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filter and�51 dB for a complex lowpass filter. This is an additional
gain of 3 and 6 dB for the two cases, respectively.

To further illustrate the ability of the proposed algorithm to
decompose a wavelet, we have applied the algorithm to a wavelet
generated by the Daubechiesh2 wavelet (its four filter coefficients
are 0.341 506 350 946 11, 0.591 506 350 946 11, 0.158 493 649 053 89,
and�0.091 506 350 946 11) [9]. The lengths of both the bandpass and
lowpass filters were set to 4. The initial lowpass filter setting was [1,
2, 1, 0]T /4. The convergence curve is shown in Fig. 1(b). The error is
as high as 0 dB at the beginning. It decreases as adaptation proceeds
and reaches a minimum value of�182 dB in about 150 iterations.
The nonzero final error value is due to finite numerical accuracy
in the simulation. The convergence in this case is exponential. The
convergence characteristics of the mean-square coefficient errors of
the two filters are very close to the curve shown in Fig. 1(b). It is clear
that the proposed algorithm is effective and converges to the desired
optimum solution.

IV. CONCLUSIONS

We have proposed an iterative method to decompose a mother
wavelet into a bandpass and lowpass filter pair according to the
two-scale relationship. The method computes the LS solutions of the
two filters in alternate iterations until convergence. The convergence
and validity of the method were confirmed by simulations.
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A Note on “An Overview of Aliasing Errors in
Discrete-Time Formulations of Time-Frequency

Representations”

LJubǐsa Stankovic´ and Igor Djurović

Abstract—Various realizations asserting to produce the alias-free
discrete-time Wigner distribution have been reviewed and analyzed
by Costa and Boudreaux-Bartels. Here, a simple alias-free form of the
pseudo-Wigner distribution is proposed. It is obtained from the fact that
the sampled signal can formally be considered as a multicomponent signal.

Index Terms—Fourier transforms, signal sampling, time–frequency
analysis, Wigner distribution.

I. INTRODUCTION

In the traditional ways of Wigner distribution (WD) computing, the
signal has to be oversampled by a factor of two in order to avoid aliasing
[2]. Significant efforts have been made in the investigation of possibil-
ities for nonaliased discrete-time WD calculation of a signal sampled
according to the Nyquist rate [3]–[9]. Several authors have tried to for-
mulate nonaliased reduced interference distributions [10]–[13]. An ex-
cellent overview of these efforts and results has been done in [1] and
[14]. Common to all of them, including the one presented here, is that
the signal samples taken with the Nyquist rate completely determine
bandlimited signal values at all other points. Thus, oversampling can
be avoided by incorporating an implicit or explicit interpolation in the
mathematical procedure of the Wigner distribution calculation.

In this short note, we will show that it is possible to calculate the non-
aliased pseudo WD of a signal sampled according to the Nyquist rate by
using the short-time Fourier transform (STFT) as a basic step. This pro-
cedure can be, in a straightforward manner, extended to the nonaliased
realizations of the higher order time–frequency distributions [15]–[19].

II. DEFINITIONS AND THEORY

A definition of the STFT is

STFTa(t; !a) =
1

�1

f(t+ �)w�(�)e�j! � d� (1)

where indexa denotes quantities in analog domain. Consider signal
f(t + �) sampled at� = nT; with T � �=!m, where!m is the
maximal frequency in the STFT: STFT(t; !a) = 0 for j!aj � !m for
any t.

The STFT of a discrete-time signal, which is denoted by
STFT(t; !), is periodic in frequency! = !aT with period2�

STFT(t; !) =
1

k=�1

STFTa(t; !aT + 2k�): (2)

Thus, the STFT of a discrete-time signal could be formally considered
to be a multicomponent signal with an infinite number of components
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Fig. 1. Illustration of the alias-free pseudo-Wigner distribution calculation.

shifted in frequency for2k�, wherek is an integer. With the sampling
theorem conditionT � �=!m being satisfied, i.e., the STFT being
alias-free, we have

STFTa(t; !a) =
STFT(t; !=T ); for j!j � �

0; otherwise.

The WD, in its pseudo form, is defined by

WDa(t; !a) =
1

�1

f t+
�

2
f� t�

�

2
w�

�

2
w �

�

2
e�j! � d�: (3)

The relationship between (1) and (3) has been derived in [15] as

WDa(t; !a)

=
1

�

1

�1

STFTa(t; !a + �a)STFT�a(t; !a � �a)d�a: (4)

The discrete domain form of (4) is

WD(t; !) =
1

�T

�

��

STFT(t; ! + �)STFT�(t; ! � �)d�: (5)

The alias-free version of the pseudo-WD (5), which is denoted with
indexf , can be calculated by using only the basic period�� � ! < �
of STFT(t; !)

WDf (t; !)

=
1

�T

�

��

P (!; �)STFT(t; ! + �)STFT�(t; ! � �) d� (6)

where

P (!; �) =
1; for 0 � j�j < � � j!j

0; otherwise.

The integration in (6) for a given! is performed until either
�� � ! + � < � or �� � ! � � < � is violated, i.e., for
�� + j!j � � < � � j!j; see Fig. 1. In this way, the integration
over the basic period of STFT(t; !) [i.e., over STFTa(t; !a)] is
completely performed, whereas the integration over other periods
STFT(t; ! + 2�) and STFT(t; ! � 2�), which were introduced by
the signal discretization in time (causing aliasing in the discrete-time
pseudo WD), is completely avoided; again, see Fig. 1. Distribution (6)
has a form of the method from [15]–[19].

For the real signals, cross-terms between positive and negative fre-
quencies can completely be avoided, whereas the integration over pos-
itive frequencies is performed without an analytic signal calculation by

Fig. 2. (a)–(e) Alias-free pseudo-Wigner distribution for signals from [1]. (f)
S-method (alias and cross-terms free pseudo Wigner distribution) of signal from
Fig. 2(e).

using the integration interval in (6) defined by0 � ! + � < � and
0 � ! � � < �.

Numerical realization of the alias-free discrete-time/frequency
pseudo WD is simple, according to

WDf (n; k) =
1

�T
jSTFT(n; k)j2 + 2

L (k)

i=1

�Re[STFT(n; k + i)STFT�(n; k � i)] (7)

where the summation for each point(n; k) defined byLP (k) lasts
until any of the conditions (k + i � N or k � i � 1) is violated. The
zero frequency component is atk = N=2.

Example: For all signals proposed in [1], we get a correct form of
the alias-free pseudo WD; see Fig. 2.

Note thatLP (k) = 0 in (7) produces the spectrogram, whereas the
other terms Re[STFT(n; k+ i)STFT�(n; k� i)] for 1 � i � LP (k)
improve its concentration toward the pseudo WD. Taking only few of
these correction terms, we can achieve the auto-terms approximately
the same as in the WD while avoiding cross-terms (the S-method [15]).
In Fig. 2(f), the value ofLP (k) is limited to a maximal number of
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six terms in (7), i.e., ifLP (k) � 6, thenLP (k) = 6. The choice
of LP (k) in the S-method is discussed in detail in [16] and [17]. The
same procedure may be used for the alias (and cross-terms)-free real-
ization of the higher order time–frequency representations: Polynomial
Wigner–Ville distributions [18], [20] and L-Wigner distributions [19].

III. CONCLUSION

A simple alias-free discrete-time pseudo-Wigner distribution
realization is presented. The procedure may be easily extended
to the alias-free realizations of some higher order time–frequency
representations.
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