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Abstract—Space-invariant filtering of signals that overlap with
noise in both space and frequency can be inefficient. However, the
signal and noise may be well separated in the joint space/spatial-
frequency domain. Then, it is possible to benefit from the appli-
cation of space/spatial frequency approaches. Processing based on
these approaches can outperform space or frequency invariant-
based methods. To this aim the concept of nonstationary space-
varying filtering is introduced in this paper as an extension of the
time-varying filtering concept. The filtering definitions are based
on statistical averages, although the filtering should commonly be
applied knowing only a single noisy signal realization. The pro-
cedures that can produce good estimates of quantities crucial for
efficient filtering, based on a single noisy signal realization, are
considered. Special attention has been paid to the region of sup-
port estimation and cross-term effects removal. The efficiency of
the proposed space/spatial-frequency filtering concept is tested on
the signal forms inspired by the interferograms in optics, including
real images as disturbances. Examples demonstrate the superiority
of the proposed filtering over the space-invariant one for the con-
sidered type of signals and noise.

Index Terms—Estimation, filtering, noisy signals, space varying
filtering, time–frequency analysis, Wigner distribution.

I. INTRODUCTION

WHEN a two-dimensional (2-D) signal and noise do not
occupy the same frequency range, then efficient filtering

can be performed using space-invariant filters. However, in
the cases when the signal and noise overlap in a significant
part of the space and frequency domain, then the stationary
filtering may be difficult and inefficient. We will consider noisy
signals that occupy the same space and frequency range when
their separation may be done in the joint space/spatial-fre-
quency domain. For these kinds of noisy signals, a concept
of space-varying filters is presented. It is an extension of the
one-dimensional (1-D) time–varying filtering approach, [4],
[22], [23], [25], [29], [33] to the 2-D problems. Since the con-
cept of time-varying filtering is based on the time–frequency
distributions, we will use joint space/spatial-frequency distri-
butions [7], [8], [16], [17], [27], [37], [39], [42]–[44] in order to
define and implement space-varying filtering. The 2-D Wigner
distribution, along with the 2-D extension of the Weyl operator
[18], [23], [25], [28], is used as a basic distribution. In order to
produce undistorted version of the frequency modulated signal
passing through the filter whose region of support is ideally
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concentrated along the local frequency (or group shift), a slight
modification of the existing time–frequency filtering relation
is proposed and justified.The implementation is performed
using a single noisy signal realization.The algorithm for the
Wigner distribution estimation by using only one noisy signal
observation that would be close to the optimal one, with respect
to the bias and variance, is presented [11], [20], [35], [36]. This
is important since the Wigner distribution plays a crucial role in
the region of support estimation and, consequently, determines
filtering efficiency. In order to extend the presented forms for
the application on multicomponent signals, the multidimen-
sional S-method is used [30], [37]. The results presented in this
paper are applied to the space-varying filtering of signals with
a high amount of noise, including real image as a disturbance.

The paper is organized as follows. The concept of space-
varying filtering is presented in Section II. A slight modification
with respect to the common time-varying form is introduced and
justified in the Appendix. The pseudo and discrete forms of the
filtering relations are given. Efficient region of support estima-
tion, as a crucial part of good filtering, is considered in detail
in Section III. Since the Wigner distribution turns out to be the
basic form for the region of support estimation, its variance and
bias are considered. Based on a specific statistical approach of
comparing the bias and the variance, an algorithm for the op-
timal Wigner distribution estimation, i.e., the filtering region
of support estimation with minimal mean square error, is pre-
sented in this section. Efficiency of the proposed space-varying
filtering is demonstrated in Section IV by examples.

II. THEORY

Consider a 2-D noisy signal

(1)

where is the signal, whereas denotes the noise.
The above relation may be written in a vector notation as

where (2)

The nonstationary 2-D filter relation will be defined in analogy
with the 1-D time-varying filtering [4], [22], [23], [25], [33],
[40]

(3)

where is an impulse response of the space-varying 2-D
filter.

This definition is slightly modified with respect to the existing
1-D definitions [4], [22], [23], [25], [40]. The modification has
been introduced in order to provide that for ,
we get if the filter in space/spatial-frequency
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domain is defined as a delta function along the
local frequency for signals that satisfy stationary phase
method conditions [2], [6], [26] (see the Appendix).

The optimal transfer function derivation will be done by
analogy with the Wiener filter derivation in the stationary
signal cases [22], [26], [40]. The error is
orthogonal to the data when the mean square error

reaches its minimum [26], [40]

(4)

Denote the expected value of the ambiguity function
, [15], [24] as

(5)

and the Fourier transform of over by

(6)

From (4), it then follows that

(7)

for the processes that are mainly concentrated around the am-
biguity domain origin (being different from zero only for small

) when . In the 1-D case,
these processes are referred to as theunderspread processes
[15], [22], [24].

1) Note: Relation (7) directly follows from (4) without any
additional assumption if the considered processes are quasista-
tionary [26], [33], [40], i.e., if

, and
. It provides an additional physical

motivation for modification (3).
The 2-D Fourier transform of (7) results in

(8)

where is the Wigner spectrum (the expected value
of the Wigner distribution [9]) of signal

and is defined by

(9)

If the signal and noise are not correlated, then

(10)

2) Note: For the stationary processes, with
, , and

, (3), (9), and (10) reduce to the well-known sta-
tionary Wiener filter forms [26], [40].

When the Wigner spectrum of signal lies inside a
space/spatial-frequency region denoted by, while the noise
is dominantly spread outside this region, then a simple solution
satisfying (10) is given by

for

for
(11)

where is the region where . This is true,
for example, for a wide class of frequency modulated (highly
concentrated in the space/spatial-frequency plane) signals

corrupted with a white noise widely spread in the
space/spatial-frequency plane.

3) Note: Relation (11) could also be obtained in a semi-in-
tuitive way, as in [23]. Then, some restrictions imposed in its
derivation, like the one about underspreadness, would not be
necessary either. More details about this derivation, in the 1-D
case, may be found in [23].

In the numerical implementations, the pseudo (space limited)
forms of the filter relations should be introduced. The pseudo
form of operator (3) will be defined as

(12)

This relation enables one to use the space limited intervals. It
may be shown that for the signals ideally concentrated along the
local frequency in the space/spatial-frequency domain, the fol-
lowing important conclusion holds: The window does not
influence the filter output (12) as far as (see the Ap-
pendix). Using the Parseval’s theorem, (12) assumes the form

(13)

where is the “short space” Fourier transform de-
fined by

(14)

Discrete form of (13), as it used in the implementation, is

(15)

where assumes unity values where the Wigner distri-
bution of signal is different from zero. Therefore, in order to per-
form a 2-D space-varying filtering, we should know the
and . Computation of the is simple, but the problem
of determination still remains. Obviously, a precise deter-
mination of is directly related to precise determination,
which further leads tothe estimation of the Wigner distribution
of signal without noise using only one noisy signal observation
with the mean square error as small as possible.
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Note that the support region determination based on the
squared modulus of , i.e., multidimensional
spectrogram, would be appropriate only in the case whenthe
local frequency does not change over space or changes very
slowly so that it may be considered as a constant within the
window . Otherwise, when the local frequency variations
within the considered domain are significant, for low and high
frequencies, then its estimation based on either spectrogram
or scalogram is not reliable. In addition, the region of support
determined by using these distributions would be very spread
out and would result in inefficient filtering.

III. SINGLE REALIZATION -BASED ESTIMATION OF THE FILTER

REGION OFSUPPORT

A. Optimal Window Width in the Wigner Distribution

The analysis in this paper is focused on the one realization
based filtering of noisy signals. Accurate determination of the
filtering region of support, i.e., the Wigner distribution of the
signal, is crucially important for the efficient filtering. Two pa-
rameters that determine the mean square error of the Wigner dis-
tribution estimation are the bias and variance. They will be an-
alyzed for the pseudo Wigner distribution of discrete unknown
deterministic noisy signal

(16)

where , with
denoting signal and additive Gaussian white noise

with independent real and imaginary parts and total variance
. This form corresponds to the practical cases when only a

single realization of the image is known. Therefore, we may
treat the signal as deterministic. The noise autocorrelation func-
tion is .

The pseudo Wigner distribution mean value is [34]

(17)

where is the Fourier transform of the 2-D window
, whereas is a 2-D convolution along and

. Since the term is con-
stant pedestal and does not depend on the window shape and the
signal form, it will not be considered further. The first term can
be written as

. The bias can be approximated by

(18)

where .

The variance is defined by

(19)

Using (19) we get, as in the 1-D case [1], [34], that

(20)

where a real and even window function is assumed.
For a signal with slow-varying amplitude, we get

(21)

where is the signal’s amplitude, and is
the window energy. For the 2-D separable window

, where is the Hanning
window, the energy is , and is the window
width. Similar results could be obtained for any other window
shape. For example, for the separable Hamming window, the
energy is and for the rectangular window,
it is .

The mean square error is defined by
. According to (18) and (21), it may be

written as

(22)

where

(23)

(24)

It is important to note that the variance is proportional to
the square of the window width, whereas the bias decreases
with the same rate. Optimal window width follows from

. From (22), we get

(25)

Note that the optimal window width is space and frequency
varying since it depends on From (22), we can
conclude that for the optimal width , the ratio of the bias
and standard deviation

(26)

is constant and depends neither on the problem parameters nor
on the signal. The optimal window width is given by (25). How-
ever, it is not applicable to practical problems since it requires
the knowledge of bias parameter , that is, a function
of the distribution derivatives, and is therefore unknown in ad-
vance. An algorithm for the optimal window width determina-
tion without using the bias parameter is described
next.



2346 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 48, NO. 8, AUGUST 2000

B. Algorithm

In order to estimate the Wigner distribution of signal
and its region of support using the optimal window width
for each space and frequency point, we will use a statistical ap-
proach [11], [20], [21], [29], [36]. It is based on the fact that the
value of the pseudo Wigner distribution of a
noisy signal is a scalar random variable. It is spread around the
exact Wigner distribution with the bias de-
noted by (including constant pedestal ) and
the variance . As for any biased random variable, we
may write the following inequality:

(27)

This inequality holds with probability . For large , we
have that (27) is satisfied with for any distribution
law of random variable . For example, with

(“three sigma rule”) for normal distribution of the random
variable, .

For the cases of when the bias is small, i.e.,
, the above inequality may

be written as

(28)
According to (28), we may write the expressions for the lower
and upper confidence interval limit
within which the value of the pseudo Wigner distribution

is located with probability

(29)

Index denotes an arbitrary window length .
Consider now the successive values of the window lengths

such that . Consider two cases
for : a) small bias cases and b) small variance and large
bias cases. Confidence intervals calculated with,
intersect in the case of small bias since, according to (28),
the true value of the Wigner distribution belongs to both of
these intervals [with probability ]. In the cases of very
large bias and small variance, the confidence intervals do not
intersect . Values for ,
as well as interval for possible, will be determined from
the condition that all confidence intervals for small bias such
that intersect, whereas all
confidence intervals for
do not intersect. In this way, the examination of the inter-
section of two confidence intervals will be an indicator for
the bias to standard deviation ratio. When critical value

is reached, that means that
we have the optimal window width for this space and frequency
point (26).

To that aim, assume that the window widths have a dyadic
scheme

(30)

with , and is unknown op-
timal width. It has been assumed that the optimal window width
belonged to this set.1 With (22) and (30), the relations for the
bias and standard deviation for an arbitrary window width
may be written as functions of the bias and standard deviation
for optimal width

(31)

Consider now three regions and impose, according
to the previous discussion, the condition that the regionsand

intersect and that the regions and do not intersect.
Due to monotonicity of the bias and variance if and inter-
sect, then all and for will intersect. This means
that the region is defined by the optimal window width. As-
suming, without loss of generality, that the bias is positive, this
condition may be written in the following way:

(32)

where, for example, is the minimal possible value of
the upper bound for . Based on (27), it follows that for
the window of the width , the Wigner distribution of is
within the interval

(33)

The lower and upper bounds of the confidence interval, for a
given window width, according to (29), takes the values within

(34)

Substituting (34) and (31) into (32), we get

(35)

This means for . For example, for
, we have . The value of de-

termines the probability that (28) is satisfied. In that sense,
it is desirable to take as large value ofas possible from the de-
rived interval. For example, with , we get .
A further increase of does not make sense since the proba-
bility is already close to 1 and other factors, like, for example,
effects of discretization, become dominant. In this way, we have
defined and as the key factors for the algorithm.

The above procedure may be significantly simplified using
only two window widths in calculations [29]. Denote these two

1If N does not belong to the setNNN , then the algorithm will produce the
nearest value to this one. Since the MSE changes slowly around the stationary
point, it will not significantly degrade performance.
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window widths by and , where .
Window produces small variance, whereas has
small bias. Therefore, when the confidence intervals for these
two windows intersect, then it means that the bias is small, and
we use in order to reduce the variance. Otherwise, the
bias is large, and we use in order to reduce it. The
resulting adaptive Wigner distribution is

true

elsewhere
(36)

where for , it holds that

(37)

In this way, using only two window widths, we may expect sig-
nificant improvements since the Wigner distribution is either
slow-varying (bias very small) or highly concentrated along the
local frequency (bias very large). If we used a multiwindow ap-
proach with many windows between and , then
the algorithm applied to the Wigner distribution would select
one of these two extreme window widths almost everywhere.

Relation (36) reduces to the calculation of the Wigner dis-
tribution and its variance for two-window widths. One possible
relation for the variance estimation is

(38)

It holds for the low signal-to-noise ratio. For cases of small
noise, the variance estimation procedure is given in [21]. From
(38), it follows that . Thus, we have
defined the algorithm and all parameters for the Wigner distri-
bution calculation, which is then used for the region of support

determination and space varying filtering.

C. Multicomponent Signal Case

For multicomponent signal , the Wigner
distribution contains -signal terms (auto-terms) and

interference terms (cross-terms) with amplitude that could
cover the signal terms

(39)

This is the reason why the RID class of distributions [19] has
been introduced

(40)

where [5] is the kernel in the space/spatial-frequency
plane, whose Fourier transform

(kernel in ambiguity plane) is a lowpass filter function. For
multicomponent signals, we will use the S-method (SM) [30],
[37]

(41)

where is rectangular window with width in each
direction. The SM belongs to general Cohen class of distribu-
tions [5]. When the components of a multicomponent signal do
not overlap in the joint space/spatial-frequency plane, it is pos-
sible to determine the width of the frequency window so
that the SM is equal to a sum of the Wigner distributions of each
signal component individually [30]

(42)

This interesting property has attracted the attention of some
other researches to use the SM in their work [3], [10], [12].
Noise influence on the SM was considered in [31]. The vari-
ance for nonoverlapped multicomponent signals can here be ex-
pressed as (21)

for

for

(43)
Estimation of the autoterms in the Wigner distribution, based on
the SM, could be done as

true

elsewhere
(44)

where for , it holds that

(45)

Note that for , the spectrogram (square magnitude of the
STFT) is obtained as a special case of the SM. Region of signal’s
support could be obtained from as

(46)

where is a given reference level. We used
.

The procedures and theory presented in the paper will be now
summarized in the
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(a) (b)

Fig. 1. Determination of the region of supportR for the space-varying filter at the point(x; y) = (0:5; 0:5). (a) Wigner distribution of noisy signal calculated
using the windowN �N = 128� 128. (b) Wigner distribution of the noisy signal calculated using the proposed algorithm. Distribution from (b) is used for
R determination at the point(x; y) = (0:5; 0:5).

Algorithm for Numerical Implementation:

1) Calculate for a given noisy signal. In highly
nonstationary cases, application of narrower windows is
preferred.

2) Calculate the Wigner distribution either by definition (16)
or by using (41), with two window widths and values of

. Details about (41), which has been used in numerical
examples, including its realization without interpolation
and oversampling, may be found in [37].

3) Find the “optimal” distribution, for each point, according
to (44).

4) Determine the filter region of support by using (46).
For one-component signals, determination of
may be simplified just by taking at the
point where the maximum of
or is detected for a given . The same
procedure may be used for multicomponent signals with
a known number of components [33]. Otherwise, the
general form (46) must be used.

5) Compute the filtered signal according to (15).

IV. NUMERICAL EXAMPLES

Example 1: The presented theory will be illustrated on the
numerical example with the signal

(47)

corrupted with a high amount of additive noise with variance
, meaning that [dB]. The signal

form (47) is inspired with the interferograms in optics.
Fig. 1 demonstrates the algorithm for the regiondetermi-

nation at the point . The Wigner distribution
calculated using the window width
is shown in Fig. 1(a). Fig. 1(b) presents the Wigner distribu-
tion calculated using the two-window algorithm presented in
Section IV with and

. The algorithm used the lower variance distribution
calculated with everywhere, except
at the point where the signal energy is concentrated when the
lower bias window is used.

Noisy signal (47) is considered within the interval
. Signal frequency changes along both axis

from 0 to , where is the maximal frequency for
a given sampling interval. In (37), we assumed .

The original signal without noise is shown in Fig. 2(a),
whereas the noisy signal is given in Fig. 2(b). Signal filtered
using stationary filters with the cutoff frequency in both
directions is given in Fig. 2(c). Filtering with
lower cutoff frequencies reduces the noise but also degrades the
signal in Fig. 2(d) and (e) with and ,
respectively. Signal obtained from the noisy signal in Fig. 2(b)
using the space-varying filtering presented in this paper, by (3),
(13), and the algorithm in Section III, is shown in Fig. 2(f).
The advantage of the proposed concept with respect to the
stationary filtering is evident.

Example 2: For the multicomponent case we will, as an ex-
ample, consider the signal

(48)

corrupted with a high amount of additive noise with variance
. In the spectrogram calculation, the Hanning window

with is used, whereas for the SM
calculation, the Hanning window with
and are taken. The original signal is shown in Fig. 3(a).
The noisy signal is given in Fig. 3(b). The signal filtered with
the proposed algorithm is presented in Fig. 3(c).

Example 3: Finally, we will consider a separation of linear
frequency modulated signals from real image. This would cor-
respond to a generalization of the notch filtering in the sta-
tionary cases. Here, the local frequency is varying, and the po-
sition of the notch frequency changes for each point. Its de-
tection based on the spectrogram would not be precise what
would cause an imprecise and wide support region, resulting
in unsatisfactory separation. The spectrogram-based region of
support determination would be efficient only in the cases of
constant (or slow-varying) local frequency. The Wigner distri-
bution approach gives very precise determination of the local
frequency when it changes over the image. It results in an effi-
cient separation using the proposed procedure, as demonstrated
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(a) (b) (c)

(d) (e) (f)

Fig. 2. Filtering of a 2-D signal. (a) Original signal without noise. (b) Noisy signal. (c) Noisy signal filtered using the stationary filter with a cutoff frequency
equal to the maximal signal frequency. (d) Noisy signal filtered using the stationary filter with a cutoff frequency equal to a half of the maximal frequency. (e) Noisy
signal filtered using the stationary filter with a cutoff frequency equal to a fourth of the maximal frequency. (f) Noisy signal filtered using the space-varying filter.

(a) (b) (c)

Fig. 3. (a) Two-dimensional multicomponent signal without noise. (b) Noisy 2-D multicomponent signal. (c) Filtered noisy signal.

in Fig. 4. Fig. 4(a) shows original image. A part of the fre-
quency-modulated signal added to the image Fig. 4(a) is shown
in Fig. 4(b). The image corrupted with the frequency modulated
signal is shown in Fig. 4(c), whereas the frequency-modulated
signal extracted from Fig. 4(c), by using the proposed proce-
dure, is shown in Fig. 4(d). The reconstruction is very good,
although the ratio of the original image maximal value to the
frequency-modulated signal maximal value was extremely high

where is the image, and denotes frequency-modulated
signal added to image.

V. CONCLUSION

The concept of space-varying filtering of multidimensional
signals is presented. It has been shown that it can outperform the
space invariant approaches when the signal and noise overlap
in both space and frequency domains separately but not in the
joint space/spatial-frequency domain. Special attention has been
paid to the realization of space/spatial-frequency-based filtering
using only a single noisy signal realization. In order to produce
accurate region of support estimation, the optimization of the
Wigner distribution parameters is considered. This optimization
produces space/spatial-frequency varying parameters based on a
specific statistical approach of comparing the bias and variance
of distribution. Further modifications are done in order to apply
the algorithm on the multicomponent signals. Efficiency of
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Fig. 4. (a) Original image. (b) Part of the linear frequency-modulated signal added to the image. (c) Sum of the previous two signals. (d) Reconstructed linear
frequency modulated signal from (c).

the proposed filtering, and the algorithm for its support deter-
mination, has been illustrated on noisy signals whose form is
inspired by the interferograms in optics, as well as on the signal
corrupted with a real image. The second example is inspired by
the watermarking in the space/spatial-frequency domain. From
the presented theory and examples, we may conclude that in the
cases when the signal and noise do not significantly overlap in
the joint space/spatial-frequency domain, the proposed filtering
may produce better results than the space or frequency-invariant
one. Beside the application in filtering of images, this paper
offers an interesting application possibility in watermarking in
the space/spatial-frequency domain. This is a topic of current
research [38].

APPENDIX

ON THE MODIFICATION (3)

The property of the space/spatial frequency distributions that
they are well concentrated around the local frequency

isoneof thebasicpoints for their introductionandapplica-
tion.TheWignerdistributioncanachievecompleteconcentration
for the signals whose local frequency variations could be consid-
ered as linear within the considered domains, while, in order to
improve concentration for nonlinear local frequency forms, var-
ious modifications have been defined [2], [3], [5], [20], [32].

Let us consider a 2-D FM signal . Assume
that the signal satisfies the condition that its Fourier transform
may be obtained by using a 2-D form of the stationary phase

method [2], [6], [26], which is given as

where is the point where . Assume that we have
achieved ideally concentrated space/spatial-frequency represen-
tation, which is given by , for . When there
is no input noise , one expects from a filtering rela-
tion that it can produce undistorted signal at the output, at least
in this ideal case.

According to Parseval’s theorem, from (3), we get
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since, when the conditions for the stationary
phase method applications are satisfied, then from

follows , and
. Thus, at the

output, we have obtained the original signal with an amplitude
variation depending on the variations of local frequency. The
same holds for (12) with . In numerical realizations,
the delta function assumes unity values, along the local
frequency plane, so that it satisfies (11).

The commonly used definition for time-varying filtering, cor-
responding to , would
in this case produce . This is not
a desired output.Beside amplitude variation signal has signif-
icant and complex phase deviation. This illustrates our moti-
vation for a slight modification of the space/spatial-frequency
filtering definition. By the way, the commonly used form of fil-
tering was not able to recover signals in our numerical examples.

From the theoretical point of view, it is interesting to mention
the case when the support function is not but
the geometrical mean of the ideally concentrated distributions
along the local frequency and the group shift

. For asymptotic signals, holds
[2]. Then, for

the output signal would be the same as the input signal, without
additional amplitude variations .
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