the estimations are given for all of the considered
cases. In all examples, we assumed the signal of the form

with the IF and the phase .
We also assumed that and (in
decibels) ( ). The estimation time interval was

. A value 1.75 of the parameter, which is
slightly less than , turned out to be a good choice for
the practical realizations.
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(a) (b)

(c) (d)

Fig. 3. Estimation of the piecewise linear IF. (a) Estimation with the window length2Ns = 8. (b) Estimation with the window length2Ns = 16. (c)
Estimation with the window length2Ns = 256. (d) IF estimation using the adaptive window length.

Example 1: Piecewise constant IF with a step at the instant

sign (27)

is considered in this example. The estimates of
the IF, with , , and the widest window
length , are presented in Fig. 1(a)–(c), respectively.
The IF estimate with the adaptive, time-varying
window length is given in Fig. 1(d). The adaptive window
length , as a function of time instant

, is presented in Fig. 2(b). We may conclude that at times
far from the point of the jump ( ), the adaptive
window definitely tends to a maximum size. However, at
and around the jump-point , the window is narrowed
up to the smallest length value. Thus, it demonstrates that
the data-driven window length is really sensitive with respect
to a fast variation of the IF. These results are in complete
agreement with (12). When the IF is fast varying, then the
bias is dominant, and the narrowest window is selected by
the algorithm. Fig. 1(d) shows that the IF estimate
gives an accurate IF estimation for all time instants .
The mean absolute error for the adaptive estimate
and for the estimates with the time-invariant window lengths

is given in Table I. Note that the
mean absolute error in Table I is normalized by the frequency
step ,

The WD itself, for the constant window lengths with
, , and for the adaptive window length, is shown

TABLE II
NORMALIZED MEAN ABSOLUTE ERROR FOR THEPIECEWISE LINEAR IF

in Fig. 2(a), (c), and (d), respectively. We see that in the case
of the adaptive window length, the WD is highly concentrated
along the instantaneous frequency within the entire considered
time interval.

Example 2: The results of the IF estimation for thepiece-
wise linear frequency modulated signal with a step in the first
derivative of the IF at the instant

(28)

are shown in Fig. 3 and Table II.
Here, the explanations are similar to those given for Exam-

ple 1. Note that in these two examples, we assumed the IF
values that mainly belong to the discrete time–frequency grid
(after the described interpolations). Therefore, the quantization
error was negligible. The WD’s with constant and adaptive
window lengths are presented in Fig. 4.

Example 3: For the nonlinear frequency modulated signal

(29)

the IF estimate is presented in Fig. 5 and Table III. The effects,
which are similar to those in Figs. 1 and 3, appear in this
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(a) (b)

(c) (d)

Fig. 4. Wigner distribution of the signal with a piecewise linear IF. (a) WD with the window length2Ns = 16. (b) Adaptive window length as a function
of time n = t=T . (c) WD with the window length2Ns = 256. (d) WD with the adaptive window length.

example, although not in such a clear form. Note that the
normalized minimal mean absolute error is greater than in the
previous two examples. This result is due to the discretization
error, which appears here in full scale. This was not the case in
Examples 1 and 2, where the special IF values were used. The
quantization error may be further decreased by the additional
interpolation. The WD’s and adaptive window length are given
in Fig. 6.

V. GENERALIZATION

The presented approach and algorithm may be directly
extended to the form of the discrete-time WD [8] in

(30)
where is a constant.

The parameter can be used for an additional improvement
of estimation. For the rectangular window and conditions
similar to those considered in (11), the MSE of the IF estimate
is of the form [8]

(31)

This expression may be derived in a straightforward manner,
following the derivations presented in the Appendix. The
simulation shows that a significant accuracy improvement can
be achieved by the time-varying and data-driven choice of
and (i.e., when both of them are used in the optimization).

The following modification of the technique given in
Section III was developed for this problem. Let us introduce
two sets of values of the window lengthand the parameter

as in

(32)

Note that in order to avoid the aliasing effects in (30),
the sampling interval should be chosen such that

, where is the maximal frequency in the signal’s
spectrum. Note that consequently, the case with will
correspond to the WD (Section IV).

Consider a direct product of and as a set
, of all possible

pairs . Now, let us reorder the elements of
in such a way that we get a new set, whose elements

, form a decreasing
sequence

(33)
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(a) (b)

(c) (d)

Fig. 5. Estimation of the nonlinear IF. (a) Estimation with the window length2Ns = 8. (b) Estimation with the window length2Ns = 16. (c) Estimation
with the window length2Ns = 256. (d) IF estimation using the adaptive window length.

TABLE III
NORMALIZED MEAN ABSOLUTE ERROR FOR THENONLINEAR IF

In this case, the standard deviations

(34)

also form a decreasing sequence.
From the basic idea presented in Section III, it is clear that

the sequence can be used instead of the window length
sequence without any other changes in the algorithm.
Thus, the algorithm described in Section III can be used in
a straightforward manner. The confidence intervals

, as in (19), are found for the sequence, and
the largest for which ,
still holds gives the optimal adaptive boundary value,
which, according to (33), determines a corresponding pair

.
Let us demonstrate the accuracy improvement when both

and are used in the optimization. For the IF considered
in Example 1, the adaptive values for the pairs

and are presented in Fig. 7(a) and (b).
The values of the mean absolute error for different and

parameter showing an additional improvement
of the mean absolute error are presented in Fig. 7(c).

In the discrete realization, in addition to the already de-
scribed interpolation with respect to the window length, an
interpolation by factor is done in order to reduce the
quantization error and to have the same number of samples
within the basic frequency period.

VI. CONCLUSION

The WD with a data-driven and time-varying window
length is developed as an adaptive estimator of the IF. The
choice of the window length is based on the intersection
of the confidence intervals of the IF estimates with the
increasing window lengths. The developed algorithm uses only
the formula for the variance of the estimate obtained for the
relatively high sampling rate and white noise. Simulations
show a good accuracy ability of the adaptive algorithm.

APPENDIX

Proof of the Proposition:Let us assume that the estimate
in (4) is an interior point of . The stationary point

of is determined by the zero value of the derivative
of , which is given as

(A.1)
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(a) (b)

(c) (d)

Fig. 6. Wigner distribution of the signal with a nonlinear IF. (a) WD with the window length2Ns = 16. (b) Adaptive window length as a function of
time n = t=T . (c) WD with the window length2Ns = 256. (d) WD with the adaptive window length.

Note that

where the main deterministic term is of the form

because .
The Taylor series of and around can
be used to get two different representations for

and

(A.2)

where .
The linearization of with respect to the

small

1) estimation error ;
2) residual of the phase deviation ;
3) noise ;

gives

(A.3)

where means that the corresponding derivatives are calcu-
lated at the point , , and .
The terms and in
(A.3) determine the variations of caused by

and , respectively.
The elements of (A.3) are

(A.4)
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(a) (b)

(c)

Fig. 7. Parameters and accuracy in the case of the adaptive generalized Wigner distribution. (a) Adaptive window length2Ns. (b) Parameter� as a function
of time n = t=T . (c) Normalized mean absolute errors of the IF estimation for different window lengths and parameter� versus timen = t=T : “�” for
� = 1, “�” for � = 2, “+” for � = 4. The line represents normalized mean absolute error for the adaptive pairs.

Note that because of the symmetry of

window . Equation (A.3) then gives

(A.5)

where the notation

(A.6)

is used. It can be verified that the expectation of is equal

to zero . According to (A.5), for the estimation

bias, we get

(A.7)

Using the same calculations as in [17] and [18], it can be
shown that the estimation variance, following from (A.5), is
of the form

var

(A.8)

As , , and

(A.9)

where the constants and , depending on the window type
only, are defined in (9).

Substituting (A.9) into (A.8) proves (6) of the proposition.
Now, let us consider the estimation bias (A.7), where,

according to (A.6) and (A.2), may be represented in
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two different forms:

(A.10)

or

(A.11)

It is easy to verify that as , , and

(A.12)

where is given by (9). Substitution of (A.10)–(A.12) into
(A.7) gives (7) and (8). These conclusions complete the proof
of the proposition.
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