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A Virtual Instrument for Time—Frequency Analysis
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Abstract—A virtual instrument for time—frequency analysis is
presented. Its realization is based on an order recursive approach
to the time—frequency signal analysis. Starting from the short
time Fourier transform and using the S-method, a distribution
having the auto-terms concentrated as high as in the Wigner
distribution, without cross-terms, may be obtained. The same
relation is used in a recursive manner to produce higher order
time—frequency representations without cross-terms. Thus, the

introduced. By the SM these goals may be achieved in a
numerically very efficient way. The SM realization is based
on a direct application of the STFT. By adding one more stage
to the already existing software or hardware systems for the
STFT realization one can significantly improve the properties
of TF representation.

Recently, virtual instrumentation started to play an im-

introduction of this new virtual instrument for time—frequency
analysis may be of help to the scientists and practitioners in signal
analysis. Application of the instrument is demonstrated on several
simulated and real data examples.

portant role in the signal analysis and signal measurements,
including various instruments for TF analysis [28], [29]. “The
trend today is for computers to serve as the engine for
instrumentation. Virtual instruments leverage off the open
architecture of industry standard computers to provide the
processing, memory and display capacities; [28].
Here we propose a virtual instrument (VI) for TF analysis
based on the SM realization. The VI contains the most impor-
|. INTRODUCTION tant TF distributions: the SPEC and the WD, as special cases.
IME-FREQUENCY (TF) analysis is one of very im-In many applications it can combine good properties of both
T portant research and practical application areas in tbé these distributions, while avoiding their drawbacks. The
signal analysis [1]. The oldest, simplest and most commorgyesented VI can achieve concentration as high as in the WD,
used tool for TF analysis is the spectrogram (SPEC) viat without cross-terms between nonoverlaping components
the short time Fourier transform (STFT). Implementationia the TF plane. According to the above facts we have found
(hardware or software) of this transform are already widethat the introduction of this new, simple, qualitatively and
present in practice [2]-[11]. Although very simple and comumerically very efficient instrument may be of help to the
venient for applications, the STFT has some serious drasecientists and practitioners in signal analysis.
backs. The most important one is its low concentration in In the first part of the paper a review of the STFT and
the TF plane due to the contradictory conditions for higthe WD is given. The SM, as a theoretical basis for the VI,
resolution in the time and frequency direction. In order ts presented next. Algorithm for the VI, with its description,
improve signal’'s TF representation, various quadratic distperformance analysis, and examples, is presented in the last
butions have been introduced [12]-[20]. The most importapart of the paper.
member of this class is the Wigner distribution (WD). How-
ever, the WD itself has a serious drawback. Namely, in the
case of multicomponent signals it produces very emphatic
cross-terms that can completely mask the auto-terms aRdsport-Time Fourier Transform
make this distribution useless for analysis [7], [21]-[23]. . ,
This is why many other quadratic distributions have been The STFT is defined by
introduced (Choi—Williams, Zao—Atlas—Marks, Born-Jordan, STFT(, w) = /

Index Terms—Instantaneous frequency and amplitude esti-
mation, short-time Fourier transform, time—frequency analysis,
virtual instrument, Winger distribution.

REVIEW OF THE BASIC TF REPRESENTATIONS

o

ot + Tw(r)e " dr (1)

Butterworth, Zhang—Sato, etc.). Common goal to all of these
distributions is to reduce cross-terms and other interferences, . , . . .
at the same time satisfying as many desired properties 4aeréw(r) is a window function. Sliding this window along

possible. However, the numerical realization of the reducd Signaluz(t) we get its frequency contents within a con-
interference distributions is more complex than the realizatigiflered time interval determined by the window width. Obvi-
of the WD [10], [13], [24], [26], [27]. Also, the cross-term ously, the Wl_ndow form (_espe_cnally its width) pla)_/s_a crucial
reduction inherently leads to the auto-terms degradation [179!€ In the signal analysis using the STFT. As it is known,
In order to preserve the auto-terms quality as in the Wi1€ product of the window width in time domain and the

while reducing the cross-terms, the S-method (SM) has beiglth of its Fourier transform (or its main lobe) is con-
stant for a given window function. For example, feft) =
Manuscript received July 12, 1996; revised August 17, 1999. The work ekp (jwot) + 6(¢) we get STFT¢t, w) = exp (jwot)W(w —
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(t or w) we ultimately worsen the resolution in the other
direction (v or t). Thus, the width ofv(7) has to be chosen by
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an appropriate compromise. The SPEC, as an energetic versio%)

. . . STFT(tw) SPEC(t,w) -
of the STFT, does not satisfy the marginal properties that state PE=r5®)
that the integral over frequency of an energetic distribution ) @ N A o
P(t, w) should be equal t(ja:(t)|2 (signal power), and the /mm_ B> ] Gor oo
integral over time tgX (w)|2 (spectral density), [6], [15]. In STFT(ta) _
order to overcome these drawbacks, researchers look for more e Wotw  E P(©)=1
appropriate tools for TF analysis. One of them is the WD. o> e g e
E, 5 £
B. Wigner Distribution :% %
L))
Wigner distribution in its pseudo form is defined by W@er Tow
ge'e] T T o SM(t,o)
WD(t, w) = / we(r)e(t+2)a (b= D)eierar @) o
oo =
T ®
where the equivalent window is usually written as Yplz Wit Wor o >
we(r) = w(t/2)w(—7/2). For the previous example

Fig. 1. lllustration of the SM calculation including two special cases: WD
we get WO(t, w) = w?(0)6(t) + We(w — wo)+ cross-terms. angd spectrogram. g P

Time resolution, in this case, is not dependent on the window
form, while the frequency resolution may be arbitrary

high if we use awide window w, (7). This way, one may of the WD’s of individual signal components, avoiding cross-

achieve arbitrary high resolutions in both directions, for tht%rms It will be referred to as the S-method. and defined as
considered signal. The WD is the only one from the Coh TO] ' ’
m

class that may produce a completely concentrated auto-t

in the case of a linear frequency modulated (FM) signal 1 [

z(t) = Aexp(jat?/2), when WO, w) = A2W.(w — at) SM(t, w) =~ / P(0)STFT(t, w + 6)

[15], [17], [22]. These two examples demonstrate the WD >

superiority over the STFT. The WD satisfies many additional -STFT'(t, w — 0) df. )

desired properties, including the marginal ones [6]. )
An annoying trait of the WD is the presence of cross termd'® SM produces the pseudo WD and the SPEC With) =

when the multicomponent signals are analyzed [7], [15], [21}, @nd P(¢) = w6(f), respectively, as its special cases. The

[22], [30]. A multicomponent signal is introduced as width of window P(f) denoted byWp (P(¢) = 0 for
M o |#] > Wp/2) should be wide enough to enable complete
x(t) = Z Tm(t) = Z Ap(t)e? o), (3) integration over the auto terms but, in order to avoid the cross
m=1 m=1 terms, narrower than the distance between two auto-terms

The STFT ofx(¢) is equal to the sum of the STFT's of(Fig' 1). Then, according to (4) we get

individual components. This very appealing property of the Moo
STFT is lost in the quadratic and higher order distributions. SM(t, w) = Z / We ()T, (t + f)
For (3) the WD has the form ’ o ’

m=1""
wot, )= 3 [ (i) (8= L)oo .

m=1

Window P(6#) may be also defined as signal dependent, when
. ’ ZZ oo the only condition to get cross-terms free distribution is that

-z (t— §)eﬂwdr+ el / the components do not overlap in the TF plane. One such
m#En  J 0 realization is presented in [31]. Further details about the

cwe(T)Tm (t + %)x; (t — %)e‘j‘” dr. (4) SM, including applications to the two-dimensional signals and

) _ o affine distributions, may be found in [10], [17], [22], [23],
Besides the auto-terms, the WD contains a significant numl?%] [31], [33].

of cross-terms, forn # n. They appear due to the quadratic . L
nature of the WD. Sometimes they can be so emphatic toThe discrete form of the SM is given by [10], [27], [31]

M m

completely cover the auto-terms. L.
SM(n, &) = Ti P()STET(n, k +1)
lll. VIRTUAL INSTRUMENT W =Ly
-STFT*(n, k — %)
A. Theoretical Background for the Instrument Now/2
Realization of the VI will be based on the distribution that STFT(n, k) = >~ @(n+dw(i)e 2~/ e

can, in the case of multicomponent signals, produce a sum i=—Nu/2+1



1088 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 48, NO. 6, DECEMBER 1999

important properties, the higher order time-varying spectra

have been defined [23]. The most interesting for practical
. . - realizations are the versions of these distributions that can be
‘ Window selection: width and type' reduced to the TF plane. Here, we will present the L-WD
' [22], [23]
STFT calculationl
_ * oL TN\.L T
Input number of terms Ld LWD . (t, w) = / * (t - ﬁ)x (t + ﬁ)wL(T)
and distribution order L -
i - e 9T dr,
4{ do i=1,log (2L) . o
z For L = 1 it reduces to the WD. The realization of the
cross-terms free L-WD may be efficiently done in the discrete
Calculate SM(n.k) for each k, eq.(6) domain using the recursive SM formula (6), Fig. 2,
2 i
l Display graphics LWD2r(n, k) = T LWDZ (n, k) + 2 Z

w i=1
-LWDL(n, k —i—i)LWDL(n, k— L) . (7N

Fig. 2. Simplified algorithm for the virtual instrument realization.

This is a very convenient form since the same blocks,
connected in cascade, may provide a simple and efficient
system. Modifications for the realization of the polynomial

Wigner-Ville distributions are straightforward [32].

For the rectangular window’ (i) we get

2
SM(n. k) = [|STFT(n, k)
v B. Instrument Implementation and Outlook

Ly . . .
L o Based on the above analysis, we have realized a VI using
+2Re{;STFT(n, kit )STFT (n, & L)H the STFT and relations (6), (7). A simplified algorithm for

(6) this instrument realization is shown in Fig. 2. Lag window
w(i) parameters (its length and shape) should be determined

whereT is the sampling interval, ariél, = N,,T is the width according to the analysis of the STFT. After we select these

of w(r). The oversampling is not necessary when the SM parameters, the improvement of the distribution concentration

used because the aliasing components are removed in the s ¥Bbe_ achle\_/ed tE]y :jr?ctre_gs;_ng the(zjér}umber of cti?i”tmg GTI
way as are the cross-terms. Also, there is no need for anal 9 - By Increasing the distribution orderwe may additionally

signal calculation since the cross-terms between negative rove the distribution concentration in the case of nonlinear

" ; signals.

positive frequency components are removed in the same Wa)ﬁ'heginstrument panel is presented in Fig. 3. On the left
as are the other cross-terms [22]. For the SM realization we : , . i e ;
have to implement the STFT first. This should be done in o gnd side, along with the signal in time domain, we have its
of the wellpknown wavs. based e.ither on the EET routines rI1:Er<")urier transform and TF distribution. On the right hand side

. yS, . . Hlere are six blocks that enable one to vary the most common
recursive approaches. Windaw(i) form, as well as its length, resentation parameters, or to control the operations.
should be selected according to the widely known analyé?s !

In the first block the lag window type and width are defined.
of the STFT. After we get the STFT (a_md SPEC) we ha}v§ignal form and parameters are defined by the second block.
to “correct” the obtained values, according to (6), by addi

. i ? n§ignal may be taken as: 1) a function of timjeand 2) data
terms2Re{ P(1)STFT(n, k+1)STFT (n, k—4)} to the SPEC ¢ 5 e (this option is convenient for real data analysis).
values, Fig. 2. Theoretically, if we want to get the auto-termey piock defines the number of terms in (6). The distribution
with the same shape as in the WD, the number of addgfer can be increased by using the fourth block.
terms {q) should be large enough to include all additions oher plocks, together with the common MS Windows
inside an auto-term. However, we may significantly improvg,eny options, provide some additional possibilities for data,

the TF representation with respect to SPEC (without knowingaphics and program control and manipulation. Instrument is
the auto-terms width) if we take only a few of these terms. fiyplemented in MATLAB 5.

large number of terms usually does not produce any further

improvement of the auto-terms concentration; it may onl )

cause the occurrence of cross-terms as well as unneces$ary€rformance Analysis

accumulation of the noise [25]. The performance analysis will be done by considering
In order to improve distribution concentration in the casamplitude and instantaneous frequency (IF) estimation in the

of nonlinear FM signals, as well as to achieve some otheases of both monocomponent and multicomponent signals.
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whereG,, = f1/2 w2(t)t2dt/(fi{§2 w, (t)t?dt)? is a con-

D\-"u[uul Instiument tor Time-Frequency Signal An 71/2 e

‘Be EQR Windows Helo  InpuFie Options. stant depending on the window form, while the variations of

015 A?%(n) are small withinw,(n). For the Hanning window, (n)
0.1 e we get(,, = 28.1135. The variance of input white noise is
o denoted byo2.

0 500 1000 Discrete frequency grid produces the quantization error with
Frequency varianceo?, = (Aw)?/12 = n?/(1213). It may be reduced
by additional interpolation along the frequency axis, or by
\ using methods such as the one presented in [29]. The IF is
stibution order then calculated a&(n) = n(k,.(n) + 8(n))/T.,, where the
\ =C] spectral displacement bifi(n) for the Hanning window is
8(n) = 1.5(Q1 — Q_1)/[Q—1(1+Q1/Q0) + Qo +Q1], where

Qj = WD(”? km +J)

For a multicomponent signal, besides the cross-terms that
degrade the WD, the variance of estimation of the IF of the
signal’'s mth component increases as

@

G / [4A% (n)N,T2].

For the SM, when it produces the sum of the WD of individual
components, it is equal to (9) with? = A2 | and it is lower
than in the WD. In the case of the SPEC a significant increase
of the variances? appears as a function af (¢), if the IF is

M
2 2 2 2
[CJvirtual Instiument for Time-Frequency Signal k O—wm =%y [2 Z Al (71) + 9y
File Edt ¥ nd > i=1
not constant over the considered window length [29]. Thus, it
will not be discussed here.

0.15

0.1

0.05
The bias of the IF does not exist in any of these distributions

\ Distiibution order . . . . .

e CRlLns O if the IF may be considered constant or linear within the
considered window. If the IF is nonlinear, then higher order
distributions achieve its local linearization [22], [23].

For theamplitude estimatiomnalysis we have to know the
variance of the WD with respect to the input noise. It is given
by [25], [35]

() oty p(n, k) = 403(24%(n) + 03) B, Ty /Ny, (10)

Fig. 3. Time—frequency representation of a sonar signal: (a) spectrogram and i
(b) S-method. Relevant parameters are shown in the figure. where E, = 22‘:1 w4(n). The squared amplitude of a
component is estimated using the time-marginal property
The estimation of amplitude and IF using TF representations Ne
have the following sources of errors: A%(n) = Z WD(n, k)Aw/27. (11)
1) input noise, including A/D quantization noise; n=1
2) b|a§ Qf a r.epresentatlon due to the input noise and tiMgsis symmation is usually performed over a few values of the
variations; WD around the frequency where the maximum is detected,

3) leakage effects (on the amp!itude) and quantizgti%ql(n) — K < k < km(n) + K, since the energy is located
effects (on the IF) due to the discrete frequency grid; iy a narrow region around that point. The leakage effects,
4) mutual components influence in the case of the WD aRghich may adversely affect the precision, can be reduced using

multicomponent signals. special window types, such as flat-top windows, [29]. In the
The instantaneous frequendg estimated as case of the Hanning window and signal with slow-varying

amplitude we may efficiently uséf = 1, along with the

) o ) Iready found displacement in frequenty:), so as to correct

Fo(n) = a ax {WD(n, k a ;
(n) = arg {m};xx{ (n )}} valuesW D(n, k,,) andW D(n, k,,+1) and to avoid leakage.
o(n) =km(n)Aw = 7k, (n) /Ty . (8) The variance of estimated amplitude (10), (11) is
2 _ 2 2 2 2
The variance of the estimated {Hn») is given by, [34] o4 = (2K +1)0,,(24%(n) + 0, ) B [Ny, (12)
o2 Bias of the amplitude estimation is [35]
02 = —2 (24%(n) + 02)Gy/(N,T3) 9)

© o 4AY(n) Bi = (2K +1)02/(2N,,). (13)
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Fig. 4. Time—frequency representation of a simulated multicomponent signal: (a) spectrogram, (b) Wigner distribution, (c) S-method, artd dojefourt
L-Wigner distribution realized using the S-method. Relevant parameters are shown in the figure.

In the case of a multicomponent signal the variance is iorder of other variances by using the interpolation method with
creased. For TF nonoverlaping componemd(n) in (10) displacement bir(n) [29]. Note that the maximal frequency
is replaced byzm L A7, In the case of the SM the vari-is w,, = N7 /(2T,,) = 1287, meaning that the relative error
ance is lower sinced? shouId be replaced byi?,, for the is very low. The above analysis is performed for the WD
corresponding component. and the SM withL, = 6. Note that in the SM we could
We will use an example to illustrate the instrument perfouse twice wider sampling interval. All these results have been
mances with respect to the amplitude and the IF estimatiatatistically checked.
Consider an analytic part of the linear FM signelt) = When the input noise is only the A/D quantization error
exp (—t?/4) cos (157t? +90xt) with additive noise/(¢). The then, assuming 12 bit conversion, we get = 2-24/3 for
signal is sampled aI’ = 1/256, using the Hanning window complex signals, obtained as analytic versions of the real ones.
of the widthT,, = 2 with N,, = 512. The variance of discrete Therefore, the precision is here limited by the leakage effects
noiser(nT) is o, = 0.1. Using K = 1, from (12) we obtain for the amplitude estimation and by the quantization error for
o2 = 4.4165 x 102, for the maximal amplitudel = 1. The the IF estimation. Ways to control and reduce these effects are
bias, according to (13), i$.4 = 2.9297 x 107°. Therefore, already described [29].
the error of A%(n) estimation is within&=(B4 + 20.4) = Consider now a two-component signak(t) =
1.33 x 102 with the probability of95% for the Gaussian exp (—t2/4 + j(157t% + 707t))(1 + exp (—j507t)) + v(¢).
distribution of error. Variance of the IF is? = 6.8947x10~5. The variance of the WD’s is twice higher than in the previous
The frequency axis quantization error which would have hawses. The cross-terms in the WD are twice higher than the
the variances? = 0.20562 had been reduced bellow theproduct of amplitudes of signal components. The SM with
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The SPEC of this signal is shown in Fig. 4(a). One may

S L e S . observe that all distribution components are spread in the
15 o =y ERE TF plane and that cross terms do not exist. In the WD,
1 e [EENEENE Fig. 4(b), all components are highly concentrated, but the
05 Signal cross terms are very emphatic (even completely masking the
o 0 200 a00 Sfj‘n'j,w_,tm component in the middle). The SM, Fig. 4(c), produces high
Frequency No of sanples  [[TRPETI distribution concentration, without cross terms. Concentration
may be additionally improved by increasing the distribution
los order. The fourth order distributior.(= 2, Ly, = 8) is shown

in Fig. 4(d).

Motor Vibration Signal: The motor vibration signal mea-
sured at 2000 [rev/min] is considered. Its SPEC and SM
with Ly = 3 are shown in Fig. 5. Analysis of the IF's
and amplitudes is very important in this kind of signals in

o
N =
Time
-
—

Jiee order to detect engine knocking combustions, whose frequent
- occurrence can destroy the motor [36].
(@) Numerical Efficiency:The SM is studied in [10]. For the
parameters as in the last example, the ratios of the numbers
C]Virtual nstiument for Time Frequency Sianal Analysis ver. 1.0 of multiplications and additions in the WD and the SM are

e e - 5120/1152 and 2752/768, respectively. Of course, the SM
15 Width requires more operations than the SPEC. These ratios are here

0; — — 768/1152 and 384/768.
0 100 200 300 o W&
Frequency No of samples V. CONCLUSION
‘ Convolulion window width A virtual instrument for TF analysis, based on the SM, is
05 (7 presented. It is efficient for the analysis of multicomponent
‘ Distiibution order signals, since it produces a sum of the WD’s of each individual
0 = ‘ B Ea signal component. The mutual component influence on the
‘ \ l i Craplics estimation of the amplitude and the IF is avoided in this way.
el Realization may be computationally less consuming than the
ol WD realization, since there is no need either for the over-
QLA sampling or for the analytic signal calculation. Performance
analysis, along with the illustrative examples, convincingly
(b) demonstrate the improvements.

Fig. 5. Time—frequency representation of a motor vibration signal: (a) spec-
trogram and (b) S-method. Relevant parameters are shown in the figure. ACKNOWLEDGMENT

The authors are thankful to the anonymous reviewers for
Ly = 6 produces the same variances of the amplitude atiekir very inspiring and important suggestions that helped
IF estimation (detecting positions of local maxima) as in th® improve the paper. They also thank Prof. J. ahBe,
one-component case. Ruhr University Bochum, and ARAL Research, Bochum, for
providing the data for motor signal example.

IV. EXAMPLES REEERENCES
Sqnar Signal ExampIeTF apaly3|s of a sonar signal’t), [1] Proc. IEEE,vol. 84, Sept. 1996.
and its delayed versian(t—T) is shown in Fig. 3. The SPEC, [2] M. H. Ackroyd, “Short-time spectra and time—frequency energy distri-
with normalized time axis, is presented in Fig. 3(a), while the rl\)AUtic(;)nl;J"ACOLcljs:{ Sgci:Amervng 50, pp. é229—1231, f1970. .
. : . - . G. Amin and K. D. Feng, “Short-time Fourier transform using cas-
S_M 1S presented In Flg' 3(b) Th_e parameters are shown in t cade filter structures[EEE Trans. Circuits Systyol. 42, pp. 631-641,
Figure. We see that by increasidg, from 0 (SPEC) to the Oct. 1995.

value of L, = 6, while keeping all other parameters invariant, [4] M. G. Amin, “A new approach to recursive Fourier transforn®foc.
iqnifi Vi he distributi . d IEEE, vol. 75, pp. 1357-1358, 1987.
we significantly improve the distribution concentration, ands; k. p.’ Feng, M. G. Amin, and S. Tyler, “Analysis of the recursive

avoid cross-terms. multiple window STFT’s and spectrograms,” ifroc. IEEE IS-TFTSA,
i . Philadelphia, PA, Oct. 1994, pp. 72-75.
Nume_ncal Exam_ple. . . [6] F. Hlawatsch and G. F. Boudreaux-Bartels, “Linear and quadratic
Consider a multicomponent signal: time—frequency signal representationsEE Signal Process. Magpp.
21-67, Apr. 1992. ]
__j24me? —j16 cos (27t)— j24m(t+1.5)2 — j64mt [7] S. Kadambe and G. F. Boudreaux-Bartels, “A comparison of the
a:(t) =c +e (2mt) ( ) existence of ‘cross terms’ in the Wigner distribution and the squared
+ 916 cos (2mt)— 524w (t+1.5)% +j64mt magnitude of the wavelet transform and short-time Fourier transform,”

IEEE Trans. Signal Processingpl. 40, pp. 2498-2517, Oct. 1992.



1092

(8]
(9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]
[29]

(30]

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 48, NO. 6, DECEMBER 1999

K. J. R. Liu, “Novel parallel architecture for short time Fourier trans-
form,” IEEE Trans. Circuits Systyol. 40, pp. 786—789, Dec. 1993.

R. S. Orr, “The order of computation of finite discrete Gabor transform,[31]
IEEE Trans. Signal Processingpl. 41, pp. 122-130, Jan. 1993.

L. StankovE, “A method for time-frequency signal analysiSEEE
Trans. Signal Processingiol. 42, pp. 225-229, Jan. 1994, [32]
J. Jeong and W. J. Williams, “Mechanism of the cross-terms in spec-
trograms,”|EEE Trans. Signal Processingol. 40, pp. 2608—-2613, Oct.
1992.

L. E. Atlas, Y. Zhao, and R. J. Marks, Il, “The use of cone shapg33]
kernels for generalized time-frequency representations of nonstationary
signals,” IEEE Trans. Acoust., Speech, Signal Processimd, 38, pp.
1084-1091, 1990. [34]
B. Boashash and J. B. Black, “An efficient real time implementation
of the Wigner-Ville distribution,”IEEE Trans. Acoust., Speech, Signal
Processingyol. ASSP-35, pp. 1611-1618, Nov. 1987.

H. Choi and W. Williams, “Improved time-frequency representatiori35]
of multicomponent signals using exponential kernel&SEE Trans.
Acoust., Speech, Signal Processiugl. 37, pp. 862-871, June 1989.

L. Cohen, “Time-frequency distributions—A reviewlroc. IEEE, vol.

77, pp. 941-981, July 1989. [36]
T. A. C. M. Claasen and W. F. G. Mecklenbrauker, “The Wigner
distribution: A tool for time frequency signal analysis, Parts I, I, and
III,” Philips J. Res.yol. 35, pp. 3-6, 1980.

L. StankovE, “The auto-term representation by the reduced interference
distributions: The procedure for a kernel desigtEEE Trans. Signal
Processing,vol. 44, June 1996.

of a signal—Part 1: Fundamental$toc. IEEE,vol. 80, pp. 519-538,
Apr. 1992.

S. Stankow’and L. Stankow, “An architecture for the realization of a
system for time-frequency signal analysi$£EE Trans. Circuits Syst.,
vol. 44, pp. 600-604, July 1997.

B. Boashash and B. Risti “Polynomial time-frequency and time-
varying higher order spectra: Application to the analysis of multicom-
ponent FM signals and to the treatment of multiplicative noi§ighal
Process.vol. 67, pp. 1-23, 1998.

P. Goncalves and R. G. Baraniuk, “Pseudo affine Wigner distributions:
definition and kernel formulation,JEEE Trans. Signal Processingol.

46, pp. 1505-1516, June 1998.

V. Katkovnik and L. Stankow, “Instantaneous frequency estimation
using the Wigner distribution with varying and data-driven window
length,” IEEE Trans. Signal Processingpl. 46, pp. 2315-2325, Sept.
1998.

L. StankovE and S. Stankoei” “On the Wigner distribution of the
discrete-time noisy signals with application to the study of quantization
effects,” IEEE Trans. Signal Processingpl. 42, pp. 1863-1867, July
1994.

L.StankovE and J. F. Bhme, “Time-frequency analysis of multiple
resonances in combustion engine signa&gnal Processaccepted for
publication.

B. Zhang and S. Sato, “A time-frequency distribution of Cohen’s claggor Djurovi ¢ (S'99) was born in Montenegro in 1971. He received the B.S.
with a compound kernel and its application to speech signal processingtd M.S. degrees in electrical engineering from the University of Montenegro

IEEE Trans. Signal Processingpl. 42, pp. 54—64, Jan. 1994.

in 1994 and 1996, respectively. He is currently pursuing the Ph.D. degree in

D. Wu and J. M. Morris, “Time-frequency representations using radi&llectrical engineering in the area of time-frequency signal analysis.

butterworth kernel,” inProc. |IEEE IS-TFTSAPhiladelphia, PA, Oct.
1994, pp. 60-63.

His current research interest include application of virtual instruments,
time—frequency analysis-based methods for signal estimation and filtering,

Y. M. Zhu, F. Peyrin, and R. Goutte, “Transformation de Wigner—Villefractional Fourier transform applications, image processing, and digital wa-
description d’ un nouvel outil de traitement du signal et des imagesérmarking.

Ann. Telecommyol. 42, no. 3/4, pp. 105-117, 1987.

P. Flandrin, “Some features of time-frequency representation of multi-
component signals,” ifProc. IEEE Int. Conf. Acoustics, Speech, Signal
Processing, 1984, pp. 41B.4.1.-4.1.

L. Stankove, “A method for improved energy concentration in thg
time-frequency analysis of multicomponent signals using the L-Wign
distribution,” IEEE Trans. Signal Processingpl. 43, pp. 1262-1269,
May 1995.
, “Multitime definition of the Wigner higher order distribution: L-
Wigner distribution,”IEEE Signal Processing Lettpl. 1, pp. 106-109,
July 1994.

D. Chester, “Discrete Wigner implementations,” Rroc. Int. Symp.
Circuits Syst..San Jose, CA, May 1986, pp. 38-41.

L. Stankovt, V. Ivanovi, and Z. Petrow, “Unified noise analysis in i
the spectrogram and Wigner distributio’Ahn. Telecom.yol. 51, pp.
585-594, Nov./Dec. 1996.

Since 1982, he has

LJubisa Stankovi (M'91-SM’'96) was born in
Montenegro on June 1, 1960. He received the B.S.
degree in electrical engineering from the University
of Montenegro, in 1982, with the honor “best stu-
dent at the University,” the M.S. degree in electrical
engineering in 1984 from the University of Bel-
grade, and the Ph.D. degree in electrical engineering
in 1988 from the University of Montenegro. As a
Fulbright grantee, he spent the 1984-1985 academic
: year at the Worcester Polytechnic Institute, Worces-
; ter, MA.

been on the faculty at the University of Montenegro,

M. Sun, C. C. Li, L. N. Sekhar, and R. J. Sclabassi, “Efficientvhere he is a Full Professor. From 1997 to 1999, he was on leave at the

computation of the discrete pseudo Wigner distributidEEE Trans. Signal Theory Group, Ruhr University Bochum, supported by the Alexander
Acoust., Speech, Signal Processingl, 37, pp. 1735-1741, Nov. 1989. von Humboldt foundation. He was also active in politics as Vice-President of

F. Peyrin and R. Prost, “A unified definition for the discrete-timethe Republic of Montenegro from 1989 to 1991, and then the Leader of the
discrete frequency, and discrete time/frequency Wigner distributiond)emocratic (Anti-War) Opposition in Montenegro from 1991 to 1993. His
IEEE Trans. Acoust., Speech, Signal Processimg, 34, pp. 858-867, current interests are in signal processing and electromagnetic field theory. He
Aug. 1986. published about 150 technical papers, 45 of them in the leading international
Instrumentation Reference and Catalogiational Instruments, 1996. journals. He has published several textbooks in Signal Processing (in Serbo-
G. Andria, M. Savino, and A. Trotta, “Application of the Wigner—Ville Croatian) and the monograph “Time—frequency signal analysis” (in English).
distribution to measurement of transient signal§EE Trans. Instrum. Dr. Stankovt is a member of the National Academy of Science and Art of
Meas.,vol. 43, pp. 187-193, Apr. 1994. Montenegro. In 1997, he was awarded the highest state award of the Republic
B. Boashash, “Estimating and interpreting the instantaneous frequerafyMontenegro for scientific achievements.



