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Instantaneous Frequency Estimation Using Higher Order
-Wigner Distributions with Data-Driven Order

and Window Length

LJubǐsa Stankovic´, Senior Member, IEEE,and
Vladimir Katkovnik, Member, IEEE

Abstract—The -Wigner distributions are defined in order to improve
the concentration of signal’s time–frequency representation. For a finite
distribution order and nonlinear instantaneous frequency (IF) it gives bi-
ased IF estimates. In the case of noisy signals the optimal window length
and distribution order depend on the noise variance and unknown IF. In
this correspondence an adaptive IF estimator with the time-varying and
data-driven window length and distribution order is developed. Based on
the analysis that has been done here, lower order time–frequency distribu-
tions are introduced.

Index Terms—Estimation, instantaneous frequency, time–frequency
analysis, Wigner distribution, window optimization.

I. INTRODUCTION

Since there is no distribution from the Cohen class (with signal-inde-
pendent kernel) which can produce the complete concentration along
the instantaneous frequency (IF) when it is a nonlinear function of
time, [5]–[7], [21], various higher order distributions have been de-
rived. For the analysis of signals with polynomial phase the polyno-
mial Wigner–Ville distributions are proposed by Boashashet al. in
[2]–[4]. The same class of signals may be treated by the local polyno-
mial distributions, defined in [10] and [11]. TheL-Wigner distribution,
introduced and described in [19], [20], [22], and [23], significantly re-
duces influence of higher order terms in the phase function when it is a
nonlinear function of time. The polynomial Wigner–Ville distribution,
and theL-Wigner distributions are closely related to the time-varying
higher order spectra [3], [17].

In this correspondence we analyze the IF estimator, in the case of ad-
ditive noisy signals, using theL-Wigner distribution. The estimator’s
variance and bias are highly dependent on the window length and distri-
bution order. Provided that the signal and noise parameters are known,
the optimal window length and/or distribution order may be determined
by minimizing the estimation mean squared error. However, those pa-
rameters are not available in advance. Especially it is true for the IF
derivatives that determine the estimation bias. Here, we will present an
adaptive algorithm which does not requirea priori knowledge of the
estimation bias. The basic idea of the method that we use for selec-
tion of the data-driven window length and order has originated from
[8] and [9], where it was proposed for the nonparametric regression.
The idea of this method was exploited in [12] for development of the
adaptive local polynomial periodogram, giving estimates of the IF and
its derivative. It was subsequently used in [13] for development of the
nonparametric estimator of the IF, based on the Wigner distribution
with the data-driven adaptive window size. A discrete nature of opti-
mization parameters of theL-Wigner distribution (window length and
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Stankovićwas supported by the Alexander von Humboldt Foundation.

LJ. Stankovic´ was with with the Signal Theory Group, Ruhr University
Bochum, Germany. He is now with the University of Montenegro, 81000
Podgorica, Montenegro, Yugoslavia (e-mail: l.stankovic@ieee.org).

V. Katkovnik is with the Statistics Department, University of South Africa,
Pretoria, RSA.

Communicated by E. Soljanin, Associate Editor for Coding Techniques.
Publisher Item Identifier S 0018-9448(00)00059-6.

distribution order), along with a small number of their possible values,
resulted in a modification of the original algorithm. Also, the analysis
presented in this correspondence leads to an interesting conclusion that
not only higher order distributions may improve time–frequency pre-
sentation, but also “lower order” distributions can be the best choice in
some cases.

The correspondence is organized as follows. A review of the
L-Wigner distribution definition, along with a noise modeling, is done
in Section II. In Section III the variance and bias of the IF estimate,
using theL-Wigner distributions, are derived. The optimal window
length and distribution order are discussed in this section. A numerical
implementation of theL-Wigner distribution is presented in Section
IV. An adaptive IF estimator, with the data-driven window size and
distribution order is described in Section V. Numerical examples are
presented in Section VI.

II. DEFINITIONS AND NOISE MODELING

TheL-Wigner distribution of a discrete-time signals(nT ), at a given
instantt = lT , is defined by [19], [20], [22], and [23]

LWDL(t; !)=

1

n=�1

wh(nT )s
L t+n

T

L
sL� t�n

T

L
e�j2nT!

(1)

wherewh(nT ) = T=h�w(nT=h)withw(t) being a real-valued finite-
length symmetric window such thatw(t) = 0, for jtj > 1=2, T is the
basic sampling interval, andh is the windowwh(nT ) width.

Note that in the realization of LWDL(t; !) the signal has, by
definition (1), to be sampled with a sampling interval equal to1=L
times the sampling interval in the Wigner distribution.1 Its values
should be available not only at the instants defined by the Nyquist
sampling rate�=!m, where!m is the maximal signals frequency,
but also at the pointsnT=L = n�=(2!mL). Note that this can be
avoided, i.e., LWDL(t; !) can be realized without oversampling
by using theS-method and procedure described in [20], [22], and
[23]. This realization would also produce theL-Wigner distribution
which is, in the case of multicomponent signals, equal to the sum
of L-Wigner distributions of each individual component, with a
significant reduction of the noise influence. Since the realization is
not an issue here, we will assume that theL-Wigner distribution is
realized according to the definition (the worst case).

Consider a noisy signal

x(nT ) = s(nT ) + �(nT ); s(nT ) = A exp(j�(nT )) (2)

with s(nT ) being a signal with a real-valued amplitudeA and�(nT )
being a white complex-valued Gaussian noise with mutually indepen-
dent real and imaginary parts of equal variances�2�=2. In the analysis
presented in this correspondence we additionally assume that the noise
is small with respect to the signal, i.e.,��=A� 1: Note that the last as-
sumption has also been used for the Wigner distribution analysis [10],
[16] and polynomial Wigner–Ville distribution [4].

1For an integerL > 1, as we used in our previous papers [18]–[23], this
means signal oversamplingL times. However, in this correspondence, we will
allow values0 < L < 1 (for example,L = 1=2), which will be useful in some
noisy cases and will mean signal downsampling.
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The original observationsx(nT )can under the low-noise assumption
be modified into the following model with the additive noise:

xL(nT ) �= sL(nT ) + LsL�1(nT )�(nT )

= sL(nT ) + �L(nT ): (3)

The autocorrelation function of�L(nT ) = LsL�1(nT )�(nT ) is

R� � (n) = A2L�2�2�L
2�(n): (4)

If L = 1 the variances of the transformed and the original noise
are equal to each other. For the case0 < L < 1, which has not been
considered previously, the transformed noise-to-signal ratio in (3) is
L2�2�=A

2. It can be smaller than the original�2�=A
2. For example,L =

1=2 may significantly reduce this ratio compared withL = 1. This
will be the reason to introduce, in this correspondence, distributions of
a “lower order” with respect to the Wigner distribution.

III. I NSTANTANEOUSFREQUENCYESTIMATION

Consider the problem of the IF!(t) = �0(t) estimation, from dis-
crete-time observations (2). We will assume that!(t) is a differentiable
function with bounded derivativesj!(r)(t)j = j�(r+1)(t)j � Mr(t),
r � 1.

If the signal is not noisy then, using the Taylor’s expansion of�(t+
n(T=L))� �(t � n(T=L)) aroundt, itsL-Wigner distribution is of
the form

LWDL(t; !) =A2L
1

n=�1

wh(nT ) e
j2� (t)nT ej��(t; n(T=L))

� e�j2!nT ;

where

�� t; n
T

L
= 2L

1

s=1

�(2s+1)(t)

(2s+ 1)!
n
T

L

2s+1

: (5)

If �(2s+1)(t) = 0 for all s orL!1, then theL-Wigner distribution
would have a maximum at! = �0(t). Therefore, theL-Wigner distri-
bution based IF estimator may be defined as

!̂(t) = arg max
!2Q

LWDL(t; !) (6)

withQ! = f! : 0 � j!j < �=(2T )g being the basic interval along the
frequency axis. As a measure of the estimate quality, at a given instant
t, let us define the estimation error as

�!̂(t) = !̂(t)� !(t): (7)

Proposition: Let !̂(t) be a solution of (6), andh ! 0, T ! 0;
andh=T ! 1. Then the variance and bias of the IF estimation error
�!̂(t) are given by

var (�!̂(t)) =
L2�2

2A2

Eh

F 2
h

(8)

Ef�!̂(t)g =
1

2Fh

1

s=1

Bh(s)

L2s
�(2s+1)(t); (9)

where

Fh =

1
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wh(nT )(nT )
2 ! h2

1=2

�1=2

w(t)t2 dt

Eh =

1

n=�1

w2
h(nT )(nT )

2 ! Th
1=2

�1=2

w2(t)t2 dt

Bh(s) =
�2

(2s+ 1)!

1

n=�1

wh(nT )(nT )
2s+2 !

�2h2s+2

(2s+ 1)!

�
1=2

�1=2

w(t)t2s+2 dt: (10)

The limits hold forT ! 0 andh=T ! 1.
Proof: The stationary point of LWDL(t; !) is defined by the

zero value of the derivative@LWDL(t; !)=@!, given by

@LWDL(t; !)

@!
=

1

n=�1

wh(nT )x
L t+ n

T

L
xL t� n

T

L

� (�j2nT ) e�j2nT!: (11)

The values of@LWDL(t; !)=@! around the stationary point may
be approximated by a linear model for small values of estimation error
�!̂, phase residual��(t; nT

L
), and noise�L(nT ). The linearization

gives
@LWDL(t; !)

@!
�=
@LWDL(t; !)

@! j0
+
@2LWDL(t; !)

@!2 j0
�!̂

+
@LWDL(t; !)

@! j0
��� +

@LWDL(t; !)

@! j0
��

(12)

where the indexj0 means that the expressions are calculated at the
point where! = �0(t), ��(t; n(T=L)) = 0, and �L(nT ) � 0.
The terms@LWDL(t; !)=@!��� and@LWDL(t; !)=@!�� represent
variations of the derivative@LWDL(t; !)=@! caused by small
��(t; nT ) and noise�L(nT ), respectively. For example, in the
calculation, of@LWDL(t; !)=@!��� we assume that the other two
disturbances caused by the noise�L(nT ) and frequency variation�!̂
can be neglected and that the phase variation��(t; nT ) is small.
Then
@LWDL(t; !)

@! j0
��� =

1

n=�1

wh(nT )A
2L ej2nT� (t)+j��(t; nT )

� (�j2nT ) e�j2nT!:

For! = �0(t) and small��(t; nT ), when

exp(j��(t; nT )) �= 1 + j��(t; nT )

we easily get the third line in the next equation, as a variation of
@LWDL(t; !)=@! due to small��(t; nT ). In the same way we get
the other terms as

@LWDL(t; !)

@! j0
=A2L

1

n=�1

wh(nT )(�j2nT ) = 0

@2LWDL(t; !)

@!2 j0
=�A2L

1

n=�1

wh(nT )(4nT )
2

=�4A2LFh

@LWDL(t; !)

@! j0
��� =A2L

1

n=�1

wh(nT )�� t; n
T

L
(2nT )

= 2A2LLh(t)

2� =
@LWDL(t; !)

@! j0
��

=

1

n=�1

wh(nT ) sL t+ n
T

L
sL

� t� n
T

L
� xL t+ n

T

L

� xL� t� n
T

L
(�j2nT )e�jnT!j0 : (13)

From@LWDL(t; !)=@! = 0 and the previous equations follows that

�4A2LFh�!̂ + 2A2LLh(t) + 2� = 0
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or

�!̂(t) = !(t)� !̂(t) =
1

2Fh
Lh(t) +

�

A2L
: (14)

The error�!̂ has two components: deterministicLh(t)=2Fh and
random�=(2A2LFh). Straightforward calculations, similar to the
ones used in [18] for the Wigner distribution, give

var(�!̂(t)) =
1

4A4F 2
w

1

m=�1

1

n=�1

wh(mT )wh(nT )

� sL t+ n
T

L
sL t+m

T

L
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L
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T
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T

L
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T

L
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T

L
(nmT 2)

� e
�j2(m�n)T!
j0 :

For the white noise�L(nT ) it results in

var (�!̂(t)) =
R� � (0)

2A2L

Eh
F 2
h

(15)

which proves (8).
In a similar way, the bias from(14) is of the form

Lh(t) = �2

1

s=1

�(2s+1)(t)

L2s(2s+ 1)!

1

n=�1

wh(nT )(nT )
2s+2

which proves(9) of the proposition.

Mean-Square Error: Let us analyze the mean-squared accuracy of
estimation. Using only the first significant term in the bias, the mean-
squared error (MSE) can be presented in the form

Ef(�!̂(t))2g =
2L2�2�
A2

Eh
F 2
h

+
Bh(1)�

(3)(t)

2FhL2

2

: (16)

For the rectangular window(Eh = Th=12, Fh = h2=12, Bh(1) =
�h4=240), we get

var (�!̂(t)) =
6�2�L

2

A2

T

h3

E(�!̂(t)) =
�(3)(t)

40L2
h2 (17)

Ef(�!̂(t))2g =
6�2�L

2

A2

T

h3
+

�(3)(t)

40L2
h2

2

: (18)

Note that the values ofEh, Fh, andBh(1) can be easily calculated for
any other window type.

It can be seen from (18) that the MSE has a minimum with respect
to L. The optimal value ofL is given by

Lopt(t) =
A2h7(�(3)(t))2

4800�2�T

1=6

: (19)

The dependence of the optimalL-Wigner distribution orderLopt on
the parametersA, ��,T , and the derivative�(3)(t) is quite clear. At
times whenj�(3)(t)j is large, higher distribution orders are required,
while for smallj�(3)(t)j, the distribution orderL should also be small.
This relation will be discussed in detail in examples.

The optimal window length, minimizing the MSE (18) for a givenL
is

hopt(t) =
7200�2�L

2T

A2(�(3)(t))2

1=7

: (20)

It is obvious that the calculation of (19) or (20) is not possible in prac-
tice, since its requires, besidesA and�2� , the knowledge of the IF
second derivative�(3)(t). It is a definitely unavailable value because
the IF itself has to be estimated.

Simultaneous unrestricted minimization of the MSE with respect to
L andh gives a trivial result: the MSE approaches zero ash ! 1
andh=L! 0. This result has no practical interest. However, the mini-
mization of the MSE with respect to a finite set of acceptable values of
h andL gives optimal pairs of(h; L) which, as simulations confirm,
are able to significantly improve the accuracy.

IV. NUMERICAL IMPLEMENTATION

TheL-Wigner distribution(1), discretized over the frequency, is im-
plemented as

LWDL(k; l) =

N=2�1

n=�N=2

wh(nT )x
L lT + n

T

L
xL

� lT � n
T

L
e�j2(2�=N)kN (21)

whereN = h=T is a number of samples determined by the window
lengthh, and the sampling intervalT is given asT = �=(2!m), where
!m is the signal’s maximal frequency. The IF is estimated as

!̂h(lT ) = arg max
k

LWDL(k; l)
�

NT
(22)

for 0 � k � N=2� 1, for signals with only nonnegative frequencies.
Let us consider the influence of the quantization error on the accu-

racy of the IF estimation, caused by the discretization of LWDL(k; l) in
(21) along the frequency axis. Note that the quantization error may also
be considered as a parameter closely related to the distribution concen-
tration (frequency resolution), which is very important for time–fre-
quency distributions (especially in the case of multicomponent sig-
nals). For the quantization noise error a uniform probability density
is usually assumed. In (22) this probability density is uniform over
the segment(��=2h; �=2h], since�=(NT ) = �=h. Its variance is
�2q = 1=12 (�=h)2, producing the resulting MSE in (18) of the form

Ef(�!̂(t))2g =
6�2�L

2

A2

T

h3
+

�(3)(t)

40L2
h2

2

+
1

12

�2

h2

=
6�2

A2

L2

N
+
�2

12

1

h2
+

�(3)(t)

40L2
h2

2

: (23)

For a large signal-to-noise ratio and any reasonable number of samples
N and distribution orderL we have(6�2�=A

2)(L2=N) < �2=12 and
the estimation variance is dominated by the quantization error.

As is well known, the quantization effects of the fast Fourier trans-
form (FFT) can be reduced by appropriate zero-padding in the time
domain, i.e., by interpolation along the frequency axis. Provided that
this interpolation of theL-Wigner distribution is done up to the widest
considered window length, the quantization error will be reduced and
kept to a constant value.

In the next section we will first consider the case when the interpo-
lation is not done. It yields a simpler analysis and is more common in
time–frequency distribution realizations. An algorithm for the optimal
window length determination will be derived for this case, and then
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extended to the cases with high interpolation rate (when quantization
error can even be neglected).

V. ALGORITHM FOR ADAPTIVE ORDER AND WINDOW

LENGTH DETERMINATION

A. Basic Idea of the Window Length Optimization

The basic idea follows from the accuracy analysis, given in the
Proposition. Namely, at least for the asymptotic case of small noise
and bias, the estimation error can be represented as a sum of the
deterministic (bias) and random component, with the variance given
in the Proposition and (17). For the estimated IF!̂h(t) as a random
variable distributed around the exact IF!(t) with the biasbias (t; h)
and the variance�2(h), we may write the following relation:

j!(t)� (!̂h(t)� bias (t; h))j � ��(h) (24)

where�2(h)
�
= var (�!̂(t)), and the inequality holds with the prob-

ability P (�) depending on�. The values of� will be discussed later.
Here we will only mention that it should be such thatP (�) is close
to 1. In the case of dominant quantization noise error, which will be
considered now, the probability density of!̂h(t) aroundbias (t; h) is
uniform. For this distribution, the value� =

p
3 guarantees (24) with

probability 1. The same value of� would guarantee only the proba-
bility of 0:93, if the distribution were Gaussian.

Using the expressions for the variance and bias

�2(h) =
6�2�
A2

L2

N
+
�2

12

1

h2
�= �2

12

1

h2

bias (t; h) =
�(3)(t)

40L2
h2 (25)

the MSE is given by

Ef(�!̂(t))2g = �2

12

1

h2
+

�(3)(t)

40L2
h2

2

:

Concerning the distribution orderL, we may conclude that its highest

value should be used,as long as72�
A

L
N�

� 1.
The MSE minimization with respect toh gives

�(hopt) =
p
2 bias (t; hopt); (26)

wherehopt denotes the optimal window length,

hopt = (50�2L4=(3(�(3)(t))2))1=6:

Let us introduce a discrete setH of window length valuesh 2 H

H = fhsjhs = ahs�1; s = 1; 2; 3; � � � ; J; a > 1g: (27)

The following arguments can be given in favor of such a set.

a) A discrete scheme for window lengths is necessary for efficient
numerical realizations. Realizations of time–frequency distribu-
tions of the form(21) are almost exclusively based on the FFT
algorithms (excluding only a few recursive approaches, [1], [14],
[15]). The most common are radix-2 or radix-3 FFT algorithms,
which correspond toa=2 or a=3, respectively, in which case
the setH gives dyadic(hs = h02

s) or triadic (hs = h03
s)

window length schemes. In the realizations, the smallest window
lengthh0 should correspond to a small numberN0 of contained
signal samples. For example, for radix-2 FFT algorithms,N0=4
orN0=8 with Ns=2Ns�1, s=1; 2; � � � ; J .

b) A search for the optimal window length overH is a simplified
optimization, because the set (27) consist of a relatively small
number of elements. However, the discrete set ofh inevitably

(a)

(b)

Fig. 1. (a) Illustration of the MSE. (b) Exact IF value, bias, and confidence
intervals limits as a function of the window width illustration.

leads to suboptimal window length values due to the discretiza-
tion ofh (quantization noise error and effects due to quantization
of h, which, despite similar names, are two completely different
notions). It is important to note that this effect, due to the dis-
crete nature ofh 2 H , would exist even if we knew in advance
all of the parameters required for the optimal window length cal-
culation, and decided to use radix-2 FFT algorithms in the re-
alization. Fortunately, the loss of accuracy is not significant in
many cases, because the MSE has a stationary point for the op-
timal window lengthh = hopt (and the MSE varies very slowly
for the window length values close toh = hopt). The MSE as
a function of the window length is presented in Fig. 1(a), where
both axeshave logarithmic scales. Fig. 1(b) illustrates the regions
where the IF may take its values, according to bias and variance
relations (25). This dependence will be discussed in the sequel.
Here we will only mention that for small window lengths the IF
bias is very small, but variance is large (25). Therefore, the IF
lies within the wide region�p3�(h); p3�(h) , around the
exact IF value. As the window length increases, these IF limits
are closer to each other (since�(h) decreases), but at the same
time the bias is increasing, see Fig. 1.

Now we will derive an algorithm for the determination of the optimal
window sizehopt, without knowing the bias, using the IF estimates (22)
and the formula for the IF estimate’s variance only.
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It is based on the following statement.

Let H be a set of dyadic window length values, i.e.,a = 2 in (27),
and� =

p
3. Assume thathopt 2 H . Define the upper and lower

bounds of confidence intervalsDs = [Ls; Us] as

Ls = !̂h (t)� (�+��)�(hs)

Us = !̂h (t) + (�+��)�(hs) (28)

where!̂h (t) is an estimate of the IF, withh = hs and�(hs) given
by (25).

Let the window lengthhs be determined as a length corresponding
to the largests = s+ (s = 2; � � � ; J) when

Ds \Ds+1 6= ;
Ds+1 \Ds+2 = ; (29)

is satisfied, i.e., when the last two successive confidence interval still
intersect.

There exists value of�� such that, with probability close to1

hs = hopt: (30)

Proof: Let us denote byb the unknown bias

bias (t; hopt) = b (31)

when the window length has its optimal valueh = hopt. Without loss
of generality we will assume thatb > 0. The window lengths belonging
to H , recalling that we assumedhopt 2 H , can be represented as
follows:

h(p) = hopta
p; a = 2; p = � � � ; �2; �1; 0; 1; 2; � � � (32)

wherep = 0 corresponds to the desired window lengthhopt. Note also
that we use two indices for the window lengthss (i.e.,hs) for indexing
which starts from the narrowest window length, andp (used in form of
an argument, i.e.,h(p)) starting from thehopt window length (when
p = 0), with narrower windows having negativep and wider window
lengths having positivep.

The bias and variance values given by (25) can be written for any
h(p) of the form (32) as

bias (t; h(p)) = a2pb; �(h(p)) =
p
2 a�pb (33)

according to (26) and (31).
From (33) we can conclude that forp � 0 anda = 2 the bias is

much smaller than the variance sincea2p � p
2 a�p. Thus the es-

timate!̂h(t) is spread around the exact value!(t) with a small bias
(bias(t; h(p)) ! 0 ash(p) ! 0) and a large variance(�(h(p)) !
1 ash(p)!1). A confidence interval of the estimatê!h(p)(t), for
a givenh(p), is defined by

D(p) = [!̂h(p)(t)� ��(h(p)); !̂h(p)(t) + ��(h(p))]:

For� =
p
3 we have that!(t) 2 D(p), whenbias (t; h(p)) = 0.

A confidence interval, that takes into account the biased estimate
!̂h(p)(t) is

~D(p)=[!̂h(p)(t)�(�+��)�(h(p)); !̂h(p)(t)+(�+��)�(h(p))]

(34)

where�� > 0 is to be found. It is obvious that!(t) 2 ~D(p) for
p � 0 because in this case the bias is small and the segment~D(p)

is wider thanD(p) as�� > 0. Note also that all of the confidence
intervals ~D(p), with p such that the bias is very small, have the true IF
value!(t) in common, or to be precise have at least region[!(t)���
�(h(p)); !(t) + �� �(h(p))] in common, i.e.,

[!(t)����(h(p)); !(t) + ���(h(p))] � ~D(p)\ ~D(p+ 1)

for anyp � 0.
For p � 0 the variance is small but the bias is large, sincea2p �p
2 a�p. It is clear that for a large enoghp, ~D(p)\ ~D(p+ 1) = ; for

any given��.
The idea behind the algorithm (28) and (29) is that�� in ~D(p) can

be found in such a way that the largestp for which two consecutive
confidence intervals~D(p) and ~D(p + 1) have a point in common is
p = 0. Such a value of�� exists because the bias and the variance are
monotonically increasing and decreasing functions ofh, respectively.
As soon as this value of�� is found, an intersection of the confidence
intervals ~D(p) and ~D(p+1) works as an indicator of the eventp = 0,
i.e., the event whenhs = hopt is found. The algorithm given in the
form (28) and (29) tests the intersection of the confidence intervals,
where (29) is a condition that two sequential intervals~Ds+1 and ~Ds

are the last pair of the confidence intervals having a point in common
(note again that indicess andp only indicate whether we assume the
first confidence interval, or the confidence interval for whichh = hopt
has index0).

Now let us find this crucial value of��: According to the above
analysis, only three values ofp = 0; 1, and2 along with the corre-
sponding intervals~D(0), ~D(1), and ~D(2) should be considered, in this
case. The intervals~D(0) and ~D(1) should haveand the intervals~D(1)
and ~D(2) should not haveat least one point in common. Since!̂h(p)(t)
is a random (uniformly distributed) variable, then the confidence in-
terval bounds are also random and uniformly distributed. Thus we must
consider the worst possible cases for the corresponding bounds. These
worst case conditions, forb > 0, are given by

minfU(0)g � maxfL(1)g
maxfU(1)g < minfL(2)g: (35)

Let us, for example, considerU(1). The estimated IF̂!h(1)(t)maay,
according to (34), assume values within the interval

!̂h(p)(t) 2[!(t) + bias (h(1))� ��(h(1));

!(t) + bias (h(1)) + ��(h(1))]:

Consequently, the upper confidence interval boundU(1), according to
(34), may take values from the interval

U(1) 2 [!(t) + bias (h(1))+ ���(h(1));

!(t) + bias (h(1))+ (2�+��)�(h(1))]:

The maximal possible value ofU(1) is

maxfU(1)g = !(t) + bias (h(1))+ (2�+��)�(h(1)):

In the same way we get the other bounds required by (35)

bias (h(0))+ ���(h(0))� bias (h(1))����(h(1))

(h(1))+ (2�+��)�(h(1))< bias (h(2))� (2�+��)�(h(2))

(36)

or

1 + ��
p
2 � a2 ���

p
2 a�1

1 + (2�+��)
p
2 a�1 <a4 � (2�+��)

p
2 a�2: (37)

It can be verified that�� = (a2�1)=
p
2 (1 + a�1) is the smallest

�� > 0 that satisfies the first inequality in (37). Fora = 2 we get
�� = 1:414. This value of�� with � =

p
3 satisfies the second

inequality in (37).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 2. Time–frequency representation and the IF estimation of a signal with the nonlinear IF. (a) Wigner distribution withN = 32. (b) Wigner distribution with
N = 128. (c)L-WD with L = 2 andN = 32. (d)L-WD with L = 2 andN = 128. (e)L-WD with L = 4 andN = 32. (f) L-WD with L = 4 andN = 128.
(g) Adaptive window length. (h)L-WD with L = 4 and adaptive window length. (i) The IF of signal. (j) The IF estimation with the Wigner distribution and
N = 32. (k) The IF estimation withL = 4 andN = 256. (l) The IF estimation withL = 4 and adaptive window length.

With (37) being satisfied we have, forp�0, that ~D(p)\~D(p+1) 6=;
with probability close to1, and forp� 1, ~D(p)\ ~D(p+1)= ; with
probability close to1. This completes the proof of the statement.

We emphasize that the statement is derived provided thathopt as-
sumes one of the dyadic values fromH and the bias and variance
are given by the asymptotic formulas (25). In applications, due to the
discrete nature ofh, we will never havehopt 2 H , which results in
the already described discretization ofh and slightly suboptimal MSE
values. This means that the values� and��, given in the statement,
should be interpreted as a reasonable approximation which can be used
in the algorithm (28) and (29), at least as long as (25) holds for the bias
and variance. This was the reason for the expression “probability close
to 1.”

B. Algorithm

According to the statement and the analysis in the previous subsec-
tion, we may define the following algorithm for the adaptive IF estima-
tion.

1) Assume that a setH is given by (27).
2) For a given instantt, perform theL-Wigner distribution calcula-

tion for increasing window lengthshs 2 H beginning with the
smallest.

3) Estimate IF using

!̂h (t) = arg max
!2Q

LWDL(t; !) : (38)
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4) With

�(hs) = [(6�2�=A2)(L2=N) + �2=3] 1=h2s �= �=hs
p
3

and!̂h (t), define the segments

~Ds(t) = [Ls(t); Us(t)] (39)

where

Us(t) = !̂h (t) + (�+��)�(hs)

Ls(t) = !̂h (t)� (�+��)�(hs)

with, for example,� + �� � 3:2.
5) The adaptive window lengthhs is determined as the length

corresponding to the largests(s = 1; 2; � � � ; J) whenDs \
Ds+1 6= ;, i.e.,

j!̂h (t)� !̂h (t)j � (�+��)[�(hs) + �(hs+1)] (40)

is still satisfied.
Then, thiss+ is the largests for which the segmentsDs and

Ds+1, s � J , have a point in common. The adaptive window
length is chosen as

ĥ(t) = hs+(t) (41)

and!̂ĥ(t)(t) is the adaptive IF estimator with data driven window
for a given instantt.

6) Take nextt.

C. Comments on the Algorithm

If the noise-dependent part in the standard deviation�(hs) cannooot
be neglected (as will be the case in further analysis) then the estimation
of signal and noise parametersjAj and�2� can be done using

jÂj2 + �̂2� =
1

N

N

n=1

jx(nT )j2 (42)

where the sum is calculated over allN observations andN is assumed
to be large, andT to be small. The variance is estimated by

�̂�r =
fmedian(jxr(nT )� xr((n� 1)T )jg

0:6745

�̂�i =
fmedian(jxi(nT )� xi((n� 1)T )jg

0:6745

�̂2� =(�̂2�r + �̂2�i)=2 (43)

wherexr(nT ) andxi(nT ) are the real and imaginary parts ofx(nT ),
respectively, andT is sufficiently small.

Next, we will consider how a compromise, corresponding to the
MSE minimization, can be achieved for the IF estimation with the
L-Wigner distribution implemented with an appropriate interpolation
mentioned above.

D. Estimation with Interpolation

In the case when the quantization error may be neglected, i.e., an
appropriate interpolation is done, we have the variance and the bias
strongly depend on both the window lengthh and the distribution order
L. Consider the cases of optimization with respect toh provided a fixed
orderL, as well as the simultaneous optimization with respect to both
h andL.

a) Let the orderL of anL-Wigner distribution be fixed and the bias
and variance of estimation be determined by (18). It can be seen that
for the optimal window sizehopt, the relation

�(hopt) = 4=3 bias (t; hopt) (44)

Fig. 3. Mean absolute error for various window lengths andL-Wigner
distribution orders in the case of dominant quantization error.

between the bias and the variance holds instead of (26). It is obtained
by equating the first derivative of (18) with respect toh with zero. We
will follow the same reasoning as in Section V-A, with the assumption
that for a certain� we may assume that

j!(t)� (!̂h(t)� bias (t; h))j � ��(h) (45)

holds with a probability close to1. Again assume that the window
length is dyadichs 2 H andh(p) = hopta

p 2 H with a = 2. The bias
and variance as functions of the unknown parameterb = bias (t; hopt)
are

bias (t; h(p)) = ba2p; �(h(p)) =
2p
3
ba�3p=2:

Then the conditions that~D(0)\ ~D(1) 6= ; and ~D(1)\ ~D(2) = ;;
with b > 0, are of the form (36) and produce the inequalities similar to
(37)

1 +
2p
3
�� � a2 ���

2p
3
a�3=2

1 + (2�+��)
2p
3
a�3=2 <a4 � (2�+��)

2p
3
a�3: (46)

For a = 2 these inequalities give the smallest positive value�� =
1:919 and the largest(2�+ ��) = 27:15. Note that for the value of
� � 3, i.e.,�+�� � 5, the inequality (45) holds with the probability
P (�) = 0:997.

With these hints and parameter values we can now use the algorithm
(38)–(41) as described in Section V-B for the adaptive window length
determination.

b) Consider the simultaneous optimization with respect to both pa-
rameters in question,L andh: Let us define the two sets

H = fhs jh1 < h2 < h3 < � � � < hJg
� = fLrjL1 < L2 < � � � < LKg (47)

whereh 2 H is a set of values of the window lengthsh, and� is a set
of distribution orders, denoted byLr.

Consider a direct product ofH and� as a set

H � � = f(hs; Lr)js = 1; 2; � � � ; J; r = 1; 2; � � � ; Kg
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(a) (b) (i) (j)

(c) (d) (k) (l)

(e) (f) (m) (n)

(g) (h) (o) (p)

Fig. 4. Time–frequency representation and IF estimation of a signal with the step-wise IF. (a)L-WD with L = 1=2 andN = 32. (b) Wigner distribution with
N = 32. (c)L-WD with L = 4 andN = 32. (d)L-WD with L = 4 andN = 128. (e)L-WD with L = 1=2 andN = 128. (f) Wigner distribution with
N = 64. (g)L-WD with L = 2 andN = 64. (h)L-WD with L = 4 andN = 64. (i) Signal’s IF. (j) Estimated IF using theL-WD with L = 1=2 andN = 32.
(k) Estimated IF using theL-WD with L = 4 andN = 32. (l) Estimated IF using theL-WD with L = 4 andN = 128. (m) Adaptive window length. (n)
Adaptive distribution order. (o)L-WD with adaptive order and window length. (p) Estimated IF using theL-WD with adaptive order and window length.

of all possible pairs(hs; Lr). Now let us reorder the elements ofH��
in such a way that we get a new set� whose elementsgq = L2

r=h
3
s ,

q = 1; 2; 3; � � � ; JK form an decreasing sequence

� = fgq = L2r=h
3

sjg1 � g2 � � � � � gJKg: (48)

The elementsgq form a decreasing sequence of the estimation variance
(17)

�(gq) =
6�2�
A2

gqT : (49)

The confidence intervals corresponding to the sequencegq are

Dq = [!̂(t)� (�+�k)�(gq); !̂(t) + (�+�k)�(gq)] (50)

and the algorithm (38)–(41) can be applied in a straightforward manner.
The only difference is that the setH is replaced by the set� and instead
of the window size selection, we findq+ which immediately deter-
mines a pair of the corresponding(hs ; Lr ).

The set� can be determined by any reasonable method. In simula-
tion we use a dyadic set withLr = 2r�2, r = 1; 2; 3; 4. Note that the
distribution withLr = 1 (r = 2) is the Wigner distribution, the dis-
tributions withLr = 2; 4 are higher order distributions, andL = 1=2
would be a “lower order” distribution. (The notions “higher order” and
“lower order” are used with respect to the Wigner distributions.)

VI. EXAMPLES

The discreteL-Wigner distribution is calculated using the standard
FFT routines. Note that if we useL < 1 (for example,L = 1=2 as we
did in this correspondence) then we have to take care about the phase
continuity ofx1=2(nT ) over the� borders.

The algorithm is tested on two examples. In both of them we as-
sumed a signal of the formx(nT ) = A exp(j�(nT )) + �(nT ), with
a given IF!(nT ) and the phase�(nT ) = n

i=0 !(iT )T .
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Fig. 5. Mean absolute error for various window lengths andL-Wigner
distribution orders.

The signal amplitude wasA = 1 and20 log(A=��) = 15 [dB]
(A=�� = 5:62). The considered time interval was0 � nT � 1.

Example 1: Signal with a nonlinear IF defined by

!(nT ) = 10� a sinh(100(nT � 0:5)) + 64�:

SeveralL-Wigner distributions of this signal with constant orders
(L = 1; 2; 4) and window lengths(N = 32; 128) are presented in
Fig. 2(a)–(f).

Since in this example we have not done any additional inter-
polation to find an adaptive distribution, then according to the
results in Section V-A, we considered distributions with a maximal
order ofL = 4 and various window lengthshs corresponding to
Ns = 16; 32; 64; 128; 256 signal samples withinhs. The adap-
tive window lengths, determined by the algorithm (38)–(41) with
� + �� = 3:5, are shown in Fig. 2(g). We can see that when the
IF variations are small then the algorithm uses the widest window
length in order to reduce the variance. Around the pointnT = 0:5,
where the bias is large, the windows with smaller lengths are used.
TheL-Wigner distribution with adaptive window length is presented
in Fig. 2(h). The IF, as well as its estimates with(L = 1; N = 32),
(L = 4; N = 256), and an adaptive window length usingL = 4, are
given in Fig. 2(i)–(l), respectively. The mean absolute IF estimation
errorEfj�!̂(nT )jg, calculated by averaging over0 � nT � 1 and
normalized to the minimal discretization step is shown in Fig. 3 for
each considered distribution order and window length. This figure
confirms that for each window length, theL-Wigner distribution
with L = 4 produces the smallest error, as well as that the closest
distribution to the distribution with adaptive window length (given by
the solid line) is the one withL = 4; N = 128 presented in Fig. 2(f).

Example 2: A signal with step-wise IF

!(nT ) = 32�sign (nT � 0:5) + 64�:

In this example we did additional interpolation for each window length,
up toN = 128, and choose IF values such that the quantization error
can be neglected. TheL-Wigner distributions with some constant or-
ders and window lengths are presented in Fig. 4(a)–(h), along with the
estimated IF obtained using some of them, Fig. 4(i)–(l).

The adaptation is done with respect to both window length and dis-
tribution order, according to the algorithm (38)–(41) and hints in Sec-
tion V-D. The adaptive window lengthN

s
(nT ) and distribution order

L
r

(nT ), as well theL-Wigner distribution with the same parameters
using�+�� = 5, are presented in Fig. 4(m)–(o), along with the esti-
mated IF, Fig. 4(p). As expected, the algorithm produced the smallest
possible variance (withL

r
(nT ) = 1=2 andN

s
(nT ) = 128) in the

regions where the instantaneous frequency estimator is not biased (i.e.,
the IF is constant). The application resulted in small window lengths
and high distribution orders in the region where the bias is large, around
the pointnT = 0:5. The absolute mean error, normalized to the min-
imal discretization step, is shown in Fig. 5. It further illustrates our
considerations about the influence of window lengths and distribution
orders on the accuracy of the IF estimation. Here we will also discuss
the the dependence of the optimal distribution order dependence on
the window length. From Fig. 5 we see that for the narrowest window
length the smallest mean absolute error is obtained with the distribu-
tion having orderL = 1=2. The best distribution order increases with
window length. For a reasonably large window length (which is im-
portant for the distribution’s frequency resolution), the best results are
obtained for the highest distribution orderL = 4. This is in complete
agreement with (19).

In all considered examples a normalized signal with unity amplitude
is assumed. If that were not the case the IF estimation would not be
influenced at all, but we would not be able to form a resulting distri-
bution in order to combine the distributions with different orders into a
resulting one. Then a normalized version of theL-Wigner distribution,
introduced as theS-distribution [21], with the same properties as the
L-Wigner distribution concerning the if estimation, could be used.

VII. CONCLUSION

The L-Wigner distribution with the data-driven and time-varying
window length and order is presented, as an adaptive estimator of the
IF. The choice of the window length and the distribution order is based
on the intersection of the confidence intervals of the IF estimates. The
developed algorithm uses only the formula for the asymptotic variance
of the IF estimates. Simulations show a significant accuracy improve-
ment of the adaptive algorithm.
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Polynomial Cancellation Coding and Finite Differences

Katherine A. Seaton and Jean Armstrong, Member, IEEE

Abstract—We give here a mathematical context for polynomial cancel-
lation coding, proposed recently to reduce intercarrier interference in or-
thogonal frequency division multiplexing (OFDM). In particular, we ana-
lyze polynomial cancellation coding (PCC) in terms of finite differences.

Index Terms—Finite differences, orthogonal frequency division multi-
plexing, polynomial cancellation coding.

I. INTRODUCTION

A technique has been proposed recently [1] which provides sev-
eral benefits for orthogonal frequency division multiplexing (OFDM).
In particular, this technique, termedpolynomial cancellation coding
(PCC), reduces the intercarrier interference (ICI) due to frequency shift
between transmitter and receiver [2]. Further, PCC has been discussed
in the context of reduction to out-of-band power and intersymbol inter-
ference in OFDM systems [3]. Used in its simplest form, PCC achieves
these advantages at the cost of bandwidth efficiency. However, the ad-
vantages can be retained while maintaining, or even increasing, band-
width efficiency if the symbol periods of the PCC coded data are over-
lapped [3] and an equalizer is used at the receiver to recover the trans-
mitted data from the overlapped symbols.

The main idea of PCC is to map each complex number which is to be
transmitted onto a group ofk subcarriers, with appropriate weightings,
rather than to a single subcarrier. In a previous article [2], the weight-
ings have been given as the coefficients of the polynomial(1�x)k�1.
It has been claimed that if the same weightings are applied in decoding
the received signal, polynomial variation of order(2k � 3) in the ICI
is canceled.

In this correspondence, we explain how ICI cancellation is achieved
by relating PCC to finite-difference techniques, well known in numer-
ical analysis. In Section II, we give mathematical expressions for poly-
nomial cancellation coding as described in [2]. In Section III we list
some standard results in finite difference theory, and recast our equa-
tions in this language. Finally, in Section IV we discuss the reduced ICI
obtained by use of PCC.

II. POLYNOMIAL CANCELLATION CODING

In the ith symbol period (lengthT ) of an OFDM communications
system, the complex numbersa0; i; � � � ; aN�1; i modulate theN sub-
carriers. If we assume an ideal channel, and the local oscillator at the
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