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Instantaneous Frequency Estimation Using Higher Order distribution order), along with a small number of their possible values,
L-Wigner Distributions with Data-Driven Order resulted in a modification of the original algorithm. Also, the analysis
and Window Length presented in this correspondence leads to an interesting conclusion that
not only higher order distributions may improve time—frequency pre-
sentation, but also “lower order” distributions can be the best choice in
LJubBa Stankovic Senior Member, IEEEand some cases.
Vladimir Katkovnik, Member, IEEE The correspondence is organized as follows. A review of the
L-Wigner distribution definition, along with a noise modeling, is done
in Section II. In Section Il the variance and bias of the IF estimate,
" :\ké(s)tr:igtr;;zsnll(;\flvsi?nnearl’cs“?itrrri]t:amfi?ensuz:lecdignfgsg]ngtciigrr] t?:(i)r:‘z“f’i‘rfﬁte using theL-Wigner distributions, are derived. The optimal window
distribution order and ngonlinear instan?aneois fr%quency (IFj it gives bi- !ength and d!str|but|on ordgr are ci_|sgussgd in this sectlon..A numgrlcal
ased IF estimates. In the case of noisy signals the optimal window length implementation of thel.-Wigner distribution is presented in Section
and distribution order depend on the noise variance and unknown IF. In V. An adaptive |IF estimator, with the data-driven window size and

this correspondence an adaptive IF estimator with the time-varying and  distribution order is described in Section V. Numerical examples are
data—drlver_1 window length and distribution order is developed. Bas_ed_on presented in Section VI.

the analysis that has been done here, lower order time—frequency distribu-
tions are introduced.

Index Terms—Estimation, instantaneous frequency, time—frequency Il. DEFINITIONS AND NOISE MODELING

analysis, Wigner distribution, window optimization. TheL-Wigner distribution of a discrete-time signahT), at a given
instantt = {7, is defined by [19], [20], [22], and [23]

. INTRODUCTION

oo

Since there isno Qistribution from the Cohen class (with sigr?al-indﬁNDL(t’ w)= Z wp(nT)s* <t+n Z) Gl <t—n Z) o iznlw
pendent kernel) which can produce the complete concentration along = L L
the instantaneous frequency (IF) when it is a nonlinear function of 1)
time, [5]-[7], [21], various higher order distributions have been de-
rived. For the analysis of signals with polynomial phase the polyno-
mial Wigner—Ville distributions are proposed by Boashashal. in  wherew, (nT) = T/h-w(nT/h) with w(t) being areal-valued finite-
[2]-[4]. The same class of signals may be treated by the local polyrlength symmetric window such that(¢) = 0, for |¢| > 1/2, T'is the
mial distributions, defined in [10] and [11]. THe-Wigner distribution, basic sampling interval, aridis the windowwr, (nT") width.
introduced and described in [19], [20], [22], and [23], significantly re- Note that in the realization of LWD(t, w) the signal has, by
duces influence of higher order terms in the phase function when it iglefinition (1), to be sampled with a sampling interval equal fd.
nonlinear function of time. The polynomial Wigner-Ville distribution times the sampling interval in the Wigner distributibiits values
and theL-Wigner distributions are closely related to the time-varyinghould be available not only at the instants defined by the Nyquist
higher order spectra [3], [17]. sampling rater /w,,, wherew,, is the maximal signals frequency,
In this correspondence we analyze the IF estimator, in the case of dt also at the pointeT/L = nx/(2w..L). Note that this can be
ditive noisy signals, using th&-Wigner distribution. The estimator's avoided, i.e., LWD. (¢, w) can be realized without oversampling
variance and bias are highly dependent on the window length and disay- using theS-method and procedure described in [20], [22], and
bution order. Provided that the signal and noise parameters are knol@3]. This realization would also produce tHeWigner distribution
the optimal window length and/or distribution order may be determing¢hich is, in the case of multicomponent signals, equal to the sum
by minimizing the estimation mean squared error. However, those gd- L-Wigner distributions of each individual component, with a
rameters are not available in advance. Especially it is true for the $ignificant reduction of the noise influence. Since the realization is
derivatives that determine the estimation bias. Here, we will presentret an issue here, we will assume that thenigner distribution is
adaptive algorithm which does not requaepriori knowledge of the realized according to the definition (the worst case).
estimation bias. The basic idea of the method that we use for selecConsider a noisy signal
tion of the data-driven window length and order has originated from
[8] and [9], where it was proposed for the nonparametric regression.
The idea of this method was exploited in [12] for development of the
adaptive local polynomial periodogram, giving estimates of the IF and

its derivative. It was subsequently used in [13] for development of tRth s(».T) being a signal with a real-valued amplitudeande(nT)
nonparametric estimator qf the_ IF, bas_ed on tl_1e Wigner d'St”bU“‘b_@ing a white complex-valued Gaussian noise with mutually indepen-
with the data-driven adaptive window size. A discrete nature of opitent real and imaginary parts of equal varianegg2. In the analysis
mization parameters of the-Wigner distribution (window length and presented in this correspondence we additionally assume that the noise
is small with respect to the signal, i.e,/A < 1. Note that the last as-
Manuscript received March 8, 1998; revised July 1, 1999. The work of L§UMPtion has also been used for the Wigner distribution analysis [10],
Stankovicwas supported by the Alexander von Humboldt Foundation. [16] and polynomial Wigner-Ville distribution [4].
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x(nT) = s(nT) 4+ e(nT), s(nT) = A exp(jo(nT)) (2)

Pretoria, RSA. means signal oversamplirfgtimes. However, in this correspondence, we will
Communicated by E. Soljanin, Associate Editor for Coding Techniques. allow valued) < L < 1 (for example L = 1/2), which will be useful in some
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- . . . . oo 2542
v moaea i e folow Modeiarts e s poosr T Pale) = gy 3 T~ S
/e 2542
oH(nT) =2 % (nT) + L™ (nT)e(nT) . /_1/2 w(t)t dt. (10)
=s"(nT) + eL(nT). (3)  The limits hold forT — 0 andh/T — oc.

Proof: The stationary point of LWDR(¢, w) is defined by the
zero value of the derivativeLWD . (¢, w)/dw, given by

WD (t, w) 7 TN 1~ T
= Z wp(nT)x <f +n Z) T <f —-n f)

n=——oo

The autocorrelation function ef,(nT) = Ls"~'(nT)e(nT) is

Reyep(n) = A 262 L%8(n). 4 -
L L(") Oc ("’) ( ) . (_J.{_)nT)ef]an w' (11)

) o ~ The values oBLWD/,(t, w)/dw around the stationary point may

If L = 1 the variances of the transformed and the original noigge approximated by a linear model for small values of estimation error

are equal to each other. For the case L < 1, which has not been A, phase residuah¢(t, n 1), and noise:r.(nT). The linearization
considered previously, the transformed noise-to-signal ratio in (3) dﬁ,es

L?a? /A, Itcan be smaller than the original /4. For exampleL = OLWD,(t, w) _ ILWD,(#, w) OLWD/(t, w) .

1/2 may significantly reduce this ratio compared with= 1. This 90 = 9w 0 92 o

will be the reason to introduce, in this correspondence, distributions of ALWDL(t, w) ALWDL (¢, w)

a “lower order” with respect to the Wigner distribution. + 8—w’|0 Ny T\o c

12)
where the inde40 means that the expressions are calculated at the
Consider the problem of the IE() = ¢'(t) estimation, from dis- point wherew = ¢'(t), Aé(#, n(T/L)) = 0, andez(nT) = 0.
crete-time observations (2). We will assume thet) is a differentiable  The terms)LWD, (¢, w)/dwba, andOLWD (¢, w)/dwb. represent
function with bounded derivativgs"” (t)| = |¢""*")(#)] < M.(t), variations of the derivativedL WD, (t, w)/dw caused by small
r > 1 A¢(t, nT) and noiseer (nT), respectively. For example, in the
If the signal is not noisy then, using the Taylor's expansion(@f+  calculation, ofdLWD/, (¢, w)/dwéa, we assume that the other two
n(T/L)) — o(t — n(T/L)) aroundt, its L-Wigner distribution is of disturbances caused by the nois¢n1") and frequency variatio &

I1l. | NSTANTANEOUS FREQUENCY ESTIMATION

the form can be neglected and that the phase variatioi(t, »T") is small.
o 26! (T AL n(T Then
LWD]_, t, u.»‘) :1421_4 wh, nT SJZ('D (t)nT SJAO([, n(T/L)) o
e n:z—oo o) OLWD L (t, w) bas = Z wy (nT) A o2 TS (M) +jAG(t, )
i 67]'244;71'1" Ow [0 n=— o0
where (—j2nT) e 72T,
0o (2641) 2541 Forw = ¢'(#) and smallA¢(t, nT'), when
Ag 2‘,,71,Z ZQLZu nZ (5) (i AG TY =14 iAd T
T (25 +1)! T exp(jA¢(t, nT)) = 14 jAs(t, nT)
s=1

we easily get the third line in the next equation, as a variation of

If ¢(25+1>(t) =0 fqr allsorL — o0, then theL-Wigner_distribl_Jtiqn OLWD (£, w)/0w due to smallAé(t, nT). In the same way we get
would have a maximum at = ¢'(¢). Therefore, theL-Wigner distri-  tha other terms as ‘

bution based IF estimator may be defined as

= A% Z wp(nT)(—j2nT) =0

n=—00

. OLWD,, (t, w)
w(t) = ar b t.w TR T
(t) = arg |:$T€11(i;i LWD7r, (¢, )} (6) Ow 0
with Q. = {w:0 < |w| < 7/(2T)} being the basic interval along the
frequency axis. As a measure of the estimate quality, at a given instant

[e'S]

MLM = —AZL Z wh(nT) (471T)2

2
t, let us define the estimation error as Ow 1o n=—oc
AG(E) = O(8) — wit 7 = —4AQLFh
a(t) = 2() - wlt). @) r |
Proposition: Let & () be a solution of (6), and — 0, T — 0, M bagp = AT Z wi(nT)A¢p <7‘ n Z) (2nT)
andh/T — oo. Then the variance and bias of the IF estimation error Ow o n=—oo L
A&(t) are given by =24 L, (1)
, L’¢® E, ALWD . (t, w)
rar (AG = —nr Im = — T,
var (Ad(t)) 247 72 (8) 2 B ‘05
S = i wp(nT) |:sr’ <t +n Z) s
| Bi(s) (2641 = L
E{Aa(t)} = o 3 @ (1), ) n=—co
QFh — L?s ,
(=0 7)o (40 )
lt—m—=)—2 t4+n—

where L L

= s e [V? ‘ L T o —inTw

F, = Z wy,(nT)(nT)> — h? / w(t)t® dt Tz <t —-n f>:| (_JQ'nT)e\oJ - (13)
i _11//22 FromdLWD¢ (¢, w)/dw = 0 and the previous equations follows that
E, = wi (nT)(nT)? Ti/ w? () dt .
J 71:2700 wy, (nT)Y(nT)" — Th i w= (1)t ¢ —4A2T‘FhAQJ N QAQT‘L,?,()‘/) Lm0
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or The optimal window length, minimizing the MSE (18) for a givEn
is

AS(t) = w(t) — S(t) = % <L;,(t) + %) .19

- 272 1/7
2000 L T} (20)

o (1) = {A%@@u))?
The error A& has two components: deterministi, (¢)/2F), and

random=/(24*" F},). Straightforward calculations, similar to theltis obvious that the calculation of (19) or (20) is not possible in prac-
ones used in [18] for the Wigner distribution, give tice, since its requires, besides and o2, the knowledge of the IF
second derivative® (#). It is a definitely unavailable value because

R 1 iad s , the IF itself has to be estimated.
var(Ao(t)) = T4Fz > > wn(mT)wn(nT) Simultaneous unrestricted minimization of the MSE with respect to
¥ m=—00 n=—oo L andh gives a trivial result: the MSE approaches zerdhass oo
. |:3L <t +n Z) L <f +m f) R andh/L — 0. This result has no practical interest. However, the mini-
4 lep e, . . - s
L mization of the MSE with respect to a finite set of acceptable values of
( T NP T h and L gives optimal pairs of, L) which, as simulations confirm,
=m) 7 )+ -mT are able to significantly improve the accuracy.
gt <t —-n %) Re,e, <(n —m) %)
‘ IV. NUMERICAL IMPLEMENTATION
+ RELEL <(n —m) —>:| (nmT?)
» The L-Wigner distribution(1), discretized over the frequency, is im-
. 6‘*012("1*")“_ plemented as
For the white noise, (nT) it results in Njomi
> — l A ,>L T - Lt
v (A1) = Re,.,(0) En ) LWD (k, [) = 72\, 2 wp, (nT)a <ZT +n f) x
2420 F? =N
which proves (8). . <ZT —n Z) o= 32(27/N)EN 1)
In a similar way, the bias fror{ilLl4) is of the form L
whereN = h/T is a number of samples determined by the window
> 6 D) o2 . lengthh, and the sampling intervdl is given asl” = 7 /(2w,, ), where
Lu(t)=~-23%" (25 + 1) > wa(nT)(nT)**+? w. is the signal’s maximal frequency. The IF is estimated as
s=1 " n=—oo
which proveg9) of the proposition. O on(IT) = arg [m’_?x LWD . (k, Z)] \LT 22)

l\_/lear?-Squar_e Error: Let us angly;(_a the mear!-squart_ed accuracy %r 0 <k < N/2— 1, for signals with only nonnegative frequencies.
estimation. Using only the first S|gn|f|car_1t term in the bias, the mean- Let us consider the influence of the quantization error on the accu-
squared error (MSE) can be presented in the form racy of the IF estimation, caused by the discretization of LWR 7) in
- (3712 (21) along the frequency axis. Note that the quantization error may also
B{(AS(1)?) = 2L%¢; Ej, {Bh (L)o' (t)} ) (16) be considered as a parameter closely related to the distribution concen-

Az F2 2F,L? tration (frequency resolution), which is very important for time—fre-
For the rectangular windowE;, = Th/12, F, = h?/12, B,(1) = quency distributions (especially in the case of multicomponent sig-
—n*/240), we get nals). For the quantization noise error a uniform probability density
is usually assumed. In (22) this probability density is uniform over
ar (AS() = 602L* T the segment—m/2h, ©/2h], sincer/(NT) = = /h. Its variance is
A PR o2 =1/12(x/h)?, producing the resulting MSE in (18) of the form
(3)
. o' () 2
E(AO(t = h 17 ) y P
(Ax(t) 40L2 (7 E,(A,Am)g}_%?ﬁ T  [6®() ’ 17
BRI e 4012 12 h?
66212 T [6®(t) 5] 272 2 ®) 2
E{(As(t)’y = = — 4|2 n’ . _ (6" L7 w1 P (t) o
{( )"} FERNE + |: 1012 ! :| (18) = |:F N + D) ﬁ+ 1012 h . (23)

] For a large signal-to-noise ratio and any reasonable number of samples
Note that the values df;,, I, andBy, (1) can be easily calculated for xr 404 distribution ordef, we have(602/42)(L?/N) < =*/12 and

any other window type. o _ the estimation variance is dominated by the quantization error.
It can be seen from (18) that the MSE has a minimum with respectas js well known, the quantization effects of the fast Fourier trans-
to L. The optimal value of. is given by form (FFT) can be reduced by appropriate zero-padding in the time

S, L2176 domain, i.e., by interpolation along the frequency axis. Provided that
Lop(t) = {A R (6P (1)) } (19) this interpolation of the.-Wigner distribution is done up to the widest
Pt 480002T ' considered window length, the quantization error will be reduced and
The dependence of the optimAtWigner distribution ordetL,,c on kept to a constant value.
the parameterst, o.,T, and the derivatives® (¢) is quite clear. At In the next section we will first consider the case when the interpo-
times when|¢® ()] is large, higher distribution orders are requirediation is not done. It yields a simpler analysis and is more common in
while for small|c/)(3) ()|, the distribution ordef should also be small. time—frequency distribution realizations. An algorithm for the optimal
This relation will be discussed in detail in examples. window length determination will be derived for this case, and then
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extended to the cases with high interpolation rate (when quantization
error can even be neglected).

V. ALGORITHM FOR ADAPTIVE ORDER AND WINDOW
LENGTH DETERMINATION

A. Basic Idea of the Window Length Optimization

The basic idea follows from the accuracy analysis, given in the
Proposition. Namely, at least for the asymptotic case of small noise
and bias, the estimation error can be represented as a sum of th
deterministic (bias) and random component, with the variance given
in the Proposition and (17). For the estimateddf¢) as a random
variable distributed around the exactdfft) with the biasbias (¢, h)
and the variance” (%), we may write the following relation:

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 1, JANUARY 2000

|w(t) — (@n(t) — bias(t, h))| < ko (h) (24)
wherea?(h) 2 var (Ad(t)), and the inequality holds with the prob-
ability P(x) depending om:. The values of: will be discussed later.
Here we will only mention that it should be such tha¢x) is close
to 1. In the case of dominant quantization noise error, which will be
considered now, the probability density®f (¢) aroundbias (¢, L) is
uniform. For this distribution, the value = /3 guarantees (24) with
probability 1. The same value of would guarantee only the proba-
bility of 0.93, if the distribution were Gaussian.

Using the expressions for the variance and bias

} 1

602 L* =w*

2 — JR— JR—
o (k) = {A? N1

o) (t)
40L2

h?

bias(t, h) =
the MSE is given by

(25)

a1 o™ (1)
ot { 40L2
Concerning the distribution orddr, we may conclude that its highest
value should be useds long as?%;z NL—TZZ < 1.

The MSE minimization with respect to gives

2
E{(A&(t)?} = B2l .

J(hr»])t) = \/§l7ia5 (t~ hﬂpt)w
whereh,,: denotes the optimal window length,

(26)

hope = (507 L* /(3(61) (1)),
Let us introduce a discrete sBt of window length valued € H

H = {hs|hs = ahs—1, s5=1,2,3,---,J a>1}.
The following arguments can be given in favor of such a set.

a) A discrete scheme for window lengths is necessary for efficient
numerical realizations. Realizations of time—frequency distribu-
tions of the form(21) are almost exclusively based on the FFT
algorithms (excluding only a few recursive approaches, [1], [14],
[15]). The most common are radixer radix-3 FFT algorithms,
which correspond ta = 2 or a = 3, respectively, in which case
the setH gives dyadic(hs, = ho2®) or triadic (hs = ho3%)
window length schemes. In the realizations, the smallest window
lengthy should correspond to a small numbés of contained
signal samples. For example, for rad@¥FT algorithms N, =4
or No=8 with Ny =2N,_y,s=1, 2, ---, J.

b) A search for the optimal window length ovér is a simplified

27)

Fig.
intervals limits as a function of the window width illustration.

~MSE--
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1. (a) llustration of the MSE. (b) Exact IF value, bias, and confidence

leads to suboptimal window length values due to the discretiza-
tion of 2 (quantization noise error and effects due to quantization
of h, which, despite similar names, are two completely different
notions). It is important to note that this effect, due to the dis-
crete nature ok € H, would exist even if we knew in advance

all of the parameters required for the optimal window length cal-
culation, and decided to use radix-FT algorithms in the re-
alization. Fortunately, the loss of accuracy is not significant in
many cases, because the MSE has a stationary point for the op-
timal window length = h,,, (and the MSE varies very slowly

for the window length values close o= h.p.). The MSE as

a function of the window length is presented in Fig. 1(a), where
both axeshave logarithmic scales. Fig. 1(b) illustrates the regions
where the IF may take its values, according to bias and variance
relations (25). This dependence will be discussed in the sequel.
Here we will only mention that for small window lengths the IF
bias is very small, but variance is large (25). Therefore, the IF
lies within the wide region[—+v/3 (). v3¢(h)], around the
exact IF value. As the window length increases, these IF limits
are closer to each other (sine€h) decreases), but at the same
time the bias is increasing, see Fig. 1.

Now we will derive an algorithm for the determination of the optimal

optimization, because the set (27) consist of a relatively smalindow sizeh,, without knowing the bias, using the IF estimates (22)
number of elements. However, the discrete set dafievitably and the formula for the IF estimate’s variance only.
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It is based on the following statement. is wider thanD(p) asAx > (. Note also that all of the confidence
intervalsD(p), with p such that the bias is very small, have the true IF
valuew(t) in common, or to be precise have at least redioft) — Ax
a(h(p)), w(t) + Ar o(h(p))] in common, i.e.,

Let H be a set of dyadic window length values, i€+ 2 in (27),
andx = /3. Assume thah,,, € H. Define the upper and lower
bounds of confidence interval3; = [L;, U;] as

Us =on () + (k 4+ Ar)o(hy) (28)  for anyp < 0.
wheredy, (t) is an estimate of the IF, with = h. anda(h.) given Forp >> 0 the variance is small but the bias is large, sinte >
by (25). V2a7P . Itis clear that for a large enogh D (p) N D(p + 1) = 0 for
Let the window lengtth .+ be determined as a length correspondingny givenA.
to the largest = s™ (s = 2, -+, .J) when The idea behind the algorithm (28) and (29) is that in D(p) can
be found in such a way that the largesfor which two consecutive
D;NDsyy #0 confidence interval®(p) and D(p + 1) have a point in common is
Dey1NDyin =0 (29) =0 Such a value oA« exists because the bias and the variance are

notonically increasing and decreasing functions afespectively.
soon as this value dkx is found, an intersection of the confidence
intervalsD(p) andD(p + 1) works as an indicator of the event= 0,

i.e., the event wheh, = h,,. is found. The algorithm given in the
form (28) and (29) tests the intersection of the confidence intervals,

is satisfied, i.e., when the last two successive confidence interval sAnﬂP
intersect. S
There exists value ok« such that, with probability close tb

Frat = Popt- _ B0 \where (29) is a condition that two sequential intendls;, and D,
Proof: Let us denote by the unknown bias are the last pair of the confidence intervals having a point in common
(note again that indices andp only indicate whether we assume the
bias (t, hopt) = b (31) first confidence interval, or the confidence interval for whick: fp:

when the window length has its optimal valbe= h.p.. Without loss  has index)).

of generality we will assume that> 0. The window lengths belonging  Now let us find this crucial value of\x. According to the above

to H, recalling that we assuméd,,, € H, can be represented asanalysis, only three values pf = 0, 1, and2 along with the corre-
follows: sponding interval®(0), D(1), andD(2) should be considered, in this
case. The interval®(0) andD(1) should havend the interval®(1)
andD(2) should not havat least one pointin common. Sindg(,,) (1)

is a random (uniformly distributed) variable, then the confidence in-
terval bounds are also random and uniformly distributed. Thus we must
wherep = 0 corresponds to the desired window length.. Note also  consider the worst possible cases for the corresponding bounds. These

that we use two indices for the window lengthé.e., k) for indexing  Worst case conditions, fér> 0, are given by

I(p) = hopta®, a=2,p=--+,—-2,-1,0,1,2,--- (32)

which starts from the narrowest window length, an@sed in form of min{U(0)} > max{L(1)}

an argument, i.e/(p)) starting from the.,, window length (when (7T T

p = 0), with narrowe)r windows having nelgatiyneand wider window ma}q[/_(l)} < mm{L(z_)}' (3%)

lengths having positive. Let us,.for example, considér(1). T.he. estlmgted 1B, (1y (t)maay,
The bias and variance values given by (25) can be written for aggcording to (34), assume values within the interval

h(p) of the form (32) as Oppy (1) E[w(t) + bias(h(1)) — ko (h(1)),

w(t) + bias(h(1)) 4+ ko (h(1))].
Consequently, the upper confidence interval bolirid), according to
(34), may take values from the interval

bias (t, h(p)) = a’Pb, a(h(p)) = V247 Pb (33)

according to (26) and (31). A
From (33) we can conclude that fpr< 0 anda = 2 the bias is U(1) € [w(t) + bias(h(1)) + Ara(h(1)),
much smaller than the variance sinc® < /2a~?. Thus the es- w(t) + bias (h(1)) + (26 + Ar)a (A(1))].
timatewy, (¢) is spread around the exact valuét) with a small bias
(bias(t, h(p)) — 0 ash(p) — 0) and a large variancer (h(p)) —
o ash(p) — ~). A confidence interval of the estimate, , (), for max{U(1)} = w(t) + bias (h(1)) + (2k + Ar)a(h(1)).
a givenh(p), is defined by In the same way we get the other bounds required by (35)
bias (h(0)) + Aro(Rh(0)) > bias(h(1)) — Ara(h(1))
(h(1)+ 254+ Ar)a(h(1)) < bias (h(2)) — (2r+ Ar)a(h(2))

The maximal possible value &f(1) is

D(p) = [Gnp) (1) — 5o ((p))s ©n(p)(t) + ro(h(p))].

Forx = /3 we have that(t) € D(p), whenbias (¢, h(p)) = 0. (36)
A confidence interval, that takes into account the biased estimq,t,e
(L‘h(p) (t) is

1+ Aﬁ,ﬁ 2(12 — AH\/§(I,_1
D(p) =21 (1) = (5 AR) T (B(D)): D) (8)+ (5 AR (B (p)] L4 (254 Am) v2a~" <o’ = (25 Ar) V270 (@7)
(34) Itcan be verified that\s = (a® = 1)/ [V2 (1 4+ a~")] is the smallest
Ar > 0 that satisfies the first inequality in (37). For= 2 we get
whereAr > 0 is to be found. It is obvious that(¢) € [)(p) for Ar = 1.414. This value ofAx with x = /3 satisfies the second
p < 0 because in this case the bias is small and the segienx inequality in (37).
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Fig. 2. Time—frequency representation and the IF estimation of a signal with the nonlinear IF. (a) Wigner distributiSn=wi3g. (b) Wigner distribution with

N =128.(c) L-WD with L = 2 andN = 32. (d) L-WD with L = 2 andN = 128. (e) L-WD with L = 4 andN = 32. (f) L-WD with L = 4 andN = 128.

(g) Adaptive window length. (hL-WD with L = 4 and adaptive window length. (i) The IF of signal. (j) The IF estimation with the Wigner distribution and
N = 32. (k) The IF estimation witl. = 4 and N = 256. (I) The IF estimation with. = 4 and adaptive window length.

With (37) being satisfied we have, fpr 0, thatD(p)ND(p+1)#0  B. Algorithm
with probability close tal, and forp > 1, D(p)ND(p+1)= 0 with

probability close td . This completes the proof of the statement] ) . )
According to the statement and the analysis in the previous subsec-

We emphasize that the statement is derived providedithatas- tion, we may define the following algorithm for the adaptive IF estima-
sumes one of the dyadic values frafh and the bias and variancetion.
are given by the asymptotic formulas (25). In applications, due to the
discrete nature of, we will never havei.,. € H, which results in 1) Assume that a sdf is given by (27).
the already described discretizationfofind slightly suboptimal MSE ~ 2) For a given instartt, perform theL-Wigner distribution calcula-
values. This means that the valuesnd A, given in the statement, tion for increasing window lengthis, € H beginning with the
should be interpreted as a reasonable approximation which can be used smallest.
in the algorithm (28) and (29), at least as long as (25) holds for the bias3) Estimate IF using
and variance. This was the reason for the expression “probability close

to 1.” @n, (1) = arg Jmax LWD<r(t, w)| . (38)
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4) With 2 T T T T T
10° | Mean absolute
o(hs) = [(602/A2)(L2/N) + 72 /3] 1/h2 = w/h V3 error
anday, (t), define the segments
Dy(t) = [Ls(t), Us(t)] (39)
where
il Wigner distribution (L=1)‘/o
Us(t) = L,Ejhs (t)+ (v + Ar)o(hs) 10 //,//
L.(t) =&n,(t) — (k+ Ar)o(hs) 7 _
o L=2 .+
with, for examples + Ax & 3.2. \ ~ ////
5) The adaptive window length, . is determined as the length b\»v /,,// L=a .
corresponding to the largests = 1,2, ---, J) whenD; N \\ T o
D1 # 0, le, 10° —— —
|n, (1) = @n, oy (D] < (5 + AR)[o(hs) + 0 (hatr)] (40) Adantive window lenath
is still satisfied.
Then, thiss™ is the largest for which the segment®, and
D.11,s < J, have a point in common. The adaptive window
length is chosen as 107 ; . . . , N
h (1) = hoy (1) (41) 0 .- 100 200 300

andawy, () is the adaptive IF estimator with data driven wmdow
for a given instant.
6) Take next.

Fig. 3. Mean absolute error for various window lengths axéWigner
distribution orders in the case of dominant quantization error.

C. Comments on the Algorithm between the bias and the variance holds instead of (26). It is obtained
by equating the first derivative of (18) with respecfitevith zero. We

If the noise-dependent part in the standard deviatidn, ) cannooot jj| follow the same reasoning as in Section V-A, with the assumption
be neglected (as will be the case in further analysis) then the estimatiggt for a certain: we may assume that

of signal and noise parametgrs| ands? can be done using

|w(t) — (Wn(t) — bias(t, h))| < ko (h) (45)
|A]” + 62 = i Z |a(nT)|? (42) holds with a probability close ta. Again assume that the window
N = lengthisdyadid, € H andh(p) = hopea? € H witha = 2. The bias
where the sum is calculated over Allobservations and’ is assumed and variance as functions of the unknown paranieterbias (t, hopt )
to be large, and’ to be small. The variance is estimated by are
ey = {mediar|z,(nT) - ar((n = 1)D)[} bias(t, h(p)) = ba’?, a(h(p)) = % ba"?P/2,
0.6745 V3
5 — imedian|e;(nT) - zi((n = 1)T)[} Then the conditions thab(0) N D(1) # ¢ and D(1)ND(2) = 0,
° 0.6745 with b > 0, are of the form (36) and produce the inequalities similar to
G2 = (62 +62%)/2 43) (37)
wherez, (nT') andz,;(nT') are the real and imaginary parts«fn 1), 1+ 2 Ak >a? — Ax a3/
respectively, and’ is sufficiently small. V3 - V3
Next, we will consider how a compromise, corresponding to the + (25 + AR) 2 @~ <t (2K + Ak) 2 a~®.  (46)
MSE minimization, can be achieved for the IF estimation with the ) V3 V3
L-Wigner distribution implemented with an appropriate interpolatioRor « = 2 these inequalities give the smallest positive value =
mentioned above. 1.919 and the larges2x + Ax) = 27.15. Note that for the value of
k& 3,i.e.,k+ Ar = 5, the inequality (45) holds with the probability
P(r) = 0.997.
D. Estimation with Interpolation With these hints and parameter values we can now use the algorithm

(38)—(41) as described in Section V-B for the adaptive window length
In the case when the quantization error may be neglected, i.e.,d@iermination.
appropriate interpolation is done, we have the variance and the biab) Consider the simultaneous optimization with respect to both pa-
strongly depend on both the window lengtland the distribution order rameters in questiord; andh. Let us define the two sets

L. Consider the cases ofoptimization wit.h r.esp.ed:tmovided afixed H={h,|hi <hs <hs <-<hy}
orderL, as well as the simultaneous optimization with respect to both
handL. A:{LT|L1 < Lo < <L](} (47)

a) Letthe ordel of an L-Wigner distribution be fixed and the biaswhereh € H is a set of values of the window lengthsandA is a set
and variance of estimation be determined by (18). It can be seen thadistribution orders, denoted b, .
for the optimal window sizé.,, the relation Consider a direct product df andA as a set

0 (hopt) = /4/3 bias (t, hopt) (44) HxA={(h,,L,)|s=1,2,---, J,r=1,2,---, K}
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Fig. 4. Time—frequency representation and IF estimation of a signal with the step-wiselPN&) with L = 1/2 and N = 32. (b) Wigner distribution with
N = 32.(c) L-WD with L = 4 andN = 32.(d) L-WD with L = 4 and N = 128. (e) L-WD with L = 1/2 and N = 128. (f) Wigner distribution with
N = 64.(g) L-WD with L = 2 andN = 64. (h) L-WD with L = 4 and N = 64. (i) Signal's IF. (j) Estimated IF using the-WD with L = 1/2 andN = 32.
(k) Estimated IF using thé&-WD with L = 4 and N = 32. (I) Estimated IF using thé&-WD with L = 4 and N = 128. (m) Adaptive window length. (n)
Adaptive distribution order. (al.-WD with adaptive order and window length. (p) Estimated IF using/ih&/D with adaptive order and window length.

of all possible pair$h., L,). Now letus reorder the elementsifx A The setA can be determined by any reasonable method. In simula-
in such a way that we get a new fetwhose elementg, = L?/h3, tion we use a dyadic setwith, = 2”72, = 1, 2, 3, 4. Note that the
qg=1,2,3,---, JK form an decreasing sequence distribution withL, = 1 (r = 2) is the Wigner distribution, the dis-
o , - ST o . L 1/
O ={g, =L Mg > g > > grxc} (48) tributions withL,. = 2, 4 are higher order distributions, add= 1/2

] o ~would be a “lower order” distribution. (The notions “higher order” and
The elementg, form a decreasing sequence of the estimation varian@ger order” are used with respect to the Wigner distributions.)

17)
602
7(9q) =\ 7z 9T (49) VI. EXAMPLES

The confidence intervals corresponding to the sequepeee The discretel.-Wigner distribution is calculated using the standard
. , . FFT routines. Note that if we use < 1 (for example,L = 1/2 as we
Dy =[o(t) = (r + Ak)o(gq). 2(1) + (5 + Ak)o(gq)]  (50) g in this correspondence) then we have to take care about the phase
and the algorithm (38)—(41) can be applied in a straightforward manneontinuity ofz'/2(nT’) over thex borders.
The only difference is that the sHtis replaced by the sét and instead  The algorithm is tested on two examples. In both of them we as-
of the window size selection, we fing"™ which immediately deter- sumed a signal of the form(nT) = A exp(jo(nT)) + e(nT), with
mines a pair of the correspondiy,+, L,+). a given IFw(nT) and the phase(nT) = >0, w(@T)T.

J
=0
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In this example we did additional interpolation for each window length,
up to N = 128, and choose IF values such that the quantization error
can be neglected. The-Wigner distributions with some constant or-
ders and window lengths are presented in Fig. 4(a)—(h), along with the
estimated IF obtained using some of them, Fig. 4(i)—(1).

The adaptation is done with respect to both window length and dis-
tribution order, according to the algorithm (38)—(41) and hints in Sec-
tion V-D. The adaptive window lengtN 1 (n7") and distribution order
L.+ (nT), as well theL-Wigner distribution with the same parameters

o usings + Ak = 5, are presented in Fig. 4(m)—(0), along with the esti-
S e E mated IF, Fig. 4(p). As expected, the algorithm produced the smallest
possible variance (witli .+ (nT) = 1/2 andN,+ (nT) = 128) in the
regions where the instantaneous frequency estimator is not biased (i.e.,
.y the IF is constant). The application resulted in small window lengths
¥ and high distribution orders in the region where the bias is large, around
10t 1 the pointnT" = 0.5. The absolute mean error, normalized to the min-
imal discretization step, is shown in Fig. 5. It further illustrates our
considerations about the influence of window lengths and distribution
orders on the accuracy of the IF estimation. Here we will also discuss
N the the dependence of the optimal distribution order dependence on
the window length. From Fig. 5 we see that for the narrowest window
length the smallest mean absolute error is obtained with the distribu-
tion having orded. = 1/2. The best distribution order increases with
window length. For a reasonably large window length (which is im-
portant for the distribution’s frequency resolution), the best results are
obtained for the highest distribution order= 4. This is in complete
agreement with (19).

In all considered examples a normalized signal with unity amplitude
is assumed. If that were not the case the IF estimation would not be
influenced at all, but we would not be able to form a resulting distri-
bution in order to combine the distributions with different orders into a
resulting one. Then a normalized version of fh&Vigner distribution,
introduced as thé&-distribution [21], with the same properties as the
L-Wigner distribution concerning the if estimation, could be used.

Adaptive Nand L

1()'2 t ! ¢ 1 1 I

Fig. 5. Mean absolute error for various window lengths aixWigner
distribution orders.

The signal amplitude wad = 1 and20 log(A/o.) = 15 [dB]
(A/oc = 5.62). The considered time interval was< »T" < 1.
Example 1: Signal with a nonlinear IF defined by

w(nT) = 107 a sinf100(nT — 0.5)) + 647.

Several L-Wigner distributions of this signal with constant orders
(L = 1, 2, 4) and window length$ N = 32, 128) are presented in

Flg._2(a)—_(f). . . i The L-Wigner distribution with the data-driven and time-varying
Since in this example we have not done any additional intefnqoy length and order is presented, as an adaptive estimator of the
polation to find an adaptive distribution, then according t0 thg: The choice of the window length and the distribution order is based
results in Section V-A, we considered distributions with a maximg}y, the intersection of the confidence intervals of the IF estimates. The
order of L = 4 and various window lengths. corresponding 10 yeyeloped algorithm uses only the formula for the asymptotic variance

Ne = 16, 32, 64, 128, 256 signal samples withirh... The adap- ot he |F estimates. Simulations show a significant accuracy improve-
tive window lengths, determined by the algorithm (38)—(41) with,ant of the adaptive algorithm.

x + Ak = 3.5, are shown in Fig. 2(g). We can see that when the
IF variations are small then the algorithm uses the widest window
length in order to reduce the variance. Around the peifit= 0.3,
where the bias is large, the windows with smaller lengths are used.
The L-Wigner distribution with adaptive window length is presented The authors wish to thank the reviewers for very thorough reading
in Fig. 2(h). The IF, as well as its estimates with = 1, N = 32), 0f the correspondence and the valuable comments.

(L =4, N = 256), and an adaptive window length usifig= 4, are
given in Fig. 2(i)—(I), respectively. The mean absolute IF estimation
error E{|A&(nT)|}, calculated by averaging over< nT < 1 and
normalized to the minimal discretization step is shown in Fig. 3 for [1] M. G. Amin, “A new approach to recursive Fourier transforrRfoc.
each considered distribution order and window length. This figure IEEE, vol. 75, p. 1537, Nov. 1987.

confirms that for each window length, thB-Wigner distribution [2] B. Boashash, “Estimating and interpreting the instantaneous frequency
with L = 4 produces the smallest error, as well as that the closest ggs_;gga/'\;rpigglz: Fundamentals?toc. IEEE vol. 80, no. 4, pp.
distribution to the distribution with adaptive window length (given by (3 g’ Boashash and P. O'Shea, “Polynomial Wigner—Ville distributions and
the solid line) is the one witlh = 4, N = 128 presented in Fig. 2(f). their relationship to time-varying higher order spectrlEEE Trans.

. . . Signal Processingvol. 42, pp. 216-220, Jan. 1994.

Example 2: A signal with step-wise IF [4] D. Reid, A. Zoubir, and B. Boashash, “Aircraft flight parameter
estimation based on passive acoustic techniques using the polyno-
mial Wigner—Ville distribution,”J. Acoust. Soc. Amewol. 102, pp.
207-223, July 1997.
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