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Robust Wigner Distribution With Application to the
Instantaneous Frequency Estimation
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Abstract—The Wigner distribution (WD) produces highly
concentrated time–frequency (TF) representation of nonsta-
tionary signals. It may be used as an efficient signal analysis tool,
including the cases of frequency modulated signals corrupted with
the Gaussian noise. In some applications, a significant amount of
impulse noise is present. Then, the WD fails to produce satisfac-
tory results. The robust periodogram has been recently introduced
for spectral estimation of this kind of noisy signals. It can produce
good concentration for pure harmonic signals. However, it is not
so efficient in the cases of signals with rapidly varying frequency.
This is the motivation for introducing the robust WD. It is a reli-
able TF representation tool for wide class of nonstationary signals
corrupted with impulse noise. This distribution produces good
accuracy of the instantaneous frequency (IF) estimation. Using
the Huber loss function, a generalization of the WD is presented.
It includes both the standard and the robust WD as special cases.
This distribution can be used for TF analysis of signals corrupted
with a mixture of impulse and Gaussian noise. The presented
theory is illustrated on examples, including applications on the IF
estimation and time-varying filtering of signals corrupted with
a mixture of the Gaussian and impulse noise. The case study
analysis of the IF estimators’ accuracy, based on the standard and
the robust WD forms, is performed. In order to improve the IF
estimation, a median filter is applied on the obtained IF estimate.

Index Terms—Impulse noise, instantaneous frequency estima-
tion, spectral analysis, time–frequency analysis, time-varying fil-
tering, Wigner distribution.

I. INTRODUCTION

I N many practical applications, especially in communica-
tions, signals are disturbed by an impulse kind of noise. It

could be caused by atmospheric or human made disturbances.
This form of noise is also present in images as film-grain
noise, photoelectronic noise, salt-pepper noise, etc. These
noises can be modeled by heavy-tailed (long-tailed) probability
density functions (pdfs). The class of generalized Cauchy
noises includes almost all important heavy-tailed pdfs [1]. A
fundamental approach to the estimation of signal parameters,
when the signal is corrupted by an impulse noise, is given by
Huber [2]. He has proposed the robust estimates as an alter-
native to the classical maximum likelihood (ML) estimates.
The robust estimation theory has found numerous applications
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in various signal processing disciplines, especially in digital
image processing [3]–[5].

It is well known that time–frequency (TF) distributions are
a powerful tool for analysis of nonstationary signals and the
instantaneous frequency (IF) estimation [6]–[13]. Noise influ-
ence on the TF distributions is considered in [14] and [15]. It
is common for these distributions to produce poor results in an
impulse noise environment. This is the case for the spectrogram
(with high interference reducing property), the Wigner distribu-
tion (WD) (which is highly concentrated in the TF plane), and
the other distributions from the general quadratic shift-covariant
class (with interference reduction and concentration properties
between the previous two extreme cases). In the TF representa-
tions, impulse noise behaves quite differently from the Gaussian
noise. Namely, the impulse noise is mainly concentrated around
the origin and the Doppler axis in the ambiguity domain. There-
fore, standard reduced interference distributions will not ade-
quately reduce this kind of noise. In addition, some signal-de-
pendent distributions will not be efficient here since they recog-
nize these strong noise components as parts of the signal. Thus,
this kind of noise requires a specific approach as well as re-
formulation of the standard TF representations into their robust
forms.

The robust spectrogram (SPEC) [16] represents an extension
of the standard SPEC. It is introduced by analogy with the ro-
bust -periodogram [17]. It has been shown [17], [18] that the
standard periodogram is an ML estimate of the periodogram of
signal without noise in the case when signal is corrupted by a
Gaussian white noise. The robust-periodogram is an ML es-
timate of the periodogram of a non-noisy signal in the Lapla-
cian noise environment. It can be successfully used for a wide
class of impulse noises with other pdfs. In addition, the robust

-periodogram can be used for the accurate frequency estima-
tion of harmonic signals in an impulse noise environment. How-
ever, when the signals are corrupted by the Gaussian noise, it
produces slightly worse frequency estimation results than the
standard periodogram. When the frequency changes in time,
then the IF estimators based on both the standard and the ro-
bust -periodogram are biased. The bias can be significant in
the case of the FM signals with rapid nonlinear IF changes [16].

Since the robust SPEC possesses a low TF resolution, we in-
troduce the robust WD. It can improve TF representation as well
as the IF estimation for nonstationary signals in an impulse noise
environment. Although the kernel of the robust WD depends
both on time and frequency, the distribution is real-valued and
shift-covariant. For a mixture of the Gaussian and impulse noise,
a generalized robust WD has been derived by using the Huber
loss function. Performance analysis, proving low sensitivity of
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the proposed distribution to the impulse noise, has been done by
using a case study approach. Applications of the proposed distri-
bution on determination of the region of support in time-varying
filtering, and on estimation of signal’s IF, are presented.

The paper is organized as follows. Basic results concerning
the robust -periodogram and the robust SPEC are reviewed
and presented in Section II. The robust WD and its properties
are considered in Section III. An iterative procedure for calcu-
lation of the robust WD is given. In Section IV, the robust WD
applications for the determination of the signal’s region of sup-
port, in time-varying filtering, as well as for the IF estimation,
are given. Reduction of the IF estimation error by using a me-
dian filter is demonstrated in Section IV as well.

II. ROBUST SHORT-TIME FOURIER TRANSFORM

A. Background and Motivation

To explain Katkovnik’s motivation for introduction of the ro-
bust short-time Fourier transform (STFT), let us consider the
problem of signal denoising. The general denoising task can be
defined as processing of with the aim to ob-
tain as close as possible to , where is a signal, and

is an additive white noise. The values of can be cal-
culated by using several samples around the considered instant
and minimizing the function ,
where is the window length, and is a loss function.
The loss function , where is the pdf
of noise , produces the ML estimator [2]. For ,
we get a linear moving average filter as the ML estimator for the
signal in the Gaussian noise environment. For the Lapla-
cian noise environment, the loss function results in
the median filter as the ML estimator. Unfortunately, the ML
estimates are quite sensitive to a deviation of the hypothetical
noise distribution. Namely, even a slight deviation from the hy-
pothetical noise distribution can result in a significant degrada-
tion of the ML estimate [2], [17], [19], [20]. Huber proposed
the robust estimators as an alternative to the ML estimators. For
determination of the robust estimator, it is necessary to consider
a specific class of noises. The robust estimation for that class is
the ML estimation for the particular noise, producing the highest
outliers. The outliers can be determined based on widths of the
noise pdf tail. This robust estimator then produces quite accurate
estimation for all noises from this class. The robust estimation is
less accurate than the ML estimation for a particular noise from
the considered class, but this is the price that has to be paid for
the robustness. For numerous noise classes, the Laplacian pdf
comes out as “the worst” noise, resulting in as the
loss function for the robust estimation [2], [19]. More details
about robust estimations can be found in [2] and [19].

Similar reasoning as in the signal denoising can be used for
the estimation of the signals’ transforms by using noisy sam-
ples . Namely, the Fourier transform (FT)

can be treated as an average of
the samples , i.e.,

mean (1)

In full analogy with the moving average, this form of the FT
minimizes the functional

(2)
Thus, we can conclude that the standard FT of is the ML
estimate of the FT of for the case when signal is cor-
rupted by Gaussian noise . In a similar way, we can intro-
duce the ML estimates and therobust estimates of the FT.

B. Definition of the Robust STFT

The standard STFT, at a given point , can be defined as
a solution of the following optimization problem:

STFT (3)

(4)

where ) is a window function with the length is
the sampling interval, the loss function is given as ,
whereas the error function has the form

(5)

The error function can be considered to be a residuum,
expressing the “similarity” between the signal and a given
harmonic The standard STFT, for a given point

, follows from

STFT (6)

It is equal to

STFT

(7)
The robust STFT STFT is introduced by using the loss

function instead of . With this loss func-
tion, the solution of optimization problem (3) can be obtained
from the following set of nonlinear equations:

STFT (8)

(9)

(10)

Note: From (9), it easily follows that .
Since for a positive window we have ,
then it follows that for any form of the error

.
In order to calculate STFT , based on (8)–(10), it is

necessary to define an appropriate iterative procedure; see [17].
The robust STFT is an estimate of the standard STFT of non-
noisy signal when the signal is corrupted by an impulse kind of
noise.

The robust SPEC SPEC STFT produces
highly accurate results in the analysis of sinusoidal signals with
constant IFs [17]. However, the robust SPEC, like the standard
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Fig. 1. Linear FM signal corrupted by heavy-tailed noise. (a) Robust SPEC. (b)
IF estimation based on the robust SPEC.!(t)—true IF;!̂(t)—IF estimation.

one, results in a low TF resolution in the case of nonstationary
signals. This fact will be illustrated in an example. Consider
signal with a linear IF

(11)

corrupted by a heavy-tailed noise

(12)

where are mutually independent Gaussian noises
, and . The variance for this kind of noise is

. Thus, the signal-to-noise ratio is SNR
dB. The robust SPEC, with corresponding IF estimate, is shown
in Fig. 1. The IF estimate is obtained as

SPEC (13)

For this noise, the standard SPEC failed to produce any reason-
able result. It means that it was not possible to recognize the
signal component at all. In addition, the IF estimation based on
this SPEC was extremely inaccurate, and it was not presented
here. Low TF resolution of the robust SPEC is the main reason
for introducing other TF representations.

C. Cohen Class of Distributions Based on the Robust STFT

We have just shown that in the case of impulse noise, better
estimates of the STFT of non-noisy signal could be obtained
by the robust STFT than by the standard one. Once we have
efficiently estimated the STFT of the non-noisy signal from
the signal corrupted by an impulse nose [see (8)–(10)], we
can employ this robust STFT to calculate “robust versions” of
other quadratic TF distributions. Most of the commonly used
quadratic TF distributions can be written in the form of the
Cohen class of distributions [21]–[23]. An efficient way for
the calculation of a distribution from the Cohen class, from
the STFT, is based on the kernel eigenvalue decomposition
[24]–[27]. A distribution from the Cohen class can be written
as a sum of the SPECs [24], [26]:

CD STFT (14)

where are eigenvalues of the rotated time-lag kernel func-
tion (for details, see [24] and [26]), and STFT are the
STFTs calculated by using the eigenvectors associated with
as window functions . Thus, by using the

Fig. 2. TF representations of multicomponent signal. (a) Standard SM. (b) SM
based on the robust STFT.

robust forms of the STFT as better estimates of the nonnoisy
STFT instead of the standard ones, in the case of impulse noise,
we can expect improvement in the signal representation.

Another way of constructing quadratic distributions from the
STFT is based on the S-method (SM) [28], [29]

SM STFT STFT (15)

where is a window in the frequency domain. For
, the SM is reduced to the SPEC, whereas for the
, it is equal to the WD [28]. The SM, with a proper choice

of frequency window width, can produce auto-terms close to
the auto-terms of the WD while avoiding cross-terms and other
interferences that exist in the WD [28], [29]. Again, by using
the robust STFT, as a better estimate of the non-noisy signals
STFT, we can expect that the SM will be closer to the SM of the
non-noisy signal.

This concept will be illustrated by an example with the sum
of two linear FM signals

(16)

corrupted by noise (12). The standard SM is presented in
Fig. 2(a), whereas the SM based on the robust STFT [with
STFT being replaced by STFT in (15)] is shown
in Fig. 2(b). The rectangular frequency window , whose
width is , i.e., for and
elsewhere, is used for the SM’s calculation. Improvement in
TF representation based on the robust STFT is evident.

III. ROBUST WIGNER DISTRIBUTION

In the previous section we have used the robust STFT as a
good estimate of the nonnoisy STFT in calculation of other TF
distributions. Thus, the optimization (3) and (4) is done with re-
spect to the STFT and not with respect to the desired quadratic
representation. The obtained representation may not be optimal
in an impulse noise environment. This is the reason for intro-
ducing the robust WD.

Consider the error function

(17)

and the minimization problem associated with

(18)
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where is a loss function. By solving the equation

(19)

for , the standard WD, which is normalized by a
factor of , is obtained:

WD

(20)
It produces an ideal concentration for the linear FM signal

[21], [22]. Note that the WD
(20) produces WD when the
window is rectangular of an infinite duration. For any
other window type, the WD value along the IF is given by
WD .

The robust WD can be derived from the minimization
problem (18) with the loss function . It assumes the
form

WD

(21)

Equation (21) is an implicit definition of WD . Thus, it
is necessary to define an iterative procedure for the robust WD
calculation. Here, we will use the fixed-point iterative algorithm
to solve the equation of the form , as ,
with the stopping rule , where defines
the solution precision. This procedure, applied to (21), can be
summarized as follows.

Step 1) the standard WD calculation (20):

WD

(22)
Step 2)

WD

(23)

WD

(24)

Step 3) If the relative absolute difference between two
iterations is smaller than

WD WD

WD
or (25)

then the robust WD is obtained as WD
WD . If (25) is not satisfied, then go to step
i). Here, represents the maximal allowed number
of iterations. Note that in all examples, we have

Fig. 3. Linear FM signal corrupted by heavy-tailed noise. (a) Standard WD.
(b) Robust WD. (c) IF estimation based on the standard WD. (d) IF estimation
based on the robust WD.

used and . The average number
of iterations is noise dependent. It will be studied in
Section IV.

Uniqueness and convergence of the fixed-point itera-
tive algorithm, for solving similar problems, is studied
in detail in [2, Sec 7.8] and [30]. Note that our solution
(21) can be written in the form WD WD

WD WD , where WD
, and .

For these kinds of solutions, it has been shown in [30] that if
the initial value is within WD , then
the fixed-point iterative algorithm will converge to a local
minimum WD within the same range. In our case, the function

has a single minimum [30], and the proposed itera-
tive procedure will converge to that single (global) minimum
since our initial value (22) is a mean value, and it satisfies the
necessary condition WD .

A. Properties of the Robust Wigner Distribution

1) The robust WD is real-valued.
2) WD is TF invariant. For a signal

, the robust WD is WD WD
.

3) For signal , we have
WD WD .

The proof of these properties is given in the Appendix.

B. Examples

Example 1: For signal (11) corrupted by (12), the standard
and the robust WDs are shown in Fig. 3. It is obvious that the
standard WD is useless in the case of heavy-tailed noise. The IF
estimate, by using the robust WD, is obtained as

WD (26)

Example 2: Consider a nonlinear FM signal

(27)



DJUROVIĆAND STANKOVIĆ: ROBUST WIGNER DISTRIBUTION 2989

Fig. 4. TF representations of signals. (a) Standard WD of the nonlinear FM
signal. (b) Robust WD of the nonlinear FM signal. (c) Standard WD of the
sum of signals. (d) Robust WD of the sum of signals. (e) Standard WD of the
real-valued linear FM signal. (f) Robust WD of the real-valued linear FM signal.

corrupted by (12). The standard WD is shown in Fig. 4(a),
whereas the robust WD is shown in Fig. 4(b). The robust WD
can also be used for efficient TF analysis of nonlinear FM
signals corrupted by heavy-tailed noise.

Example 3: For two-component signal whose components
are separated in time

(28)

and corrupted by (12), the standard and the robust WD are
shown in Fig. 4(c) and (d), respectively. Note that the lag
window has eliminated the cross-terms between two compo-
nents.

Example 4: Consider the real-valued linear FM signal

(29)

corrupted by (12). The standard and the robust WD are shown
in Fig. 4(e) and (f), respectively. For this specific signal, cross-
terms are not emphatic. Note that the robust WD is not designed
with the goal to reduce cross-terms, which exist in the original
WD. Therefore, they will, in general, be present in the robust
WD. The primary goal of the robust WD is to estimate the stan-
dard WD of the non-noisy signal, from a signal in high impulse
environment. The multicomponent signals can also be analyzed
by the approach presented in Section II-C.

C. Wigner Distribution With Huber Loss Function

In many cases, the signal is not disturbed with a pure impulse
noise, but the Gaussian noise is present, as well. Impulse noise
causes relatively rarely occurring and large errors, whereas the
Gaussian noise produces smaller errors but in each considered
point. Knowing that the loss function produces good
results for impulse noise, i.e., large and that the loss func-
tion produces good results for Gaussian noise, i.e.,
small , we can use a combination of these two loss functions,
which are known as the Huber loss function [2], [16], [31]

(30)

Note that the optimal value of depends on the impulse noise
influence. Namely, for higher impulse noise influence, the value
of should be close to 0, whereas for higher Gaussian noise,

should be close to . In our simulation, we use .
Determination of the optimal value of is a topic of our fu-
ture research. The loss function (30) has been used in many ap-
plications for detection of signals in mixed Gaussian and im-
pulse noise environments [2], [16], [31]. It can be employed to
defining a more general form of the robust WD.

The robust WD, with the Huber loss function in (18) and (19),
is equal to

WD

(31)

It can be calculated through a similar iterative procedure, as in
the case of the robust WD (22)–(25). All properties of the robust
WD (Section III-A) hold for (31) as well.

Two special cases of (31) are 1) the standard WD for ,
and 2) the robust WD for .

IV. A PPLICATION EXAMPLES

A. Time-Varying Filtering

Time-varying filtering, based on the TF distributions, is an ac-
tive research topic [32]–[37]. For the signal , a time-varying
filtering relation can be defined by [32]

(32)

where is the impulse response of a time-varying system,
and is a window function. A slight modification of the fil-
tering relation is made in (32) in order to produce unmodified
output, when a non-noisy FM signal is applied at the input. De-
tails on this modification are given in [32] and [33]. Using the
Parserval’s theorem, (32) becomes

STFT (33)
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Fig. 5. Time-varying filtering. (a) Original linear FM signal. (b) Signal
corrupted by mixture of the Gaussian and impulse noise. (c) Filtered signal.

with the region of support
. The value of for the optimal

time-varying filter is derived in [32]–[36] as

WD
WD WD

(34)

where WD is the expected value of the WD (Wigner
spectrum) of signal . For the cases when the signal’s TF dis-
tribution is highly concentrated along the IF and the amount of
noise in the TF plane at these points may be neglected, the pre-
vious relation reduces to a simple form, which has been pro-
posed in [36], as

for WD
elsewhere.

(35)

We will use the robust WD for estimation of the region where
WD . For a monocomponent noisy signal, the

filter is implemented, according to (35), in the following way:
In a considered instant, find the IF estimate as a posi-
tion of the TF distribution maximum; set , and

for ; calculate according to (33).
Implementation of this time-varying filtering concept on multi-
component signals is discussed in [33].

This filtering approach using the robust WD in the region of
support estimation has been applied on signal (11). The noise
is a mixture of a Gaussian type, with , and an im-
pulse type (12), with . The original signal (11), the noisy
signal, and the filtered signal are presented in Fig. 5(a)–(c), re-
spectively. The improvement in the filtered signal is obvious.
Noise components that are not at the IF are suppressed.

B. IF Estimation

Here, we will consider the IF estimation, performed by using
three forms of the WD (standard, robust, and the robust WD
based on the Huber loss function). The mean squared error
(MSE) of the IF estimation can be written, according to [16],
[38], as a sum of the variance and bias. For the SPEC, the MSE

of the IF estimate is analyzed in [16] and [18]. Following the
same procedure, which was developed in the case of the robust
SPEC [16], [18], we concluded that the bias for all forms of the
WD is the same and equal to

(36)
where denotes the IF estimate obtained by using a WD
with window width denotes a remainder of order,
and . The second
derivative of the IF is denoted by . For linear FM signals,

; the bias is equal to zero. This conclusion can be
directly drawn from Property 3 of the robust WD, which states
that this distribution is completely concentrated along the IF for
linear FM signals. Therefore, the bias is a function of the IF
higher order derivatives. The IF estimate bias is not influenced
either by the form of noise or by the loss function.

The IF estimator variance, based on the standard WD, has
two components: The first one represents noise influence, and
the second one results from the noise-to-signal interaction [16],
[38]. It has been derived in [16] and [38] for high SNR values

.
Case Study Analysis:The impulse noise usually has the vari-

ance that is significantly greater than the signal amplitude. It
prevents one from getting a reliable expression for the IF esti-
mator variance. That is the reason we will perform a numerical
analysis of the IF estimator accuracy. In particular, we will use
the case study approach [39]. For this purpose, we will consider
signal (11), which is embedded with a mixed Gaussian and im-
pulse noise

(37)

where are mutually independent Gaussian
noises . The variance of considered noise is equal to

. Since signal (11) has a unity
amplitude, the SNR is

SNR

dB (38)

The parameter determines the amount of impulse noise in the
noise mixture. For , we get the Gaussian white noise,
and for , we get a pure impulse noise. The parameter

(noise amount) varies within . The resolution step
is 0.05 in both directions. For each pair , we performed
4480 tests and found the percentage of hits at the correct IF. For
various WDs ( and ), this percentage
is shown in Fig. 6. One can conclude from this figure that for a
pure Gaussian noise, , the standard WD, which is shown
in Fig. 6(a), gives the best accuracy since its percentage of hits
remains close to 1, within the widest region of, starting from

. The accuracy of the robust WDs is slightly lower for
. However, when the impulse noise amount increases, ,

and then, the robust WDs [see Fig. 6(b) and (c)] remain almost
insensitive to this component of noise, whereas the standard WD
performance is significantly worsened; see Fig. 6(a). Areas of
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Fig. 6. Accuracy of the IF estimates based on the different forms of the WD. (a)
Standard WD. (b) Robust WD. (c) WD with Huber loss function. (d) Contour
plot for 50% accuracy. (e) Contour plot for 95% accuracy. Shaded area—the
standard WD, solid line—the robust WD for� = 0, and dotted line—the robust
WD for � = 1.

50% and 95% of accuracy of the WD-based IF estimators are
shown in Fig. 6(d) and (e). They are obtained as contour plots of
Fig. 6(a)–(c) for the given percentage of hits. The shaded area
represents the range where the standard WD has a percentage
of hits greater than the given value. For and , the
standard WD has accuracy greater than 95%, whereas for
and , the accuracy of this distribution is less than 50%. The
area of the IF estimator accuracy with the robust WD, and the
WD with the Huber loss function, are shown by solid and dotted
lines, respectively. For , the standard WD shows slightly
better accuracy than the robust forms of the WD. By an increase
of the impulse noise component, accuracy of the standard WD
becomes poor. The robust WD’s accuracy remains good. For
example, for , the robust WD has accuracy greater than
70% for and greater than 95% for .

Note that in the impulse noise environment, by smoothing
the WD (using narrower window or kernel function), we get a
significant increase of the MSE and worse accuracy than in the
case of the nonsmoothed WD. This effect is analyzed in detail
for the robust SPEC in [16].

Median Filter in the IF Estimation:The large noise values
could cause the position of the TF distribution maximum to be
outside the distribution auto-term [40]. This effect results in the
IF estimation error that has an impulse nature. By implementing
a median filter directly on the estimated IF values, we can de-
crease the MSE. Details on the high noise influence on the IF
estimation, in the case of the additive Gaussian noise, can be
found in [40]. The IF estimation by using the robust WD, for

and , is shown in Fig. 7(a). From this figure, we
can see that errors in the IF estimation have an impulse nature.
The IF estimate from Fig. 7(a), after applying median filter with
length

median (39)

is shown in Fig. 7(b). By , we denoted the median of
the set whose elements are the estimated IFs at the instants

Fig. 7. IF estimate. (a) Without median filter. (b) With median filter.

Fig. 8. Accuracy of the IF estimates based on the different forms of the WD
with output median filter. (a) Standard WD. (b) Robust WD. (c) WD with Huber
loss function� = 1. (d) Contour plot for 50% accuracy. (e) Contour plot for
95% accuracy. Shaded area—the standard WD, solid line—the robust WD for
� = 0, and dotted line—the robust WD for� = 1.

. The percentage of hits at the correct IF, by using
the WDs with and , after applying the
median filter, is shown in Fig. 8(a)–(c). Here, we assume that
the correct hits are those within a range of one sample around
the exact IF. Areas where the IF estimator accuracy is greater
than 50 and 95%, after applying the median filter, are shown
in Fig. 8(d) and (e). The area of applicability of the robust WD
is wider than for the standard WD case. Comparing Fig. 6 and
8, one can see the improvement of accuracy, which is achieved
by using output median filter. Note that the median filter could
not be efficiently used for FM signal filtering since the high-
frequency components would be completely degraded.

Number of Iterations:A statistical analysis of the average
number of iterations in the robust WD calculation is performed
as well. The number of iterations depends on the noise parame-
ters. For pure Gaussian noise ( ), the number of iterations
is shown in Fig. 9(a), as a function of. Fig. 9(b) presents the
number of iterations for , whereas Fig. 9(c) shows the
number of iterations as a function offor fixed . In all
examples, it is approximately twice as high for than for

. We can conclude that the convergence with the Huber
loss function is faster. At the instants where the impulse noise
assumes relatively small values, the error is small, and thus, the
number of points where is also small. Therefore, the
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Fig. 9. Average number of iterations for the robust WD calculation. (a)� = 0

Gaussian white noise. (b)� = 1 heavy-tailed noise. (c) Fixed� = 1 as function
of �.

second sum in (31) does not require numerous iterations, as it
was the case for the robust WD.

V. CONCLUSION

The robust WD is introduced for processing of signals cor-
rupted by additive impulse noise. It produces significantly better
results than the standard WD in the impulse noise environment,
whereas the results are slightly worse in a pure Gaussian envi-
ronment. This distribution is calculated from the standard one
through an iterative procedure. The improvement in TF repre-
sentation is paid by an increase of computational complexity.
Two different forms of the robust WD are considered. The robust
WD, based on a combination of the squared absolute error and
the absolute error, improves iteration convergence with respect
to the case when only the absolute error is used as a loss func-
tion. Both of these forms behave similarly, and both are better
than the standard WD. The IF estimation based on the robust
WD is highly accurate for considered signals. It has been shown
that an output median filter can directly be used for the IF esti-
mated values. This may further improve the results.

APPENDIX

1) Realness:The complex conjugate of expression (21)
WD , for , is equal to WD
since equations and have the same
solution .

The property of realness holds for each iteration in the proce-
dure (23)–(24). This can easily be proven by using mathematical
induction and the fact that the initial distribution WD is
the standard WD, which is real-valued.

2) TF Shift Property: This property can be proven by con-
sidering (21) and making appropriate substitutions ,
and ; therefore, we get (40), shown at the bottom of
the page. Expression (40) is the same as (21). It can be con-
cluded that WD WD , and
WD WD .
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Uskokovićfor discussions and help in preparing the paper.

REFERENCES

[1] S. A. Kassam,Signal Detection in Non-Gaussian Noise. New York:
Springer-Verlang, 1988.

[2] P. J. Huber,Robust Statistics. New York: Wiley, 1981.
[3] P. M. Narendra, “A separable median filter for image noise smoothing,”

IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI–3, pp. 20–29, Jan.
1981.

[4] I. Pitas and A. N. Venetsanopoulos,Nonlinear Digital Filters: Principles
and Applications. Boston, MA: Kluwer, 1990.

[5] J. B. Bednar and T. L. Watt, “Alpha-trimmed means and their relation-
ship to the median filters,”IEEE Trans. Acoust., Speech, Signal Pro-
cessing, vol. ASSP-32, pp. 145–153, Feb. 1984.

[6] C. Wang and M. G. Amin, “Zero-tracking time-frequency distributions,”
Proc. IEEE ICASSP, 1997.

[7] B. Boashash, “Estimating and interpreting the instantaneous frequency
of a signal—Parts 1, and 2,”Proc. IEEE, vol. 80, pp. 521, 539–538, 560,
Apr. 1992.

[8] D. L. Jones and R. G. Baraniuk, “An adaptive optimal-kernel time-fre-
quency representation,”IEEE Trans. Signal Processing, vol. 43, pp.
2361–2371, Oct. 1995.

[9] , “A simple scheme for adapting time-frequency representations,”
IEEE Trans. Signal Processing, vol. 42, pp. 3530–3535, Dec. 1994.

[10] H. K. Kwok and D. L. Jones, “Improved instantaneous frequency es-
timation using an adaptive short-time Fourier transform,”IEEE Trans.
Signal Processing, vol. 48, pp. 2864–2972, Oct. 2000.

[11] J. C. O’Neill and P. Flandrin, “Virtues and vices of quadratic time-fre-
quency distributions,”IEEE Trans. Signal Processing, vol. 48, pp.
2641–2650, Sept. 2000.

[12] S. Barbarossa and O. Lemoine, “Analysis of nonlinear FM signals
by pattern recognition of their time-frequency representations,”IEEE
Signal Processing Lett., vol. 3, pp. 112–115, Apr. 1996.

[13] A. Francos and M. Porat, “Analysis and synthesis of multicomponent
signals using positive time-frequency distributions,”IEEE Trans. Signal
Processing, vol. 47, pp. 493–504, Feb. 1999.

[14] M. G. Amin, “Minimum variance time-frequency distributions kernels
for signals in additive noise,”IEEE Trans. Signal Processing, vol. 44,
pp. 2352–2356, Sept. 1996.

[15] S. B. Hearon and M. G. Amin, “Minimum variance time-frequency
distribution kernel,” IEEE Trans. Signal Processing, vol. 43, pp.
1258–1262, May 1995.
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