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A Virtual Instrument for Time–Frequency Analysis
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Abstract—A virtual instrument for time–frequency analysis is
presented. Its realization is based on an order recursive approach
to the time–frequency signal analysis. Starting from the short
time Fourier transform and using the S-method, a distribution
having the auto-terms concentrated as high as in the Wigner
distribution, without cross-terms, may be obtained. The same
relation is used in a recursive manner to produce higher order
time–frequency representations without cross-terms. Thus, the
introduction of this new virtual instrument for time–frequency
analysis may be of help to the scientists and practitioners in signal
analysis. Application of the instrument is demonstrated on several
simulated and real data examples.

Index Terms—Instantaneous frequency and amplitude esti-
mation, short-time Fourier transform, time–frequency analysis,
virtual instrument, Winger distribution.

I. INTRODUCTION

T IME–FREQUENCY (TF) analysis is one of very im-
portant research and practical application areas in the

signal analysis [1]. The oldest, simplest and most commonly
used tool for TF analysis is the spectrogram (SPEC) via
the short time Fourier transform (STFT). Implementations
(hardware or software) of this transform are already widely
present in practice [2]–[11]. Although very simple and con-
venient for applications, the STFT has some serious draw-
backs. The most important one is its low concentration in
the TF plane due to the contradictory conditions for high
resolution in the time and frequency direction. In order to
improve signal’s TF representation, various quadratic distri-
butions have been introduced [12]–[20]. The most important
member of this class is the Wigner distribution (WD). How-
ever, the WD itself has a serious drawback. Namely, in the
case of multicomponent signals it produces very emphatic
cross-terms that can completely mask the auto-terms and
make this distribution useless for analysis [7], [21]–[23].
This is why many other quadratic distributions have been
introduced (Choi–Williams, Zao–Atlas–Marks, Born–Jordan,
Butterworth, Zhang–Sato, etc.). Common goal to all of these
distributions is to reduce cross-terms and other interferences,
at the same time satisfying as many desired properties as
possible. However, the numerical realization of the reduced
interference distributions is more complex than the realization
of the WD [10], [13], [24], [26], [27]. Also, the cross-term
reduction inherently leads to the auto-terms degradation [17].
In order to preserve the auto-terms quality as in the WD,
while reducing the cross-terms, the S-method (SM) has been
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introduced. By the SM these goals may be achieved in a
numerically very efficient way. The SM realization is based
on a direct application of the STFT. By adding one more stage
to the already existing software or hardware systems for the
STFT realization one can significantly improve the properties
of TF representation.

Recently, virtual instrumentation started to play an im-
portant role in the signal analysis and signal measurements,
including various instruments for TF analysis [28], [29]. “The
trend today is for computers to serve as the engine for
instrumentation. Virtual instruments leverage off the open
architecture of industry standard computers to provide the
processing, memory and display capacities;” [28].

Here we propose a virtual instrument (VI) for TF analysis
based on the SM realization. The VI contains the most impor-
tant TF distributions: the SPEC and the WD, as special cases.
In many applications it can combine good properties of both
of these distributions, while avoiding their drawbacks. The
presented VI can achieve concentration as high as in the WD,
but without cross-terms between nonoverlaping components
in the TF plane. According to the above facts we have found
that the introduction of this new, simple, qualitatively and
numerically very efficient instrument may be of help to the
scientists and practitioners in signal analysis.

In the first part of the paper a review of the STFT and
the WD is given. The SM, as a theoretical basis for the VI,
is presented next. Algorithm for the VI, with its description,
performance analysis, and examples, is presented in the last
part of the paper.

II. REVIEW OF THE BASIC TF REPRESENTATIONS

A. Short-Time Fourier Transform

The STFT is defined by

STFT (1)

where is a window function. Sliding this window along
the signal we get its frequency contents within a con-
sidered time interval determined by the window width. Obvi-
ously, the window form (especially its width) plays a crucial
role in the signal analysis using the STFT. As it is known,
the product of the window width in time domain and the
width of its Fourier transform (or its main lobe) is con-
stant for a given window function. For example, for

we get STFT
. Improving resolution in one direction

( or ) we ultimately worsen the resolution in the other
direction ( or ). Thus, the width of has to be chosen by
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an appropriate compromise. The SPEC, as an energetic version
of the STFT, does not satisfy the marginal properties that state
that the integral over frequency of an energetic distribution

should be equal to (signal power), and the
integral over time to (spectral density), [6], [15]. In
order to overcome these drawbacks, researchers look for more
appropriate tools for TF analysis. One of them is the WD.

B. Wigner Distribution

Wigner distribution in its pseudo form is defined by

WD (2)

where the equivalent window is usually written as
. For the previous example

we get WD cross-terms.
Time resolution, in this case, is not dependent on the window
form, while the frequency resolution may be arbitrary
high if we use awide window . This way, one may
achieve arbitrary high resolutions in both directions, for the
considered signal. The WD is the only one from the Cohen
class that may produce a completely concentrated auto-term
in the case of a linear frequency modulated (FM) signal

, when WD
[15], [17], [22]. These two examples demonstrate the WD
superiority over the STFT. The WD satisfies many additional
desired properties, including the marginal ones [6].

An annoying trait of the WD is the presence of cross terms
when the multicomponent signals are analyzed [7], [15], [21],
[22], [30]. A multicomponent signal is introduced as

(3)

The STFT of is equal to the sum of the STFT’s of
individual components. This very appealing property of the
STFT is lost in the quadratic and higher order distributions.
For (3) the WD has the form

WD

(4)

Besides the auto-terms, the WD contains a significant number
of cross-terms, for . They appear due to the quadratic
nature of the WD. Sometimes they can be so emphatic to
completely cover the auto-terms.

III. V IRTUAL INSTRUMENT

A. Theoretical Background for the Instrument

Realization of the VI will be based on the distribution that
can, in the case of multicomponent signals, produce a sum

Fig. 1. Illustration of the SM calculation including two special cases: WD
and spectrogram.

of the WD’s of individual signal components, avoiding cross-
terms. It will be referred to as the S-method, and defined as
[10]

SM STFT

STFT (5)

The SM produces the pseudo WD and the SPEC with
and , respectively, as its special cases. The

width of window denoted by ( for
) should be wide enough to enable complete

integration over the auto terms but, in order to avoid the cross
terms, narrower than the distance between two auto-terms
(Fig. 1). Then, according to (4) we get

SM

Window may be also defined as signal dependent, when
the only condition to get cross-terms free distribution is that
the components do not overlap in the TF plane. One such
realization is presented in [31]. Further details about the
SM, including applications to the two-dimensional signals and
affine distributions, may be found in [10], [17], [22], [23],
[25], [31], [33].

The discrete form of the SM is given by [10], [27], [31]

SM STFT

STFT

STFT
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Fig. 2. Simplified algorithm for the virtual instrument realization.

For the rectangular window we get

SM STFT

Re STFT STFT

(6)

where is the sampling interval, and is the width
of . The oversampling is not necessary when the SM is
used because the aliasing components are removed in the same
way as are the cross-terms. Also, there is no need for analytic
signal calculation since the cross-terms between negative and
positive frequency components are removed in the same way
as are the other cross-terms [22]. For the SM realization we
have to implement the STFT first. This should be done in one
of the well known ways, based either on the FFT routines or
recursive approaches. Window form, as well as its length,
should be selected according to the widely known analysis
of the STFT. After we get the STFT (and SPEC) we have
to “correct” the obtained values, according to (6), by adding
terms Re STFT STFT to the SPEC
values, Fig. 2. Theoretically, if we want to get the auto-terms
with the same shape as in the WD, the number of added
terms ( ) should be large enough to include all additions
inside an auto-term. However, we may significantly improve
the TF representation with respect to SPEC (without knowing
the auto-terms width) if we take only a few of these terms. A
large number of terms usually does not produce any further
improvement of the auto-terms concentration; it may only
cause the occurrence of cross-terms as well as unnecessary
accumulation of the noise [25].

In order to improve distribution concentration in the case
of nonlinear FM signals, as well as to achieve some other

important properties, the higher order time-varying spectra
have been defined [23]. The most interesting for practical
realizations are the versions of these distributions that can be
reduced to the TF plane. Here, we will present the L-WD
[22], [23]

LWD

For it reduces to the WD. The realization of the
cross-terms free L-WD may be efficiently done in the discrete
domain using the recursive SM formula (6), Fig. 2,

LWD LWD

LWD LWD (7)

This is a very convenient form since the same blocks,
connected in cascade, may provide a simple and efficient
system. Modifications for the realization of the polynomial
Wigner–Ville distributions are straightforward [32].

B. Instrument Implementation and Outlook

Based on the above analysis, we have realized a VI using
the STFT and relations (6), (7). A simplified algorithm for
this instrument realization is shown in Fig. 2. Lag window

parameters (its length and shape) should be determined
according to the analysis of the STFT. After we select these
parameters, the improvement of the distribution concentration
may be achieved by increasing the number of terms () in
(6). By increasing the distribution orderwe may additionally
improve the distribution concentration in the case of nonlinear
FM signals.

The instrument panel is presented in Fig. 3. On the left
hand side, along with the signal in time domain, we have its
Fourier transform and TF distribution. On the right hand side
there are six blocks that enable one to vary the most common
presentation parameters, or to control the operations.

In the first block the lag window type and width are defined.
Signal form and parameters are defined by the second block.
Signal may be taken as: 1) a function of time, and 2) data
from a file (this option is convenient for real data analysis).
Next block defines the number of terms in (6). The distribution
order can be increased by using the fourth block.

Other blocks, together with the common MS Windows
menu options, provide some additional possibilities for data,
graphics and program control and manipulation. Instrument is
implemented in MATLAB 5.

C. Performance Analysis

The performance analysis will be done by considering
amplitude and instantaneous frequency (IF) estimation in the
cases of both monocomponent and multicomponent signals.



DJUROVIĆ AND STANKOVIĆ: VIRTUAL INSTRUMENT FOR TIME–FREQUENCY ANALYSIS 1089

(a)

(b)

Fig. 3. Time–frequency representation of a sonar signal: (a) spectrogram and
(b) S-method. Relevant parameters are shown in the figure.

The estimation of amplitude and IF using TF representations
have the following sources of errors:

1) input noise, including A/D quantization noise;
2) bias of a representation due to the input noise and time-

variations;
3) leakage effects (on the amplitude) and quantization

effects (on the IF) due to the discrete frequency grid;
4) mutual components influence in the case of the WD and

multicomponent signals.

The instantaneous frequencyis estimated as

(8)

The variance of the estimated IF is given by, [34]

(9)

where is a con-
stant depending on the window form, while the variations of

are small within . For the Hanning window
we get The variance of input white noise is
denoted by .

Discrete frequency grid produces the quantization error with
variance . It may be reduced
by additional interpolation along the frequency axis, or by
using methods such as the one presented in [29]. The IF is
then calculated as , where the
spectral displacement bin for the Hanning window is

, where
.

For a multicomponent signal, besides the cross-terms that
degrade the WD, the variance of estimation of the IF of the
signal’s th component increases as

For the SM, when it produces the sum of the WD of individual
components, it is equal to (9) with and it is lower
than in the WD. In the case of the SPEC a significant increase
of the variance appears as a function of if the IF is
not constant over the considered window length [29]. Thus, it
will not be discussed here.

The bias of the IF does not exist in any of these distributions
if the IF may be considered constant or linear within the
considered window. If the IF is nonlinear, then higher order
distributions achieve its local linearization [22], [23].

For theamplitude estimationanalysis we have to know the
variance of the WD with respect to the input noise. It is given
by [25], [35]

(10)

where . The squared amplitude of a
component is estimated using the time-marginal property

(11)

This summation is usually performed over a few values of the
WD around the frequency where the maximum is detected,

, since the energy is located
in a narrow region around that point. The leakage effects,
which may adversely affect the precision, can be reduced using
special window types, such as flat-top windows, [29]. In the
case of the Hanning window and signal with slow-varying
amplitude we may efficiently use , along with the
already found displacement in frequency , so as to correct
values and and to avoid leakage.

The variance of estimated amplitude (10), (11) is

(12)

Bias of the amplitude estimation is [35]

(13)



1090 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 48, NO. 6, DECEMBER 1999

(a) (b)

(c) (d)

Fig. 4. Time–frequency representation of a simulated multicomponent signal: (a) spectrogram, (b) Wigner distribution, (c) S-method, and (d) fourth order
L-Wigner distribution realized using the S-method. Relevant parameters are shown in the figure.

In the case of a multicomponent signal the variance is in-
creased. For TF nonoverlaping components, in (10)
is replaced by . In the case of the SM the vari-
ance is lower since should be replaced by , for the
corresponding component.

We will use an example to illustrate the instrument perfor-
mances with respect to the amplitude and the IF estimation.
Consider an analytic part of the linear FM signal

with additive noise . The
signal is sampled at , using the Hanning window
of the width with . The variance of discrete
noise is . Using , from (12) we obtain

, for the maximal amplitude . The
bias, according to (13), is . Therefore,
the error of estimation is within

with the probability of for the Gaussian
distribution of error. Variance of the IF is .
The frequency axis quantization error which would have had
the variance had been reduced bellow the

order of other variances by using the interpolation method with
displacement bin [29]. Note that the maximal frequency
is , meaning that the relative error
is very low. The above analysis is performed for the WD
and the SM with . Note that in the SM we could
use twice wider sampling interval. All these results have been
statistically checked.

When the input noise is only the A/D quantization error
then, assuming 12 bit conversion, we get for
complex signals, obtained as analytic versions of the real ones.
Therefore, the precision is here limited by the leakage effects
for the amplitude estimation and by the quantization error for
the IF estimation. Ways to control and reduce these effects are
already described [29].

Consider now a two-component signal
.

The variance of the WD’s is twice higher than in the previous
cases. The cross-terms in the WD are twice higher than the
product of amplitudes of signal components. The SM with
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(a)

(b)

Fig. 5. Time–frequency representation of a motor vibration signal: (a) spec-
trogram and (b) S-method. Relevant parameters are shown in the figure.

produces the same variances of the amplitude and
IF estimation (detecting positions of local maxima) as in the
one-component case.

IV. EXAMPLES

Sonar Signal Example:TF analysis of a sonar signal ,
and its delayed version is shown in Fig. 3. The SPEC,
with normalized time axis, is presented in Fig. 3(a), while the
SM is presented in Fig. 3(b). The parameters are shown in the
Figure. We see that by increasing from 0 (SPEC) to the
value of , while keeping all other parameters invariant,
we significantly improve the distribution concentration, and
avoid cross-terms.

Numerical Example:
Consider a multicomponent signal:

The SPEC of this signal is shown in Fig. 4(a). One may
observe that all distribution components are spread in the
TF plane and that cross terms do not exist. In the WD,
Fig. 4(b), all components are highly concentrated, but the
cross terms are very emphatic (even completely masking the
component in the middle). The SM, Fig. 4(c), produces high
distribution concentration, without cross terms. Concentration
may be additionally improved by increasing the distribution
order. The fourth order distribution ( ) is shown
in Fig. 4(d).

Motor Vibration Signal: The motor vibration signal mea-
sured at 2000 [rev/min] is considered. Its SPEC and SM
with are shown in Fig. 5. Analysis of the IF’s
and amplitudes is very important in this kind of signals in
order to detect engine knocking combustions, whose frequent
occurrence can destroy the motor [36].

Numerical Efficiency:The SM is studied in [10]. For the
parameters as in the last example, the ratios of the numbers
of multiplications and additions in the WD and the SM are
5120/1152 and 2752/768, respectively. Of course, the SM
requires more operations than the SPEC. These ratios are here
768/1152 and 384/768.

V. CONCLUSION

A virtual instrument for TF analysis, based on the SM, is
presented. It is efficient for the analysis of multicomponent
signals, since it produces a sum of the WD’s of each individual
signal component. The mutual component influence on the
estimation of the amplitude and the IF is avoided in this way.
Realization may be computationally less consuming than the
WD realization, since there is no need either for the over-
sampling or for the analytic signal calculation. Performance
analysis, along with the illustrative examples, convincingly
demonstrate the improvements.
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Igor Djurovi ć (S’99) was born in Montenegro in 1971. He received the B.S.
and M.S. degrees in electrical engineering from the University of Montenegro
in 1994 and 1996, respectively. He is currently pursuing the Ph.D. degree in
electrical engineering in the area of time-frequency signal analysis.

His current research interest include application of virtual instruments,
time–frequency analysis-based methods for signal estimation and filtering,
fractional Fourier transform applications, image processing, and digital wa-
termarking.

LJubi ša Stanković (M’91–SM’96) was born in
Montenegro on June 1, 1960. He received the B.S.
degree in electrical engineering from the University
of Montenegro, in 1982, with the honor “best stu-
dent at the University,” the M.S. degree in electrical
engineering in 1984 from the University of Bel-
grade, and the Ph.D. degree in electrical engineering
in 1988 from the University of Montenegro. As a
Fulbright grantee, he spent the 1984–1985 academic
year at the Worcester Polytechnic Institute, Worces-
ter, MA.

Since 1982, he has been on the faculty at the University of Montenegro,
where he is a Full Professor. From 1997 to 1999, he was on leave at the
Signal Theory Group, Ruhr University Bochum, supported by the Alexander
von Humboldt foundation. He was also active in politics as Vice-President of
the Republic of Montenegro from 1989 to 1991, and then the Leader of the
Democratic (Anti-War) Opposition in Montenegro from 1991 to 1993. His
current interests are in signal processing and electromagnetic field theory. He
published about 150 technical papers, 45 of them in the leading international
journals. He has published several textbooks in Signal Processing (in Serbo-
Croatian) and the monograph “Time–frequency signal analysis” (in English).

Dr. Stankovíc is a member of the National Academy of Science and Art of
Montenegro. In 1997, he was awarded the highest state award of the Republic
of Montenegro for scientific achievements.


