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The Wigner Distribution of Noisy Signals with
Adaptive Time—Frequency Varying Window

LJubia Stankow, Senior Member, IEEEand Vladimir Katkovnik,Member, IEEE

_Abstract—Time—frequency representations using the Wigner time—frequency representations [1], [4], [10], [12], [18], [15],
distribution (WD) may be significantly obscured by the noise in  [22], [24], [25], [29], [30]. It has been concluded that the lag
observations. The analysis performed for the WD of discrete-time window length is one of the most important parameters. It has

noisy signals shows that this time—frequency representation can . .
be optimized by the appropriate choice of the window length. to be chosen by a tradeoff between the variance and bias of

However, the practical value of this analysis is not significant the WD estimate [25].
because the optimization requires knowledge of the bias, which  The aim of this paper is to present an algorithm that

depends on the unknown derivatives of the WD. A simple adap- produces the window length close to the optimal one without

tive algorithm for the efficient time—frequency representation 0 ving the bias since the bias depends on derivatives of the
of noisy signals is developed in this paper. The algorithm uses S -
only the noisy estimate of the WD and the analytical formula Unknown distribution to be estimated.

for the variance of this estimate. The quality of this adaptive =~ The proposed algorithm is based on the idea developed
algor!thm is close to the one that could bg achieved by the in [11], [16], and [17]. The orientation of the algorithms

3'99”tthm with thekoptlma_l W'“ddOW 'enthE’ provided (tjhatl th?t\r’]VD_ presented in [16] and [17] on the instantaneous frequency (IF)
based on the idea that has been developed i our previous work SSimation resulted in a time-varying-only window length that

for the instantaneous frequency (IF) estimation. Here, a direct IS the best for the IF estimation, i.e., for reconstruction of the
addressing to the WD itself, rather than to the instantaneous WD at its peak on the frequency, for a given time instant.
frequency, resulted in a time and frequency varying window Then, this window length is used for all frequencies at this
length and showed that the assumption of small noise and bias is time instant. The algorithm developed in this paper directly

no longer necessary. A simplified version of the algorithm, using “ L .
only two different window lengths, is presented. It is shown that addresses the problem of “denoising” the WD that was itself

the procedure developed for the adaptive window length selection 0btained from the noisy signals. This new algorithm produces
can be generalized for application on multicomponent signals the adaptive window length that is both time and frequency
with any distribution from the Cohen class. Simulations show varying.
f,gitjéhgf ?ﬁ;’esl?prf::_%ﬂ?(;:am; t?ore efficient, even for a very low 15 points determine the difference of the new algorithm
g ’ versus the algorithms studied in [16] and [17]. First, the
adaptive window in the new algorithm is assumed to be
|. INTRODUCTION dependent both on time and frequency. Second, the variance
VARIETY of tools is used for the time—frequency analof the WD itself, instead of the variance of the IF, is used
ysis of nonstationary signals. Many of these tools have this algorithm. The calculation of this variance requires no
a form of energy distributions in the time—frequency plan@ssumption about the smallness of the noise. A theoretical
The Wigner distribution (WD) is one of the most prominen@nalysis of the algorithm parameters is done in this paper as
members of this class. It has been defined by Wigner Well. Furthermore, the new adaptive algorithm appears to be
quantum mechanics and then used first by Ville in signéfficient for the analysis of multicomponent signals when it
analysis. All quadratic time—frequency distributions belongs applied in a combination with the reduced interference dis-
ing to the general Cohen class, including the widely usddbutions. On the whole, the idea of the developed algorithm
spectrogram, may be written as two-dimensionally smoothéiquite universal and flexible and can be adapted to various
forms of the WD. The properties of these distributions havéme—frequency analysis problems. Finally, the algorithm is
been investigated in detail during the last two decades [&]mple in implementation. In particular, a simplified version
[4], [5], [71-[9], [13], [14], [28], [34]. In particular, one of the of the algorithm, based on the WD calculation with only two
topics of intensive study has been the influence of noise on #ifferent (small and large) window lengths, is developed in
this paper.
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method and a generalization to the other distributions frofhus, the variance of the unwindowed, .. (», #) approaches
the Cohen class. infinity, as N — oc. In practice, truncated signals are used in
the WD calculation.
Il. THEORY Let us introduce the symmetric windoww. (k) =
w(k)w(—k) of a finite length N. Then, the WD of the

The WD of a discrete-time naisy signafn) = f(n)+(n) signal truncated by the window(n) (the pseudo WD) is

is defined as [3], [7], [13], [25], [35]

of the form
N/2—1 o
Waaln,0) = 3 a(n+k)a"(n =R (1) w68 = 3 wkiwk)a(n + k" (n—k)es*.
k=—N/2 k=0
with N — co. Note that the constant factor of 2 was used in )

the original definition of (1).

We assume that the signA{n) is deterministic and that the
noise is complex-valued white, i.84n) = vi(n) + jro(n),  E{Wau(n,0; N)} = Wii(n,0) ¢ F\y(20) + o2w?(0)  (10)
with

Calculation of the mean o ,..(n,8; N) gives [25]

B whereF,,(8) = FT[w.(k)] is the Fourier transform (FT) of the
E{v(n)} =0 2) Window w.(k) = w(k)w(—k), and+s denotes a convolution
E{v(n)v*(m)} = o26(n —m) in 6.

where the asterisks denotes a complex conjugate value, an}ﬁve will assume thatw(0) does not depend oWV, as is

&(n) is the Kronecker function. The Gaussian-distributio ue for many 02c>mmonly US?d wi_ndows Wh&‘.f(o) =1
law for 11 (n) and w(n), with E{u(n)ra(n)} = 0 and Then, the terms;, can be omitted in the following analysis

Ef2 — B2 = 52/2, is assumed as well. since only the terms depending a¥ are essential for the
{I,_Ve1t(”)} e} = ou/ window length optimization (formally, we may consider that

W;r(n,0) + o2 is the true value). The first term in (10)
AWop(n,8) = Wop(n,8) — Wip(n,0) (3) shows that decreasing of the lag-window length (increasing
the length of its FT) causes corresponding increase of the WD
bias. Using a Taylor series expansion®t...(n, 8; N) gives
the approximate expression féaH{W,.(n,8; N)} [25]

be an error of estimation dV;¢(n,8) by W,.(n,8). Then,
the bias of the estimate is equal to

E{AW,.(n,0)} = o2 1 [7/2
b ecause Wis(n,0) =5 F(26) = — s Wip(n,0 — w)F(2w) dw
_ 2 10?Wss(n, 0
E{Www(”v 9)} - Wff(n7 9) to,. (4) = Wff(n’ 9) + § ggg )mQ'

This bias is constant for afl», #). It means that the WD of the
noise-free signal is superimposed on a pedestal whose hei-E;
is 02 [18]. Therefore, it does not play a significant role in 1 /7
time—frequency analysis of the signal. m2=o- a
The variance of the WD is defined by "

— E{Woo(n,0)YE{W} (n,6)}. (5) biag(n, 0; N) = ¢ By(n, 0)m. (11)

¢ amplitude moment of the window (k) is defined by
W Fy(w) dw.

According to (3), the bias is obtained in the form

It has two components?, = 0%, + o7,,, where the first one where, according to the previous disscusion, the tem?(0)
a)%l, depends on both the signal and noise, and the secagtmitted, and

5 . .
one s, depends on the noise only [25]. For the considered W +(n, 6; N)

white complex-valued Gaussian noise, the variance of (1) is B¢(n,0) = 5 (12)
obtained as [1], [25], [30] 90
NJ2—1 For a nonrectangular window, the variangg, = o7, +
5 . .
0,1201/ =02 Z If(n+ k)| + |f(n — k)2 © o2, should be written in a more general form than (6)
k=—N/2 N/2—1
oy, = Noy. o, =0y Y W)W (=R f(n+ k) +|f(n = k)]
For the FM signal h=—N/2
N/2-1
F(n) = A(n) exp(jg(n)) () op,=0p > w(k)yw(=k). (13)
k=—N/2

with a slow-varying real-valued amplitudgf(n + k)|? =
A%(n), we get For the FM signal with a slowly varying amplitude

o2 = No? (2A2(n) + 012,). (8) o2 = E,o° (2A2(n) + 03) (14)

rr



STANKOVIC AND KATKOVNIK: WIGNER DISTRIBUTION OF NOISY SIGNALS

where

N/2-1

> wkyw(=k)P

k=—N/2

Eu

is an energy of the window, (k) = w(k)w(—k).
For the Hanning windoww. (%), we have

my = 2(x/N)? and E, =3N/8. (15)

1101

According to the presented analysis, we can conclude that
the random error of the WD estimation can be represented in
the form

B AsIC IDEA OF ADAPTIVE WINDOW LENGTH SELECTION

AWae(n, 8;N) = Wop(n,0; N) —biagn,0; N) — W;(n, 6)

where E{AW,.(n,8; N)} = 0, and E{AW2,(n,0; N)} =
o2 (N). Here,W;;(n,6) includes constant?2.

T

Now, we may write the inequality

These values may be easily calculated for any other window

type [19].

[Wez(n, 8; N)—biagn, 8; N)—W;i(n,0)| < ko (V) (22)

The optimal window length is obtained by minimizing the

mean squared error (MSE) defined by

¢*(n,0; N) = biag (n,0;N) +o2,. (16)

Assuming thatw, (k) is the Hanning window angf(n) is the
FM signal with a slow-varying amplitude (7), we get

BJ% (n,0)r* 3

2 SN = 209 42 2
e“(n,0;N) = 16N + gNUV(QA (n)+o2). (17)

The optimal window lengthV,,, follows from the equation

de?(n,8; N)

aN Y

that gives

.| 2B3%(n,0)n*
Nope = ¢ ! :
302(2A%(n) + 02)

The optimal window length depends & (n, ), meaning that

(18)

which holds with probabilityP(«) = 1 — «, and & is the
(1 — «/2)th quantile of the standard Gaussian distribution.
Precisely speaking, the random errddi¥ is a quadratic
function of the Gaussian noise i.e., it has a non-Gaussian
distribution. However, it can be shown that 8 — oc,
the Gaussian distribution is a good approximation for the
distribution of WD estimation errors. Thus, we can apply the
quantile of the Gaussian distribution in (Z2).

Let us assume that for song

|biagn, 8; N)| < Ak, (N) (23)
holds. Then, (22), for that particuldy, can be strengthened
to the form

[Wez(n,8) — Wip(n,0; N)| < (k4 Ar)o.(N).  (24)
We wish to make clear the idea behind assumption (23). First,
it determines a proportion between the bias and the standard
deviation in the window length selection. Seconll; is a

arameter of this proportion to be chosen. A few approaches
ould be used here.

a) The simplest choicAx = 1 assumes the equality of the
random error and the bias, as we did in the IF estimation
in [17].

Ak = v(n,08, Nopy) = 1/2 assumes a proportion be-
tween the bias and the standard deviation corresponding
to that which holds for the optimal window length
minimizing the MSE (21). This value will be a good
intuitive choice forAx in the simplified “two-window”
algorithm that is going to be presented.

Finding Ax through an optimal estimation of the un-
known N, the last approach is considered in the sequel
of this section.

In order to derive the algorithm, we have to define a finite
(20) set of the window length values for which the WD will
is a ratio of the bias to standard deviation of the WD estimattc)a(.3 calculgted. .The widest length; is determined by the
) computational time we may allow. For the last lendfh, we
It is easy to show that
may assume any reasonably small value, for example= 8
or 16. In between these two values, a finite number of window
lengths has to be assumed. Let us introduce a dyadi s#t

descending window lengthd’, ¢ N

it is time—frequency varying. Formula (18) is very interesting
for a theoretical analysis, but it is not useful for practica
applications becausé;(n,#) is the second derivative of
W;s(n,8) oné. Itis definitely unknown in advance. Our aim
is to design an adaptive algorithm that produces the value of
N(n,8) close to the optimal on#/,,; at any given poin{n, 6)
without knowledge ofi¥;s(n. 8) and its derivatives.

The algorithm will be defined on the basis of the analysis
that follows.

The MSE (16) can be represented in the form
c)

A(n,0;N) = o2 [1 +~%(n,0; N)| (19)

where

v(n,0; N) = biagn, ; N)/0ze

y(n,8; Nopi) = 1/2 (21)
for the given formulae of the bias and variance (17).

Let us emphasize this quite interesting poitthe optimal B B B
window length/V.,;, the ratio of the bias to standard deviation N={N, [ No=No1/2, s =1,2,3,.... J}. (25)
is a constant. It does not depend on the WD or any OtherlNote that the Gaussianity assumption fail” is not crucial for the
parameter of the problem analysis that follows.
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A simplicity and efficiency of the WD calculation for From the monotonicity property of functions in (30), we can
N, € N, using the standard radix-2 FFT algorithms, is one @onclude that fop < 0, the bias is much smaller compared
the best reasons in favor of selectitgas a dyadic set. with the variance, whereas fer:> 0, the bias is much larger

Now, we are going to derive the algorithm for determinatiothan the variance. Since the bias is small and the variance is
of the adaptive window length close to the optimél,:(n, 6), large for allp <« 0, we haveW;;(n,8; N(p)) € D(p), and
using Wy(n,0; N;) as the estimate oW ;(n,6) and the therefore,D(p) N D(p + 1) # 0. Contrary to this case, for
variance of this estimate only. We assume from the beginniali p > 0, we have an inverse picture. The variance is small,
that the noise variance? and the amplitudei(n) of (7) are and the bias is large; thereforB(p) N D(p + 1) = 0 for any
known. given Akx.

Let us consider confidence intervals for (24). They play From the definition ofV,. and from the monotonicity of
a key role in the adaptive algorithm. Denote the upper awdriance and bias in (30), it follows that,+ = N(0) = Nept,
lower bounds of these interval’'s confidenbe = [L;, U] as if and only if the intervaleD(0) and D(1) have at least a point
Us and L, in common, and the interval®(1) and D(2) do not have

Ly = Wa(n, 8; Ny) — (5 + Ar)ope (V) a point in commonThus, the i_ntersection_ of three intervals
(26) D(0), D(1), and D(2) only will be considered. It can be

Us = Wae(n, 0 Ns) + (r + Ar)oea (Ns) seen that for the positive bias, the intersection/x{0) and
where W,.(n,6; N,) is an estimate of¥;;(n,6), using the D(1) and the nonintersection db(1) and D(2) will occur,
window lengthN = N, ando,.(N,) is its variance. Consider provided that

these confidence intervals for the successive values oé., min{U/(0)} > max{L(1)}
the successive window lengths. - (31)
The algorithm is based on the following statement. max{U(1)} < min{L(2)}.
Let us assume that (22) holds with the probabiitye) = Minimization and maximization in (31) are produced with
1 — a ~ 1 and that the optimal window length belongs to theespect to the random values of the estimiéfg, (n, 8; V),
setN, Nope € N. which determine a middle point of the confidence intervals
DetermineN,+ as a window length corresponding to theD(p).
largest s = sT (s = 1,2,...,J) when two successive Let us, for example, considei/(1). The value of
confidence intervals still intersect, i.e., W,.(n,0; N(p), according to (22), is within the inter-
D, N D, 0, Vs=12 . . s o7y Val Wau(n, 0;N(1)) € [Wff(n,H) + biagn, 8, N(1)) —
"7 CT) o, (N(1)). Wyy(n.6) + biasin. 6N (1) + k. (N()]
is still satisfied Consequently, the upper bounti(1) of the confidence
Then, there exists the value afi in (26) such thatD,+ N interval D(1), according to (29), takes a value from the
Dyiyy #0and Dyt 4 N Dy 4o = D WhenNg+ = Ny interval [Wyg(n,0) + biagn, 8, N(1)) + Aro..(N(1)),
Proof: It is clear that because of the assumption thaV,;(n,8) + biagn,8, N(1)) + (2k + Ar)og(N(1))].
Nopt € N, any IV, can be represented as The maximal possible value of/(1) is, therefore, given
N(p) = 2_1’]\70pt by InaX{U(l)} = Wff(nve) + blainvevN(l)) + (2Ii + .
(28) Akr)o.(N(1)). In the same way, we get other bound limits
p=...,-2-10,1,2,... required by (31), thus giving
wherep = 0 corresponds to the optimal window lengtfy,,:. biagn, 8, N(0)) + Aro.s (N (0))
From here, we start to use two different indices for the window o o
lengths: _ > biagn, 0, N(1)) — Ako.(N(1)) 32)
—s in the form NN,, which denotes the indexing starting ~ 0iasn, 8, N(1)) + (2r + Ar)owe (N (1))
from the largest toward the narrowest window length; < biagn, 8, N(2)) — 2k + Ar)o.(N(2)).
—p in the form N (p), where the indexing starts fromV According to (30), it follows from (32) that
window length (wherp = 0).
Confidence intervals (26), as functionsmfare defined by % + Ak > 2 — Ar271/? 33)
D(p) = [wa(nv 97N(p)) - (’i + A’i)o—ww(N(p)) 2+ (2/‘6 + AH)Q*UQ < 8— (2/‘6 + AH)/Q
Woaa(n, 0, N(p)) + (5 + Ar)owa (N (p))] - (29) The above relation gives the interval favx
where Ax > 0 is to be found.
The bias and variance for ady(p), according to (17), (21), 08787 < A < 4.9706 — 2. (34)
and (28), may be rewritten as For example, forx = 2, i.e., the probabilityP(x) ~ 0.95,
ore(N(p)) = 2710/20”(]\701“) 0 we obtain
biagn, 6; N(p)) = 2 Vo, (Nopt). 0.8787 < Ak < 0.9706. (35)

In the last expression, we assumed, without loss of generalityequality (34) shows that\x > 0 exists if & < 2.046. It
that the bias is positive. Note again that,,, is an (n,8) completes the proof of the statement and gives the inequality
dependent parameter. for the possible values akk. O
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fe) Frequency

(b) ()

Fig. 1. Wigner distribution of the noisy signal. (a) With the constant window length= 64. (b) With the constant window lengthVa = 512. (c)
With the adaptive time—frequency varying window length.

A search of the optimal window length over the finite set 3) The WD with the adaptive window length, for a point
N simplifies the optimization. However, it inevitably leads to (n,0), is
a suboptimal solution due to the discretization effects since, in +
general, the optimal window lengtN,; does not belong to Wea(n,0) = Woe (n,0; Nyt (n, 0)). (37)
the dyadi_c selN. It_ always rv_es_ults in worse values of the MSE, comments on the Algorithm.
b_ut tha_t is the price of efficient _calculat|on scheme_s and thea) The standard deviation
simplicity of the presented algorithm. Fortunately, this loss of
accuracy is not significant in many cases because the MSE (19) Oan(Ns) = \/Ew(NS)JE (242 4 o2) (38)
varies slowly around the stationary point, i.e., in the neighbor-
hood of N = N, Note that the other window length schemegepends on the amplitude of the signdl the standard
may also be assumed. We may go in two directions. One isdeviation of the noise,,, and the energy of the window,,.
increase the number of discrete window lengths betwden 1) Provided thathe sampling period is smalthe following
and V,. If we may computationally allow a large number ofstimates of4 and o2 can be used:
window lengths, i.e., small difference betwedh and N1, N
thepreticaIIyNsH =N, -1, then_ a similar approach and al- A2 452 = 1 Z |x(n)|? (39)
gorithm can be used. The only difference in the case when two N e~
successive window lengths are very close to each other is that ) _
the intersection of the confidence interva); with all previ- where the sum is calculated over &l observations, andv

ous intervalsD,, D, 1,. .., D, should be used as an indicat0|js assumed to be large. The variance can be estimated by
when the optimal window length is achieved [11]. However, | {media|z.(n) — z.(n —1)| :n=2,...,N)}

we will go in the other direction. Our aim is to reduce the num- v = 0.6745

ber of considered window lengths betwedh and V; while ) {mediarf|z;(n) —z;(n — 1)| :n=2,...,N)}
keeping the high quality of the presented adaptive approach. i = 0.6745

This is possible due to a specific form of time—frequency 62 = (f}gr +f33¢)/2

representation. This topic is discussed in Section V. (40)

IV. ALGORITHM L
where z,.(n) and z;(n) are the real and imaginary part of

Let us initially assume that the amplitudieand the standard z(n), respectively.
deviation? of the noise are known. Define a dyadic 3t The averagey . |#(n) — z(n — 1)]2/N could also be
for example,N = {512,256, 128,64,32,16}. The following | ;sed as an estirr?a_té of.
steps are then generated for each value of the time-inatant 2) In the case of aery high noisgi.e., of a low signal-

and the frequency. to-noise ratio, as we will consider in the simulations in
1) The WD is calculated for all of NV, € N. Thus, we this paper, we may use2(242 + 02) = (A2 + 02)? =
obtain a set of distributions [, l(n)?/NT.
Woe(n,8,N,), N,eN. The window energyE,,(N;) is a signal independent con-

' . stant. For example, for the Hanning windou,,(N,) =
2) The optimal window lengthV, . (n,6) for every (n,6) 3n,/8. Thus, we may easily get the estimate of (38).
is determined by the largest from s =1,2,..., when  \which one of the previous methods will be used for the

(27) is satisfied, i.e., variances2,,(N,) estimation depends on the specific situation.
[Wea(n, 0; No) — Wea(n, 0; Noy1)| While the firg,t one is_restricted by a small sampling rate for
< (5 + AR)(Tan(No) + Tan(Nog1)) (36) ﬁgi:;:cr:;?;e;,ésesgn;ﬁ;ﬁn, the other is valid for low signal to
still holds. b) A note on the realizatianThe WD with N, = N,/2

This sT is the smallest of those for which the samples can be easily obtained from the distribution with
segmentsD, and D..,, have a point in common. samples as its smoothed version. Let us, for example, suppose
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Fig. 2. Wigner distribution of the noisy signal: (a) With the constant window lemgith= 64, (b) With the constant window length’, = 512, (c)
With the adaptive time-frequency varying window length.

very small, i.e., the factaB(n, 8; N;) is close to zero, then the
e corresponding two confidence intervals will intersect. Thus, for
— these pointgn, #), we will use the distributioV,,,.(n, 6; N1)
= calculated with the smaller window lengtly; as a better
= choice with respect to the variance. Otherwise, for a large bias,

= the confidence intervals do not intersect. This fact indicates
] . . . .

= that the algorithm has to use the distributign,,.(n, 8; N2),
o which is the better choice with respect to the bias, since the

Froequency

bias is now dominant. Therefore, we may define a very simple

Fig. 3. Time-frequency varying window length 4 (»,#) in Fig. 2(c) as “two-window” algorithm. This algorithm has the following
a function of(n, ¢) obtained using tivo-window algorithm N = {64512}. f

The algorithm has used the small variance distribution from Fig. 2(a), caprm'

culated withN_ (n,#) = N; = 64, for the entire time—frequency plane, W.. (n.8: N if ® = true

except the domains where the first two components exist. Since the distribution Wi (n,0) = { v (1) : 1), . (41)
for these two components has significant variations along the frequency Wm(n,Q,Ng), otherwise

axis, producing large bias coefficient, the algorithm has only here used the

lowbiased distribution values from Fig. 2(b) wifi, y (n,8) = N, = 512.  where® = true means thaliV,...(n, 8; N1) — W, (n, 6; N3)|
< (K 4 AK)oL(N2)(1 + /N1 /N») holds. Using only two
that the distributioniV,., p(n, 6; N,) is calculated using the distriputions, we can expect a significant improvement of
rectangular window of the lengtiV;. The distribution with Ehe t|me—frquer’1’cy representatlon. W_e may expe_ct t_hat this
the Hanning window of the same length can be obtained asblack-anql-whne_ approach is very smtable_ fo_r this kind .Of
. problem smcehg trl]rlne—frequency (rjepresentatu?n is usuglly 2tr|13er
47 zero or very highly concentrated, i.e., very fast varying 2-
Wew,n(n, 05 N,) = Z aIkIW-m,P<”’ 6~ kﬁs5 NS) function. This very simple algorithm will be demonstrated on
several examples.
where {ag,a;} = {0.5,0.25}. Now, using twice narrower Note that the variance.(/N1) can be calculated from
Hanning window width means further smoothing of the valudbe better estimated...(N2) aso2,(Ny) = o2, (N2)N1 /N2
of W, p(n, 8; N,). Assuming that the samples of the Hanningince if we scale any window along the time axis, say
window Fourier transform may be neglected outside the mdimes, its energy,, is also scaled times. Variances2,(N;)
lobe, we get is estimated according to the comments in Section IV. In
3 practical realizations, the distributioW,.,.(n, 8; N1), with a
W tr(n, 0 Nyp1) = Z o Waa,p <n’9 _ k4—7r;NS> narrower window, can be treated just as a very frequency
= N, domain-smoothed form dWV,,(n, 8; N2). The “two-window”

. algorithm may be very efficiently implemented in this way.
where a);; are samples of the Fourier transform of the

Hanning window within its main lobe{ag, a1, a2,a3} =

{0.5,0.42,0.25,0.08}. This procedure may significantly VI. EXAMPLES

save the computation time. The previous procedure may bdn the examples, we will present results obtained by the two-
easily generalized to any set of Wigner distributions whergindow method for signals with a very low signal-to-noise
W, 1r(n,0; Noy1) may be treated as a smoothed form ofatio (SNR).

Wew m(n,0; N,). 1) First, consider a linear FM signal

E=—1

V. TWoO-WINDOW ALGORITHM w(n) = A 1O0CT00 4y () (42)

Let us consider only two window lengtiN = {/N{, N>} within the time interval0 < »7 < 1. The time—frequency
such thatV; is small enough so that the variance of distrianalysis is done using the WD with the Hanning window
bution is small, andV; is large so that bias is small (17),w.(k) and the discretization peridl = 1/2048. The variance
i.e., N € N,. If the bias at the pointén, 8; N,), s = 1,2 is  of the noisev(n) was such tha0log(A/o,) = —5 [dB].
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[e) Frequency
(a) (b) (©

Fig. 4. Wigner distribution of the noisy multicomponet signal. (a) With the constant window leNgth= 64. (b) With the constant window length
Ny = 512. (c) With the adaptive time—frequency varying window length.

N
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fe) Frequency

() (b) (c)

Fig. 5. Time—frequency representation of the multicomponentnoisy signal. (a) Wigner distribution of the signal without noise. (b) Wignerodisifibu
noisy signal with the constant window lengith, = 256. (c) S-method of noisy signal with the adaptive time—frequency varying window length.

We use two window lengthsV; = 64 and N, = 512. no) + Noise, with the variances?, = ¢2(A% + No2),
Applying algorithm (41), we get the adaptive distribution as and the bias is not dependent 8h Approximately, this
it is presented in Fig. 1(c), whereas Fig. 1(a) and (b) present situation has appeared for the third signal’'s component
the WD with the constant windowd’; and N, respectively. in Example 2.
The improvement is evident. The adaptive algorithm uses theb) If there is no noise and the difference between
low-variance distribution everywhere except in the area where ~ W,..(n,8; N1) and W,..(n,8; N2) is not equal to zero,

the wider window significantly improves the distribution con- then according to (41), the algorithm chooses the
centration. distribution with the larger window length. This choice
2) Consider a sum of three noisy chirp signals: results in a better concentration of the distribution.

4) Finally, consider a two-component signal that is a combi-
nation of the linear frequency modulated signal and the signal
+ Ae—20(nT—0.65)* ,j750(nT+0.75) with a constant frequency

+ 3.5A¢—22500(nT—0.968 75)° ,j1000nT | u(n). (43)

z(n) = AeleOO(nT)Z6—26(nT—0.25)2

z(n) :chl?)GO(nT—O.l)z _’_ACjQSOOnT_’_V(n)'

The parameters of the algorithm are the same as in the

first example. The WD’s with the constant and adaptivéhe WD’s with N, = 64 and N; = 512 window lengths,
window lengths, are presented in Fig. 2(a)—(c), respectiveRg well as the distribution with the adaptive variable window
The adaptive algorithm uses the distribution with = 64, length, are presented in Fig. 4(a)—(c), respectively. The same
i.e., with the low variance for all regions where the bias jgarameters as in the previous examples are used.

small, including the third signal component. The distribution The adaptive algorithm gives a very concentrated distribu-
with N, = 512 is chosen by the adaptive algorithm only fotion with a reduced noise influence. The cross-term effects are
the first two signal components. A 3-D plot of the adaptivBere, of course, present.

time—frequency varying window length is given in Fig. 3.

Note that the signals do not significantly overlap in time; VL.
therefore, the lag-window was sufficient to reduce the cross-
terms in the WD.

3) The following are the zero bias and zero noise cases. Consider an arbitrary quadratic time—frequency distribution

a) If the bias is zero, the adaptive algorithm will alwayérom the Cohen class [7], [13], [14], [34]

choose the smaller window length; since, according o (£, w: 1)

to (11) and (12), bigs,0; N) = 0 for any », and T T e
the confidence intervals intersect (41). For example, let — i/ / Woo(t — u,w — 0)(u,v) dudv  (44)
z(n) = AS(n—no)+v(n); then,W,,(n,8) = A28(n— 27 J o0 J o0

GENERALIZATION TO THE
COHEN' s CLASS OF DISTRIBUTIONS
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wherell(t,w) is a kernel in the analog time—frequency dowherey(t,7) is the Fourier transform of(©, 7) with respect
main. It is a two-dimensional (2—D) Fourier transform of théo ©. In the discrete time-lag form, this variance is given by

usual ambiguity domain kerne{©, 7). [1], [29]
The bias of estimate (44) is derived using a Taylor expansion oo oo
of W,...(t — u,w — v) and the following facts. on, (0 =op > Je(m, k).
1) For all product kernels,c(®,7) = ¢(70) holds m==00 k=—00
A7) /04 ). = IATO) /0O ) = 0. It is important to point out that this part of the estimation
2) Kernel¢(7©) is an even function with respect to theyariance is time and frequency invariant. Since the kernel en-
coordinate axis. ergy is a constant for a given distribution, in order to estimate
3) It satisfies the condition(0,0) = ¢(0) = 1. o2, (n,8), we will need to estimate the noise variandgonly.
Then, we get This procedure has already been described in Section IV.
4 The second part of the estimation varia n,#) has
E{Ce(t,w; 1D} = Wyp(t,w) + MMSW) +--- the form [1], [29] "R 0)

It20w?
45) o2, (n,0)

where i i i i
2 *
‘ 1 [ [ =ap Y. > D D elma k)t (ma, k)
Mitzwz) = 8—/ / t2w2ﬂ(t,w) dt dw mi=—oc ki=—ocoMa=—00 ko =—00
s
1 84;(05 T_)Oo X [f(n+my+ k) f*(n +m2+ k2)
:ZW oo X(S(ml—mg—kl-i-kg)
(,©)=(0,0). +*(n+mi — k) f(n+me— ka)
The constant terna2 is neglected as in (10). X 8(my —ma + k1 — k2)]6—2j0(k1—k2).
For example, for the Choi—-Williams distribution [5], [7],
whenc(©,7) = exp(—720?/a?), we get Note thato3,,(n, #) contains the time- and frequency-invariant
_ TW s o (t . 1 part obtained by summation fom; = mo and for any
biag(t, w; or) = #&;w) E L= (46) ki, ko, as well ask; = ko, and anymi, m.. This part

o . . of variance, for frequency-modulated signals, is equal to
The mean of the estimation variance in the Cohen C|aSSé)0f2A2 5 $2°0 " Jo(m, k). It is very interesting to

distribution is proportional to the kernel energy, [1], [12], [29](105[’e thatmtiéoomean er)gcy(n’e), over frequencyb, is also

N 2i/°° /Oo 160, 7|2 dr do. (a7) equal to the same value [1]
T J—oo J—00 oo o0
For the Choi-Williams distribution, we have?  ~ «. There- 7%, (n,0) = 20,47 Z Z [e(m, ).
fore, the total MSE has the same form with respect to the m=meok=roo
parameterx as (19) with respect tav These were the reasons why, in the adaptive algorithm, we
) (t,w) have used the mean value of the variance over the frequency
e*(twya) = i TV (48) [1], as an optimization-relevant parameter

Now, taking only two values for € {a1, az} (one very small = o3,(n,60) = 02,(n,60) + 0%, (n,0) = E o, (24% +07) (49)
such that the variance may be neglected, and the other much oo o 5 .
largera,; < « that the bias is small but still within a regionWhere B = 32, o, 2 x_ o l¢(m, k)| is the energy of

where the crossterms are sufficiently suppressed [28]), we nfli§tribution’s kernel. Thus, we came up to a formally the
directly apply the algorithm described by (41) in Section v, S&Me expression as (14), and we may directly apply variance

Comments on the Estimation Varianc&he above analysis estimation techniques described in Section 1V: “Comments on

has been presented for the mean (over frequeficyalue the algorithm”. He_re, however, we _Want to_emphasize, once
of the estimation variance. Here, however, we have a mdh®re: that the varlancej%l,(n,.e) beside the time—frequency-

complex situation than in the Wigner distribution case. THBV&riant components contains one component that has zero
estimation variance may be time and frequency dependehf@n value and is time—frequency dependent. Although the
Since the value of estimation variance at a specific poifi@lysis of this partis very complicated, it has been shown [30]

(t,w) is a relevant parameter in the algorithm, instead of tfiat this time-frequency-variant part of variance increases the

y e . ,
mean variance value, we will consider this parameter in moY@ue ofoy, (n,6) within the region where the time—frequency

detail. In the case of the reduced interference distributiofiStribution of a nonnoisy signal has significant values and,
the estimation variance has two parts: one that depends on fifefore, decreases valueddf, (n, 6), where the distribution
noise only and the other, which is signal and noise depend@h10NNOISy signal assumes values close to zero (since it has

[1], [29]. The noise only dependent part of the estimatioft'® Mean value). Thus, using the mean valuezgf given by
variance is given by [1], [29] (49), we will use lower values for the estimation variance than

o oo the true ones in the regions where the nonnoisy time—frequency
o2 (tw) = gj/ / l(t, 7)|? dt dr distribution has significant values. It will increase the probabil-
—ooJ —o0 ity that the algorithm takes the parameter vadue producing
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a low bias since it will conclude that the variance is alreadye distribution presented in Fig. 5(c). The WD of original
small. For the cases with the small distribution values, th@nnoisy signalvith the constant window lengtlv, = 256 is
mean of estimation variance will be higher than the true omgven in Fig. 5(a), whereas Fig. 5(b) shows the WD of noisy
so that the algorithm will chose the lower variance parametsignal with the same constant window length. The variance
value «v;. Fortunately, this is a safe side error, and it will nobf (41) is estimated by techniques described in Section IV
degrade the results in thevo-parameter algorithm (Comments on the Algorithm) and (49). From Fig. 5(c), we

An interesting distribution, from the point of view ofmay conclude that we get the distribution in accordance with
the algorithm presented in this paper, is the Butterwor(s3) with a very suppressed noise influence, as expected.
distribution with kernel [33]

1 VIII.

(50) C ONCLUSION

1 (10/a)?M” The algorithm with the varying and adaptive window length

For this distribution, all factors (partial derivatives) in seriet$ developed in order to obtain the improved time—frequency

(45) expansion are equal to zero up to the term distributions of noisy signals. The algorithm is simple and
uses only the estimate of the distribution and its variance.
oM (O, 7) 1

- The simplified version of the algorithm, called the two-
0O2M9r2M o AM window algorithm, using only two different values of the
Thus, for this distributione?(n, 0; ) = B(n,0)/a*™ 4+ Va.

window lengths, is proposed. The numerical and qualitative
For M = 1, we have the same expression as (19), but fgﬁiciency of the proposed simplified algorithm is demonstrated

M > 1, we have a much faster decreasing bias that allows 9/ the time—frequency representations of monocomponent and
to use closer values of, andas for better final results (senseMulticomponent signals corrupted by the noise with the very

(0,7)

(51)

of the derivations in Section IlI).
The multicomponent signal case will be illustrated on the
adaptive version of thé method [26], [27], [30], [31]. The
S-method belongs to the Cohen class of distributions [28]. If1
is defined as
Lg
See(n, k) = > P()STFIn, k+4)STFT(n, k —i). (52)

t=—Lgy

(2]

For the multicomponent signals 3]

2(n) =S fnl(n) + v(n) [‘”

m=1

5
the S method can produce a sum of the WD’s of each ot[ )
these signal components separately ]

(7]
(8]

M
Sex(n,0) = > Wy, 1. (n,6) + Noise

m=1

(53)

provided that the componentg,,(n) of the signal z(n)

do not overlap in the time—frequency plane. The short{9]
time Fourier transform, at the frequendy = =k/N, is
denoted bySTFTn, k) in (52). It is defined bySTFT(n, k) =
DFTy{w(k)xz(n + k)}. An appropriate rectangular window
P(i) eliminates (reduces) cross-terms and reduces the noj
influence, as explained in detail in [26], [27], [30], and [31].
The S-method with simplified algorithm (41) is applied in 1
order to produce a time—frequency representation of the singaZI]

[10]

z(n) :ch1360(nT—0.1)2 +Ae—lG(n,T—13/32)2+j375(nT+2)2 [13]

 AeIZBO0T | Ao =16(nT—5/8)"+3T5(nT)* )y

(54) [14]

Using the same parameters as in the first example and thg
window lengthsN = {32256} with the rectangular window
P(i), which includes only two samples around the centrd®
frequency 6 wk/N on each side(Ly 2), we get

low

SNR.
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