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The Wigner Distribution of Noisy Signals with
Adaptive Time–Frequency Varying Window

LJubǐsa Stankovíc, Senior Member, IEEE, and Vladimir Katkovnik,Member, IEEE

Abstract—Time–frequency representations using the Wigner
distribution (WD) may be significantly obscured by the noise in
observations. The analysis performed for the WD of discrete-time
noisy signals shows that this time–frequency representation can
be optimized by the appropriate choice of the window length.
However, the practical value of this analysis is not significant
because the optimization requires knowledge of the bias, which
depends on the unknown derivatives of the WD. A simple adap-
tive algorithm for the efficient time–frequency representation
of noisy signals is developed in this paper. The algorithm uses
only the noisy estimate of the WD and the analytical formula
for the variance of this estimate. The quality of this adaptive
algorithm is close to the one that could be achieved by the
algorithm with the optimal window length, provided that the WD
derivatives were known in advance. The proposed algorithm is
based on the idea that has been developed in our previous work
for the instantaneous frequency (IF) estimation. Here, a direct
addressing to the WD itself, rather than to the instantaneous
frequency, resulted in a time and frequency varying window
length and showed that the assumption of small noise and bias is
no longer necessary. A simplified version of the algorithm, using
only two different window lengths, is presented. It is shown that
the procedure developed for the adaptive window length selection
can be generalized for application on multicomponent signals
with any distribution from the Cohen class. Simulations show
that the developed algorithms are efficient, even for a very low
value of the signal-to-noise ratio.

I. INTRODUCTION

A VARIETY of tools is used for the time–frequency anal-
ysis of nonstationary signals. Many of these tools have

a form of energy distributions in the time–frequency plane.
The Wigner distribution (WD) is one of the most prominent
members of this class. It has been defined by Wigner in
quantum mechanics and then used first by Ville in signal
analysis. All quadratic time–frequency distributions belong-
ing to the general Cohen class, including the widely used
spectrogram, may be written as two-dimensionally smoothed
forms of the WD. The properties of these distributions have
been investigated in detail during the last two decades [2],
[4], [5], [7]–[9], [13], [14], [28], [34]. In particular, one of the
topics of intensive study has been the influence of noise on the
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time–frequency representations [1], [4], [10], [12], [18], [15],
[22], [24], [25], [29], [30]. It has been concluded that the lag
window length is one of the most important parameters. It has
to be chosen by a tradeoff between the variance and bias of
the WD estimate [25].

The aim of this paper is to present an algorithm that
produces the window length close to the optimal one without
knowing the bias since the bias depends on derivatives of the
unknown distribution to be estimated.

The proposed algorithm is based on the idea developed
in [11], [16], and [17]. The orientation of the algorithms
presented in [16] and [17] on the instantaneous frequency (IF)
estimation resulted in a time-varying-only window length that
is the best for the IF estimation, i.e., for reconstruction of the
WD at its peak on the frequency, for a given time instant.
Then, this window length is used for all frequencies at this
time instant. The algorithm developed in this paper directly
addresses the problem of “denoising” the WD that was itself
obtained from the noisy signals. This new algorithm produces
the adaptive window length that is both time and frequency
varying.

Two points determine the difference of the new algorithm
versus the algorithms studied in [16] and [17]. First, the
adaptive window in the new algorithm is assumed to be
dependent both on time and frequency. Second, the variance
of the WD itself, instead of the variance of the IF, is used
in this algorithm. The calculation of this variance requires no
assumption about the smallness of the noise. A theoretical
analysis of the algorithm parameters is done in this paper as
well. Furthermore, the new adaptive algorithm appears to be
efficient for the analysis of multicomponent signals when it
is applied in a combination with the reduced interference dis-
tributions. On the whole, the idea of the developed algorithm
is quite universal and flexible and can be adapted to various
time–frequency analysis problems. Finally, the algorithm is
simple in implementation. In particular, a simplified version
of the algorithm, based on the WD calculation with only two
different (small and large) window lengths, is developed in
this paper.

The paper is organized as follows. The analysis of the
variance and bias of the WD of a deterministic noisy signal is
reviewed in Section II. The idea of the adaptive algorithm,
as well as a choice of its key parameters, is presented in
Section III. The basic adaptive algorithm is described in
Section IV. The simplified “two-window” version of the al-
gorithm is presented in Section V. Sections V and VI deal
with examples, including the algorithm application on the
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method and a generalization to the other distributions from
the Cohen class.

II. THEORY

The WD of a discrete-time noisy signal
is defined as [3], [7], [13], [25], [35]

(1)

with . Note that the constant factor of 2 was used in
the original definition of (1).

We assume that the signal is deterministic and that the
noise is complex-valued white, i.e., ,
with

(2)

where the asterisks denotes a complex conjugate value, and
is the Kronecker function. The Gaussian-distribution

law for and , with and
, is assumed as well.

Let

(3)

be an error of estimation of by . Then,
the bias of the estimate is equal to

because

(4)

This bias is constant for all . It means that the WD of the
noise-free signal is superimposed on a pedestal whose height
is [18]. Therefore, it does not play a significant role in
time–frequency analysis of the signal.

The variance of the WD is defined by

(5)

It has two components , where the first one
depends on both the signal and noise, and the second

one depends on the noise only [25]. For the considered
white complex-valued Gaussian noise, the variance of (1) is
obtained as [1], [25], [30]

(6)

For the FM signal

(7)

with a slow-varying real-valued amplitude
, we get

(8)

Thus, the variance of the unwindowed approaches
infinity, as . In practice, truncated signals are used in
the WD calculation.

Let us introduce the symmetric window
of a finite length . Then, the WD of the

signal truncated by the window (the pseudo WD) is
of the form

(9)

Calculation of the mean of gives [25]

(10)

where FT is the Fourier transform (FT) of the
window , and denotes a convolution
in .

We will assume that does not depend on , as is
true for many commonly used windows when .
Then, the term can be omitted in the following analysis
since only the terms depending on are essential for the
window length optimization (formally, we may consider that

is the true value). The first term in (10)
shows that decreasing of the lag-window length (increasing
the length of its FT) causes corresponding increase of the WD
bias. Using a Taylor series expansion of gives
the approximate expression for [25]

The amplitude moment of the window is defined by

According to (3), the bias is obtained in the form

bias (11)

where, according to the previous disscusion, the term
is omitted, and

(12)

For a nonrectangular window, the variance
should be written in a more general form than (6)

(13)

For the FM signal with a slowly varying amplitude

(14)
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where

is an energy of the window .
For the Hanning window , we have

and (15)

These values may be easily calculated for any other window
type [19].

The optimal window length is obtained by minimizing the
mean squared error (MSE) defined by

bias (16)

Assuming that is the Hanning window and is the
FM signal with a slow-varying amplitude (7), we get

(17)

The optimal window length follows from the equation

that gives

(18)

The optimal window length depends on , meaning that
it is time–frequency varying. Formula (18) is very interesting
for a theoretical analysis, but it is not useful for practical
applications because is the second derivative of

on . It is definitely unknown in advance. Our aim
is to design an adaptive algorithm that produces the value of

close to the optimal one at any given point
without knowledge of and its derivatives.

The algorithm will be defined on the basis of the analysis
that follows.

The MSE (16) can be represented in the form

(19)

where

bias (20)

is a ratio of the bias to standard deviation of the WD estimate.
It is easy to show that

(21)

for the given formulae of the bias and variance (17).
Let us emphasize this quite interesting point.At the optimal

window length , the ratio of the bias to standard deviation
is a constant. It does not depend on the WD or any other
parameter of the problem.

III. B ASIC IDEA OF ADAPTIVE WINDOW LENGTH SELECTION

According to the presented analysis, we can conclude that
the random error of the WD estimation can be represented in
the form

bias

where , and
. Here, includes constant .

Now, we may write the inequality

bias (22)

which holds with probability , and is the
th quantile of the standard Gaussian distribution.

Precisely speaking, the random error is a quadratic
function of the Gaussian noise, i.e., it has a non-Gaussian
distribution. However, it can be shown that as ,
the Gaussian distribution is a good approximation for the
distribution of WD estimation errors. Thus, we can apply the
quantile of the Gaussian distribution in (22).1

Let us assume that for some

bias (23)

holds. Then, (22), for that particular , can be strengthened
to the form

(24)

We wish to make clear the idea behind assumption (23). First,
it determines a proportion between the bias and the standard
deviation in the window length selection. Second, is a
parameter of this proportion to be chosen. A few approaches
could be used here.

a) The simplest choice assumes the equality of the
random error and the bias, as we did in the IF estimation
in [17].

b) assumes a proportion be-
tween the bias and the standard deviation corresponding
to that which holds for the optimal window length
minimizing the MSE (21). This value will be a good
intuitive choice for in the simplified “two-window”
algorithm that is going to be presented.

c) Finding through an optimal estimation of the un-
known , the last approach is considered in the sequel
of this section.

In order to derive the algorithm, we have to define a finite
set of the window length values for which the WD will
be calculated. The widest length is determined by the
computational time we may allow. For the last length, we
may assume any reasonably small value, for example,
or . In between these two values, a finite number of window
lengths has to be assumed. Let us introduce a dyadic setof
descending window lengths

(25)

1Note that the Gaussianity assumption for�W is not crucial for the
analysis that follows.
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A simplicity and efficiency of the WD calculation for
, using the standard radix-2 FFT algorithms, is one of

the best reasons in favor of selectingas a dyadic set.
Now, we are going to derive the algorithm for determination

of the adaptive window length close to the optimal ,
using as the estimate of and the
variance of this estimate only. We assume from the beginning
that the noise variance and the amplitude of (7) are
known.

Let us consider confidence intervals for (24). They play
a key role in the adaptive algorithm. Denote the upper and
lower bounds of these interval’s confidence as

and

(26)

where is an estimate of , using the
window length , and is its variance. Consider
these confidence intervals for the successive values of, i.e.,
the successive window lengths.

The algorithm is based on the following statement.
Let us assume that (22) holds with the probability

and that the optimal window length belongs to the
set .

Determine as a window length corresponding to the
largest when two successive
confidence intervals still intersect, i.e.,

(27)

is still satisfied.
Then, there exists the value of in (26) such that

and when .
Proof: It is clear that because of the assumption that

, any can be represented as

(28)

where corresponds to the optimal window length .
From here, we start to use two different indices for the window
lengths:

— in the form , which denotes the indexing starting
from the largest toward the narrowest window length;

— in the form , where the indexing starts from
window length (when ).

Confidence intervals (26), as functions of, are defined by

(29)

where is to be found.
The bias and variance for any , according to (17), (21),

and (28), may be rewritten as

bias
(30)

In the last expression, we assumed, without loss of generality,
that the bias is positive. Note again that is an
dependent parameter.

From the monotonicity property of functions in (30), we can
conclude that for , the bias is much smaller compared
with the variance, whereas for , the bias is much larger
than the variance. Since the bias is small and the variance is
large for all , we have , and
therefore, . Contrary to this case, for
all , we have an inverse picture. The variance is small,
and the bias is large; therefore, for any
given .

From the definition of and from the monotonicity of
variance and bias in (30), it follows that ,
if and only if the intervals and have at least a point
in common, and the intervals and do not have
a point in common. Thus, the intersection of three intervals

and only will be considered. It can be
seen that for the positive bias, the intersection of and

and the nonintersection of and will occur,
provided that

(31)

Minimization and maximization in (31) are produced with
respect to the random values of the estimate ,
which determine a middle point of the confidence intervals

Let us, for example, consider . The value of
, according to (22), is within the inter-

val bias
bias .

Consequently, the upper bound of the confidence
interval , according to (29), takes a value from the
interval bias

bias .
The maximal possible value of is, therefore, given
by bias

. In the same way, we get other bound limits
required by (31), thus giving

bias

bias

bias

bias

(32)

According to (30), it follows from (32) that

(33)

The above relation gives the interval for

(34)

For example, for , i.e., the probability ,
we obtain

(35)

Inequality (34) shows that exists if It
completes the proof of the statement and gives the inequality
for the possible values of .
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(a) (b) (c)

Fig. 1. Wigner distribution of the noisy signal. (a) With the constant window lengthN1 = 64. (b) With the constant window lengthN2 = 512. (c)
With the adaptive time–frequency varying window length.

A search of the optimal window length over the finite set
simplifies the optimization. However, it inevitably leads to

a suboptimal solution due to the discretization effects since, in
general, the optimal window length does not belong to
the dyadic set . It always results in worse values of the MSE,
but that is the price of efficient calculation schemes and the
simplicity of the presented algorithm. Fortunately, this loss of
accuracy is not significant in many cases because the MSE (19)
varies slowly around the stationary point, i.e., in the neighbor-
hood of . Note that the other window length schemes
may also be assumed. We may go in two directions. One is to
increase the number of discrete window lengths between
and . If we may computationally allow a large number of
window lengths, i.e., small difference between and ,
theoretically , then a similar approach and al-
gorithm can be used. The only difference in the case when two
successive window lengths are very close to each other is that
the intersection of the confidence interval with all previ-
ous intervals should be used as an indicator
when the optimal window length is achieved [11]. However,
we will go in the other direction. Our aim is to reduce the num-
ber of considered window lengths between and while
keeping the high quality of the presented adaptive approach.
This is possible due to a specific form of time–frequency
representation. This topic is discussed in Section V.

IV. A LGORITHM

Let us initially assume that the amplitudeand the standard
deviation of the noise are known. Define a dyadic set,
for example, . The following
steps are then generated for each value of the time-instant
and the frequency .

1) The WD is calculated for all of . Thus, we
obtain a set of distributions

2) The optimal window length for every
is determined by the largest, from , when
(27) is satisfied, i.e.,

(36)

still holds.
This is the smallest of those for which the

segments and , have a point in common.

3) The WD with the adaptive window length, for a point
, is

(37)

Comments on the Algorithm.
a) The standard deviation

(38)

depends on the amplitude of the signal, the standard
deviation of the noise , and the energy of the window, .

1) Provided thatthe sampling period is small, the following
estimates of and can be used:

(39)

where the sum is calculated over all observations, and
is assumed to be large. The variance can be estimated by

median

median

(40)

where and are the real and imaginary part of
, respectively.

The average could also be
used as an estimate of .

2) In the case of avery high noise, i.e., of a low signal-
to-noise ratio, as we will consider in the simulations in
this paper, we may use

.
The window energy is a signal independent con-

stant. For example, for the Hanning window,
. Thus, we may easily get the estimate of (38).

Which one of the previous methods will be used for the
variance estimation depends on the specific situation.
While the first one is restricted by a small sampling rate for
an accurate estimation, the other is valid for low signal to
noise ratio cases only.

b) A note on the realization: The WD with
samples can be easily obtained from the distribution with
samples as its smoothed version. Let us, for example, suppose
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(a) (b) (c)

Fig. 2. Wigner distribution of the noisy signal: (a) With the constant window lengthN1 = 64, (b) With the constant window lengthN2 = 512, (c)
With the adaptive time-frequency varying window length.

Fig. 3. Time–frequency varying window lengthN
s

(n; �) in Fig. 2(c) as
a function of(n; �) obtained using “two-window” algorithmN = f64512g.
The algorithm has used the small variance distribution from Fig. 2(a), cal-
culated withN

s
(n; �) = N1 = 64, for the entire time–frequency plane,

except the domains where the first two components exist. Since the distribution
for these two components has significant variations along the frequency
axis, producing large bias coefficient, the algorithm has only here used the
lowbiased distribution values from Fig. 2(b) withN

s
(n; �) = N2 = 512.

that the distribution is calculated using the
rectangular window of the length . The distribution with
the Hanning window of the same length can be obtained as

where . Now, using twice narrower
Hanning window width means further smoothing of the values
of . Assuming that the samples of the Hanning
window Fourier transform may be neglected outside the main
lobe, we get

where are samples of the Fourier transform of the
Hanning window within its main lobe

. This procedure may significantly
save the computation time. The previous procedure may be
easily generalized to any set of Wigner distributions where

may be treated as a smoothed form of
.

V. TWO-WINDOW ALGORITHM

Let us consider only two window lengths
such that is small enough so that the variance of distri-
bution is small, and is large so that bias is small (17),
i.e., . If the bias at the points is

very small, i.e., the factor is close to zero, then the
corresponding two confidence intervals will intersect. Thus, for
these points , we will use the distribution
calculated with the smaller window length as a better
choice with respect to the variance. Otherwise, for a large bias,
the confidence intervals do not intersect. This fact indicates
that the algorithm has to use the distribution ,
which is the better choice with respect to the bias, since the
bias is now dominant. Therefore, we may define a very simple
“two-window” algorithm. This algorithm has the following
form:

if true
otherwise

(41)

where true means that
holds. Using only two

distributions, we can expect a significant improvement of
the time–frequency representation. We may expect that this
“black-and-white” approach is very suitable for this kind of
problem since a time–frequency representation is usually either
zero or very highly concentrated, i.e., very fast varying 2-D
function. This very simple algorithm will be demonstrated on
several examples.

Note that the variance can be calculated from
the better estimated as
since if we scale any window along the time axis, say
times, its energy is also scaled times. Variance
is estimated according to the comments in Section IV. In
practical realizations, the distribution , with a
narrower window, can be treated just as a very frequency
domain-smoothed form of . The “two-window”
algorithm may be very efficiently implemented in this way.

VI. EXAMPLES

In the examples, we will present results obtained by the two-
window method for signals with a very low signal-to-noise
ratio (SNR).

1) First, consider a linear FM signal

(42)

within the time interval . The time–frequency
analysis is done using the WD with the Hanning window

and the discretization period . The variance
of the noise was such that [dB].
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(a) (b) (c)

Fig. 4. Wigner distribution of the noisy multicomponet signal. (a) With the constant window lengthN1 = 64. (b) With the constant window length
N2 = 512. (c) With the adaptive time–frequency varying window length.

(a) (b) (c)

Fig. 5. Time–frequency representation of the multicomponentnoisy signal. (a) Wigner distribution of the signal without noise. (b) Wigner distribution of
noisy signal with the constant window lengthN2 = 256. (c) S-method of noisy signal with the adaptive time–frequency varying window length.

We use two window lengths and .
Applying algorithm (41), we get the adaptive distribution as
it is presented in Fig. 1(c), whereas Fig. 1(a) and (b) present
the WD with the constant windows and , respectively.
The improvement is evident. The adaptive algorithm uses the
low-variance distribution everywhere except in the area where
the wider window significantly improves the distribution con-
centration.

2) Consider a sum of three noisy chirp signals:

(43)

The parameters of the algorithm are the same as in the
first example. The WD’s with the constant and adaptive
window lengths, are presented in Fig. 2(a)–(c), respectively.
The adaptive algorithm uses the distribution with ,
i.e., with the low variance for all regions where the bias is
small, including the third signal component. The distribution
with is chosen by the adaptive algorithm only for
the first two signal components. A 3-D plot of the adaptive
time–frequency varying window length is given in Fig. 3.

Note that the signals do not significantly overlap in time;
therefore, the lag-window was sufficient to reduce the cross-
terms in the WD.

3) The following are the zero bias and zero noise cases.

a) If the bias is zero, the adaptive algorithm will always
choose the smaller window length since, according
to (11) and (12), bias for any , and
the confidence intervals intersect (41). For example, let

; then,

, with the variance ,
and the bias is not dependent on. Approximately, this
situation has appeared for the third signal’s component
in Example 2.

b) If there is no noise and the difference between
and is not equal to zero,

then according to (41), the algorithm chooses the
distribution with the larger window length. This choice
results in a better concentration of the distribution.

4) Finally, consider a two-component signal that is a combi-
nation of the linear frequency modulated signal and the signal
with a constant frequency

The WD’s with and window lengths,
as well as the distribution with the adaptive variable window
length, are presented in Fig. 4(a)–(c), respectively. The same
parameters as in the previous examples are used.

The adaptive algorithm gives a very concentrated distribu-
tion with a reduced noise influence. The cross-term effects are
here, of course, present.

VII. GENERALIZATION TO THE

COHEN’S CLASS OF DISTRIBUTIONS

Consider an arbitrary quadratic time–frequency distribution
from the Cohen class [7], [13], [14], [34]

(44)
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where is a kernel in the analog time–frequency do-
main. It is a two-dimensional (2–D) Fourier transform of the
usual ambiguity domain kernel .

The bias of estimate (44) is derived using a Taylor expansion
of and the following facts.

1) For all product kernels, holds
.

2) Kernel is an even function with respect to the
coordinate axis.

3) It satisfies the condition .

Then, we get

(45)

where

The constant term is neglected as in (10).
For example, for the Choi–Williams distribution [5], [7],

when , we get

bias (46)

The mean of the estimation variance in the Cohen class of
distribution is proportional to the kernel energy, [1], [12], [29]

(47)

For the Choi-Williams distribution, we have . There-
fore, the total MSE has the same form with respect to the
parameter as (19) with respect to

(48)

Now, taking only two values for (one very small
such that the variance may be neglected, and the other much
larger that the bias is small but still within a region
where the crossterms are sufficiently suppressed [28]), we may
directly apply the algorithm described by (41) in Section V.

Comments on the Estimation Variance:The above analysis
has been presented for the mean (over frequency) value
of the estimation variance. Here, however, we have a more
complex situation than in the Wigner distribution case. The
estimation variance may be time and frequency dependent.
Since the value of estimation variance at a specific point

is a relevant parameter in the algorithm, instead of the
mean variance value, we will consider this parameter in more
detail. In the case of the reduced interference distributions,
the estimation variance has two parts: one that depends on the
noise only and the other, which is signal and noise dependent
[1], [29]. The noise only dependent part of the estimation
variance is given by [1], [29]

where is the Fourier transform of with respect
to . In the discrete time-lag form, this variance is given by
[1], [29]

It is important to point out that this part of the estimation
variance is time and frequency invariant. Since the kernel en-
ergy is a constant for a given distribution, in order to estimate

, we will need to estimate the noise varianceonly.
This procedure has already been described in Section IV.

The second part of the estimation variance has
the form [1], [29]

Note that contains the time- and frequency-invariant
part obtained by summation for and for any

, as well as and any . This part
of variance, for frequency-modulated signals, is equal to

. It is very interesting to
note that the mean of , over frequency , is also
equal to the same value [1]

These were the reasons why, in the adaptive algorithm, we
have used the mean value of the variance over the frequency
[1], as an optimization-relevant parameter

(49)

where is the energy of
distribution’s kernel. Thus, we came up to a formally the
same expression as (14), and we may directly apply variance
estimation techniques described in Section IV: “Comments on
the algorithm”. Here, however, we want to emphasize, once
more, that the variance beside the time–frequency-
invariant components contains one component that has zero
mean value and is time–frequency dependent. Although the
analysis of this part is very complicated, it has been shown [30]
that this time-frequency-variant part of variance increases the
value of within the region where the time–frequency
distribution of a nonnoisy signal has significant values and,
therefore, decreases value of , where the distribution
of nonnoisy signal assumes values close to zero (since it has
zero mean value). Thus, using the mean value of, given by
(49), we will use lower values for the estimation variance than
the true ones in the regions where the nonnoisy time–frequency
distribution has significant values. It will increase the probabil-
ity that the algorithm takes the parameter value, producing
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a low bias since it will conclude that the variance is already
small. For the cases with the small distribution values, the
mean of estimation variance will be higher than the true one
so that the algorithm will chose the lower variance parameter
value . Fortunately, this is a safe side error, and it will not
degrade the results in thetwo-parameter algorithm.

An interesting distribution, from the point of view of
the algorithm presented in this paper, is the Butterworth
distribution with kernel [33]

(50)

For this distribution, all factors (partial derivatives) in series
(45) expansion are equal to zero up to the term

(51)

Thus, for this distribution .
For , we have the same expression as (19), but for

, we have a much faster decreasing bias that allows us
to use closer values of and for better final results (sense
of the derivations in Section III).

The multicomponent signal case will be illustrated on the
adaptive version of the method [26], [27], [30], [31]. The

-method belongs to the Cohen class of distributions [28]. It
is defined as

STFT STFT (52)

For the multicomponent signals

the method can produce a sum of the WD’s of each of
these signal components separately

Noise (53)

provided that the components of the signal
do not overlap in the time–frequency plane. The short-
time Fourier transform, at the frequency , is
denoted bySTFT in (52). It is defined bySTFT
DFT . An appropriate rectangular window

eliminates (reduces) cross-terms and reduces the noise
influence, as explained in detail in [26], [27], [30], and [31].
The -method with simplified algorithm (41) is applied in
order to produce a time–frequency representation of the signal

(54)

Using the same parameters as in the first example and the
window lengths with the rectangular window

, which includes only two samples around the central
frequency on each side , we get

the distribution presented in Fig. 5(c). The WD of original
nonnoisy signalwith the constant window length is
given in Fig. 5(a), whereas Fig. 5(b) shows the WD of noisy
signal with the same constant window length. The variance
of (41) is estimated by techniques described in Section IV
(Comments on the Algorithm) and (49). From Fig. 5(c), we
may conclude that we get the distribution in accordance with
(53) with a very suppressed noise influence, as expected.

VIII. C ONCLUSION

The algorithm with the varying and adaptive window length
is developed in order to obtain the improved time–frequency
distributions of noisy signals. The algorithm is simple and
uses only the estimate of the distribution and its variance.
The simplified version of the algorithm, called the two-
window algorithm, using only two different values of the
window lengths, is proposed. The numerical and qualitative
efficiency of the proposed simplified algorithm is demonstrated
on the time–frequency representations of monocomponent and
multicomponent signals corrupted by the noise with the very
low SNR.
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