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Nonparametric Algorithm for Local
Frequency Estimation of
Multidimensional Signals

Igor Djyurovié, LJubisa Stankouvié

Abstract— Local frequency (LF) estimation
of multidimensional (md) signals is considered.
The md-Wigner distribution (WD) is used as
the LF estimator. The LF is estimated based
on the positions of the WD maxima. A non-
parametric algorithm for the LF estimation is
developed. It is based on the intersection of
confidence intervals (ICI) rule. This algorithm
produces an adaptive window size in the WD
which gives almost minimal mean squared error
(MSE) of the estimate. A simplified version of
this algorithm is developed, with the starting
estimate being produced with the WD of 1D
signals. Theory is illustrated on examples.

I. INTRODUCTION

Time-frequency representations (TF) have
numerous applications in estimation of signal
parameters [1]-[5]. Multidimensional (md) TF
representations can also be used for the same
purpose thanks to the methods for their ef-
ficient calculation and hardware implementa-
tions [6]-[7]. Sometimes, methods for estima-
tion of md-signal parameters are just straight-
forward generalizations of the corresponding
ones developed for the 1D cases. However, in
many cases it is not possible to perform a di-
rect generalization of the 1D methods. Some
of the latest developments in the area of md-
signal analysis can be found in [8]-[10].

The problem of local frequency (LF) estima-
tion appears in optical microscopy, analysis of
optical interferograms, SAR imaging, digital
watermarking, etc. [11]. In this paper, the
md-Wigner distribution (WD) is used as the
LF estimator. Our goal is to determine the
window size in the WD that will produce an
estimate of the LF with the mean squared er-
ror (MSE) as close as possible to its minimal
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value. A nonparametric algorithm for the in-
stantaneous frequency (IF) estimation based
on the WD, in the case of 1D signals, has been
presented in [12]. The algorithm is based on
the intersection of confidence intervals (ICI)
rule. The MSE minimum is achieved at the
optimal bias-to-variance trade-off of the esti-
mate. The bias and variance of the LF esti-
mate in one direction depend on window sizes
along all coordinates. This dependence is dif-
ferent for different directions. It means that
an algorithm for the LF estimation needs a
multiparameter optimization. To this aim, the
algorithm based on the calculation of several
WDs is developed. Since the calculation of an
md-WD can be time-consuming, a simplified
version of the algorithm is proposed, as well.
The first step in this algorithm is application of
the nonparametric algorithm to the estimates
produced with the WDs along one direction.
In the second step, the algorithm based on the
md-WD calculation is performed only in the
points where the accuracy of the simplified al-
gorithm is not satisfactory.

The paper is organized as follows. The WD
as an LF estimator is described in Section II.
Algorithm for the LF estimation is presented
in Section III. A simplified version of the al-
gorithm is given in Section IV. A numerical
example is presented in Section V. Details on
the performance analysis of the WD as an LF
estimator, including an overview of the non-
parametric algorithm that produces bias-to-
variance trade-off close to the optimal one, are
given in Appendices.

II. LocAL FREQUENCY ESTIMATION

Consider an md-FM signal m(7) = Ae??("),
T = (T17T27"'7TQ)7 e RQ Our goal is to
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estimate the LF defined as a vector &(7) =
{06(7)/0r; = wi(7),i = 1,2,...,Q}, based on

discrete-time observations
s(iip)=m(iip) +v(iip)=Ae!*) 1 v (iip). (1)

In (1), p is the sampling interval along each
coordinate, 7 = (ni,ng,..,ng), 7 € Z<,
v(iip) is an additive, white, complex, zero-
mean Gaussian noise (AWGN), E{v(7ip)} = 0,
with covariance function E{v(7ip)v(mp)} =
o26(it — m), where 6(i7) = H?Zl d(n;), and
0(n;) is the unit impulse. We will assume
that @(7) is an arbitrary smooth differentiable
function of 7, with bounded partial deriva-
tives |0965(7)/ [1i_, Orp.] < M(7) < oo, for
Pr € [17 Q]

Since the WD is highly concentrated around
the LF, i.e., the signal auto-term is concen-
trated around the LF, the WD can be used
to define the LF estimator for nonstationary
signals. The WD of md-signals is defined by:

W Dy (7,d) =

S wilip)s( + ip)s” (7 = ip)e 9257, (2)

where & = (w1,ws,...wqg), and w; €
[—7/2p,7/2p), i = 1,...,Q, while w;(7ip) is a
separable window function, limited along all
coordinates by k = {hy,ha, ..., hg}, wy; (p) =
H?Zl pw(ni;p/h;)/h;, where w(r) is a real-
valued and even function that satisfies w(r) =
0 for |r| > 1/2. The LF can be estimated by
using the WD as:

35 (7) = arglmax WD (7, &), (3)

= {Aw(7),i=1,2,...Q} (4)

In general, the LF estimator (3) is biased. Ap-
proximative expressions for the bias and vari-
ance of Ad; () will be presented next. To sim-
plify the notation, components of AEJH(F) will
be denoted as {Aw;,i = 1,2,...,Q}. Expres-
sion for the estimator variance can be derived
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by following the results from [12]. It is of the
form:

Q
Aw;) =c-h3 hit, 5
var(dw) = h [t )
where
_ 02242 4 02) (Flo2))? H(pF(2,9)) 6
€= A4 2 p2R—2 - (6)

(2,1)~ (0,1)

The constants F(,p) depend on the chosen
window shape only

Flupy = 3 (np/hs)"w*(np/hi)p/hi. (7)
n

For a small p/h;, the constants Fi,;) can
be written in a very simple form Fi,p) =

1/2
ffi/Qr wP(r)dr.

Estimator bias can be approximately ex-
pressed as:

E{Awi} ~ Zil bjih3, 8)
where
Pe(7) F@ ) Fa .
i = 85;2) rS S )
i e, j A

Constants b;; depend on the third order par-
tial derivatives of the signal’s phase, and on
the chosen window function. Index 4 denotes
estimation along the frequency coordinate w;.
The approximative nature of (8) is due to
the neglected fifth and higher order deriva-
tives. We can easily conclude that the same
window can produce different estimation ac-
curacies along different frequency coordinates.
More details on the variance and bias deriva-
tion are given in Appendix A.

The MSE of the LF estimation along w; co-
ordinate can be approximated for each 7, ac-
cording to expressions (5) and (8), as:

MSE; = (E{Aw;})* + var(Aw;)
Q _ Q _
- (ijl bj.ihj)* +e-h; 3HjZl7j75'i hit

Optimal window size can be derived from the
system of equations: OMSE;/0h;]| Ffiop = 0,

(10)
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i =1,...,Q. However, expressions for the op-
timal window size (Appendix A) contain un-
known higher-order derivatives of the LF, and
they cannot be used in practice. In order
to solve this problem, a non-parametric algo-
rithm for the LF determination is derived in
the next section.

III. BASIC ALGORITHM

The non-parametric algorithm based on the
confidence intervals is derived in [12] for one-
dimensional estimation problems. Details on
the realization of this algorithm are given in
Appendix B. Detailed analysis of the algo-
rithm parameters is presented in [13], [14].
Since the problem considered here is multidi-
mensional, we present the algorithm modifica-
tion which can be used in the LF estimation.
For the sake of notation simplicity, consider
the case of a 2D signal. Let the signal coor-
dinates be denoted by 7 = (z,y), frequency
coordinates by & = (wy,wy), and the window
size as h = (g, hy). Consider the following set
of the window sizes:

H?=H x H,

H={n®n® =27V s =1, J}, (11)

where h(® is length of the narrowest window
from H that is suitable for FFT algorithm
application, for example h(®) = 2p or RO =
4p. The WD obtained with a window of size
hy X hy is denoted by WDy, 5 3(7, &), while
the corresponding LF estimate components
are denoted by Wy n, n,}(7) and @y, n,3(7),
respectively. In the sequel we will consider the
estimation of w, (x,y) = dé(x,y)/Ox.

The algorithm requires the specification of
six parameters (k/', Ax', k", Ar”, "', Ar")
as discussed in details in [13]. Appendix B
gives the range of possible values of these pa-
rameters, as well.

Algorithm can be divided into three parts.

A. First we will perform optimization along
the “diagonal” of the window set, i.e., hy = hy,.
The next window from the set H?2, larger than
the optimal one, has an increased bias. How-
ever, it is not known which of the compo-
nents, 32¢(x,y)/0x> or B3é(x,y)/0xdy?, in-
creases the bias.

B. Thus, in the second part we will try to
decrease the variance by increasing h,, while
keeping window width h, the same.

C. In the third part of the algorithm we try
to decrease the variance by increasing the win-
dow width along the y-coordinate.

The algorithm can be described, in more de-
tails, as follows.

Al. Consider a point 7. The initial guess is
set to be the one produced with the smallest
window from the set H? (with the smallest
bias): @g(F) == @m{h(l)ﬁu)}(f‘).

A2. Calculate Wa{h®) 1)} with other win-
dow widths from H2. The LF estimate is ob-
tained with the largest window h() x h(P) that
satisfies the following inequality:

|@s (h) h0) 1 (T) = Qe+ pe+n 3 (7)]

< (K" 4+ AN 6 (AP, h(p)) + 6(RPHY), h(zﬂrl))],
(12)

A3. If inequality (12) is satisfied for all win-
dows from the set H?, and the widest win-
dow in the set hPTD = h()) is reached on the
right-hand side of (12), then @, (1w pey(7) is
the estimate of the LF component along the
z-axis, W () = Wpppe ey (7). The remain-
ing two parts of the algorithm can be skipped.
If (12) is not satisfied for a window (") within
H, then go to part B of the algorithm.

B. In the second part of the algorithm, the
window size along the y-coordinate is held at
the value h(®), while the z-coordinate size of
the window is increased. The estimate of this
LF component is produced with the largest
window A9 x AP p(@) > p®P) that satisfies
the following inequality:

Wath@ p@ 1 (T) = Wprpa+n) poy (7
@4 h@, mw 3 (7) { ey ()]

< (k" + An”)[&(h(q),h(”)) + 6(h(q+1),h(p))],
(13)
as Wz () = Wyqp@ pe (7). In this case the
third step of the algorithm can be skipped.
Otherwise, go to part C of the algorithm.
C. The LF component estimate is the one
produced with the largest window h®) x h®)
r®) > hP) satisfying:

(@2 {nw) w0} (F) = Qg pee+0y (7))
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< (k" + AK”’)[&(h(P), h(t)) + &(h(”), h(t+1))].

(14)
The estimate of this LF component is then
Wz (T) = Wyt oy (7). In the case that there
is no window satisfying (14) and h®) > p(®),
the LF component estimate is the output of
part A of the algorithm.

Comments:

1. An alternative way for optimization could
be: a) The initial estimate is produced with
the narrowest window size; b) Optimization is
performed by keeping the window along y-axis
the same, and by increasing the window size
along the z-axis; ¢) Optimize the y-coordinate
width by holding the window size along the z-
coordinate at the value obtained from step b).
A similar form of the successive optimization
can be applied to the LF estimation of md-
signals, for Q) > 2.

2. The MSE of the WD based LF estimation
in the case of 2D signals can be written as,
(10),

MSE, = (E{Aw.})? + var(Aw,)
= (beoh? + boyh2)® +c-h3h, T (15)

3. The standard deviation can be expressed
as

ATF2 W3,

2(2A2 + 02)pF2,2) F
a(hz,hy):\/ay( W)PFenFoy
(2,1)

For its estimation, one needs to estimate the
variance of noise 02 and the signal amplitude
A2, Tt can be done by a straightforward exten-
sion of 1D case presented in [12].

IV. SIMPLIFIED ALGORITHM

If we consider relations (10) or (15), we can
see that one window dimension dominantly in-
fluences the estimate variance of the LF for
the considered component. Thus, by tak-
ing the window width along the y-axis equal
to one sample, the bias term influenced by
33¢(x,y)/02%0y can be neglected, while the
variance decreases with a cube of the window
width along the z-coordinate. The algorithm
for w, (z,y) component of the LF, based on the
1D WD, is given in the sequel.
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1. Consider the WD of a 1D signal:
WDp(x,y;w0) =) wi(nap)x

s(x + nep, y)s* (@ — ngp,y)e =P (16)

2. Estimate w,(x,y) as:

Gy () = axglmax WDy (2, y;0,)), h € H,
(17)
3. The initial estimate is obtained by us-
ing the narrowest window from the set H,
(’:):K{h(l)}(xvy)'
4. The optimal window is the widest h()
from the set H that satisfies the inequality:

et} (@, Y) — Oppperny (@, Y)]

< (k+ AR)[E(RP) + &(RPT). (18)

Values « and Ak have to be chosen accord-
ing to Appendix B, with m = 4 and n = 3.
Estimate of the LF component is @, (x,y) =
Wafhe} (, ).

5. Estimation of the LF component along
the y-axis, @, (z,y), can be done similarly.

6. In this case the expected algorithm ac-
curacy is lower than in the previous algo-
rithm. Fortunately, we can use the property
that Owy(z,y)/0y and Ow,(z,y)/0x should
be equal, since both of them reduce to
0?¢(x,y)/Oy0x. Therefore, if the following in-
equality:

|02 (2, y) /Oy — Oy (2,y) /0] >, (19)

holds for the partial derivatives, where -y is the
accuracy threshold, then we can conclude that
it is necessary to improve the accuracy for that
point (z,y) by using the previous algorithm.
Accuracy of both of these algorithm forms
is of the same order of magnitude for a wide
range of the signal-to-noise (SNR) ratio, as it
will be shown in the next section. The reason
for this can be explained as follows. The sim-
plified algorithm produces only slightly worse
results after the first five steps than the pre-
vious one, since the basic algorithm can only
slightly decrease variance by increasing the
window size along the other coordinate. Also,
the basic algorithm can include larger bias in
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the initial estimation than the simplified ver-
sion. Points where accuracy can be improved
are controlled by (19). Application of the 2D
optimization algorithm, only in these points,
produces the same order of accuracy as the al-
gorithm with the 2D optimization for the en-
tire plane. Note that calculation of the 1D WD
needs approximately N times less multiplica-
tions and additions than the 2D WD.

V. NUMERICAL EXAMPLE

Consider the noisy signal:

s(a,y) = AT R0 4y (20)

where v(x,y), is the AWGN. The SNR was
A? /0% = 15dB. Signal is considered within the
interval [z,y] € [-1,1] x [-1,1]. Sampling in-
tervals along both coordinates are p = 1/256.
The true LF value components are:

we (2, y) = 0(x,y)/0x
= 128nasgn(2? + y? — 0.1),

= 128mysgn(z? +y? — 0.1).

(21)

The windows used in the algorithm are rectan-
gular, with size

H? =H x H,

H = [4p,8p,16p,32p,64p,128p].  (22)

Several typical estimates of w,(x,y), for win-
dows from set (22), as well as the estimation
errors, are shown in Fig.1. The MSE of the
LF component estimate obtained with the con-
stant window size are shown in Table I. The
smallest MSE is obtained for 4p x 8p, and it is
equal to 114.0 for the component w,(x,y). For
the component wy (z,y), the optimal window is
8p x 4p, with MSE = 110.6. The adaptive al-
gorithm presented in Section III is applied for
estimates obtained by using windows from set
(22). Values of the parameters used in the al-
gorithm are «’ + Ax’ = 10, ¥’ + Ax” = 4,
and k" + Ax” = 2. Estimate of the LF com-
ponent obtained with the adaptive algorithm
is shown in Fig.2. Algorithm produces the es-
timation errors 104.8 and 110.2. These values

are smaller than those produced with any win-
dow with constant size, from the set H2. In
addition, the constant size window producing
the best performance is not known in advance.
The simplified algorithm from Section IV has
been applied to this signal, as well. Windows
are chosen from the set H. The MSE values,
obtained with 1D WD based LF estimator,
are given in Table I, last row. In both cases,
the smallest MSE is obtained by the window
of length 8p. It is 132.6 for the component
wz(x,y), while for the component wy(z,y) its
value is 137.4. For the simplified algorithm we
have used K+ Ak = 4. The accuracy threshold
in (19) was v = 27 (two frequency steps). The
estimate of 9w, (x,y)/dy is obtained by using:

0y (z, 1. 1.
%%Zp[wx(x,y+p)+§wz(w+my+ﬂ)

1, .
+?%@—my+m—w4%y—m

1. 1.

while 0w, (x,y)/0x is estimated similarly. Ac-
curacy was not satisfactory in 13.7% of the
considered points (19). In these points the ac-
curacy was improved by increasing the window
size along the other direction, and by applying
the algorithm described in Section III. The ob-
tained MSEs were 106.2 and 111.0, i.e., of the
same order of magnitude as in the complete
2D optimization algorithm. The estimate of
the LF component with the simplified algo-
rithm is shown in Fig.3. Comparison of the
results obtained with these two algorithms is
given in Table IT for various SNRs (6dB, 9dB,
12dB, and 15dB). It can be seen that for mod-
erate SNR values both algorithms are accu-
rate. However, this is not the case for lower
SNR. Then, the initial estimate produced with
the narrowest window width for high noise can
result in the WD maxima outside the signal
auto-term. The assumptions (“small noise”)
under which the presented algorithms are de-
veloped are no longer satisfied. Consideration
of this effect is outside the scope of this paper.

VI. CONCLUSION

Adaptive algorithm for the LF estimation
based on the md-WD is proposed. This algo-
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Fig. 1.

Estimates of wg(t,w) obtained with the 2D WD and constant-size windows:
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500,

200,

a) Estimate for 4x4

window; b) Estimation error for 4x4 window; c) Estimate for 128x128 window; d) Estimation error for
128x128 window; e) Estimate for 4x8 window; f) Estimation error for 4x8 window.

rithm produces the MSE smaller than the LF
estimate obtained with any constant window
size. The values of the algorithm parameters
are analyzed. The simplified algorithm version
with the initial LF estimate obtained by using
the 1D WD is presented. The proposed algo-
rithms are compared with the nonadaptive LF
estimation procedure based on the WD max-
ima. Numerical example confirms the theory.

Appendix A: Error Model, Variance
and Bias

Consider the first WD partial derivatives
around the exact LF value VWD;(7,d),
whose components are:

8WD

th ip) X

S(F+ 7ip)s™ (7 — ip) (—j2nip)e 92970, (24)
In an ideal case, VW Dy (7,dJ) = 0 on the LF.
However, due to noise and to the fact that the
WD ideally concentrates only the signal with
a linear LF, this will not be true for a general
signal, even without noise.

Assumptions:

1. By expanding the signal phase into the
Taylor series, assuming limited partial deriva-
tives ¢(7+ 7ip) = > oo (ApV)ie(7) /i!, the de-
terministic component in (24) can be written
as m(i"+7ip)m* (F—7ip) = |A|? exp(j (7, 7ip)),
where ®(7,7p) = Z?Zl 2n,;p0¢(T)/0r; +
A¢(T,7ip). Beside the first component, &(7, 7ip)
contains a component influenced by higher or-
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Fig. 2. Estimates of wz(z,y) obtained with the adaptive algorithm: a) Estimate of wy(z,y); b) Estimation

error; ¢) Optimal window size along z—coordinate Ay (z,y);

ﬁy(z,y).

TABLE 1

d) Optimal window size along y—coordinate

MSE OF THE LF ESTIMATE OF THE X AND Y COMPONENT BY USING CONSTANT-SIZE WINDOWS.

MSE,]
IVISEy 4p 8p 16p 32p 64p 128p

4p 236.9 114.0 194.7 698.9 1601.3] 3320.2
226.7 155.8 182.5 350.8 783.5 1441.3

8p 160.7 122.9 200.8 711.0 1614.6] 3303.9
110.6 120.7 175.2 347.6 772.3 1510.7

16p 186.3 176.0 231.4 712.3 1603.71 3337.7
194.7 200.7 231.5 349.0 736.3 1559.4

32p 353.0 351.0 341.4 725.5 1533.1 3039.1
706.3 707.7 690.4 723.0 779.3 1543.0

64p 781.9 773.4 746.4 782.5 1129.7 1892.9
1600.9 1615.2 1599.8 1536.5 1119.6 1289.7

128p 1408.5 1511.6 1560.3 1546.7 1302.6 2645.5
3259.6] 3306.6 3341.0 3048.6 1904.4 2630.1

1D 573.6 132.6 196.6 701.4 1590.5| 3171.0
605.9 137.4 197.3 679.0 1592.8] 3164.6

WD

der phase derivatives: (oY) o o .
TW@“ +71) + (7 — 7)), (25)
A(F,7ip) = 2 Z (7ipV)> o(F) = where components of 7 are within the interval

(20 4+ 1)!

[0, p]. In our analysis we assumed that higher
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Fig. 3. Estimates of wz(z,y) obtained with the simplified algorithm: a) Estimate with the optimization of
he window only; b) Estimation error after optimization of h; window only; c¢) Estimate of wg(z,y) with
the accuracy improvement; d) Estimation error; e) Optimal window size along z—coordinate hz(z,y); f)
Optimal window size along y—coordinate ﬁy (z,y).

TABLE 11
MSE FOR VARIOUS SNRS: SIMP - SIMPLIFIED ALGORITHM, BASIC - BASIC ALGORITHM.

| sNr | 6aB [ 9aB [ 12aB [ 15aB |
Simp 675.7 || 1309 [ 1143 [ 1062
MSE; _
Basic 735.8 || 1374 || 1141 || 1048
Simp 8005 || 1194 | 1131 || 1110
MSE, .
Basic 8215 || 1242 | 1128 | 1102
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order derivatives in A¢(7, 7ip) can be neglected
within the considered window, and that it can
be written as A¢(7, 7ip) = (ipV)>¢(7) /3. This
assumption is crucial for the analytic deriva-
tion of the bias expression, but not for the al-
gorithm application itself, since it does not re-
quire the explicit knowledge about the bias.

2. The variance is derived under the as-
sumption that the noise is small. “Small noise
agsumption” can be verbally defined as the
noise level whose influence is not so strong that
the points completely outside the auto-term
can be detected as the WD maxima.

By using a linear approximation of
OW D;,(7,&) /Ow; around the true LF value
and following the derivations from [12], we get
the variance and the bias of the LF estimator.
The variance assumes the form:

(242 4+ 07) 3 i pPwi(fip)
var(Aw;) =
A i pPwg (7ip))?
(26)
From (26) follows that the estimation vari-
ance is of the form (5), [12]. The estimation
bias is:
2j4+1
235wy (7ip) (2nip) 332, CE L o(7) o)
> wi ) (2nap)? '

According to Assumption 1, and following
derivations from [12], expression for bias (8)
follows (27).

The optimal window size i_iopt can be deter-
mined from the system of equations produced
from the partial derivatives of the M SE; (10).
Its coordinates read:

bw‘ .
hl = hi 3bli|H:H°Pt7l #Z,
3(Q+3)/2 H b/2
: . 6+Q J#i J i
with h;— (Q T3y @ (28)
z,z

However, since coefficients b;;, given by (9),
contain unknown third order derivatives of the
phase function, this optimal window size can-
not be directly used in the LF estimation.

Appendix B: Algorithm Based on
Intersection of Confidence Intervals

An adaptive algorithm for the IF estima-
tion based on the ICI rule has been developed
n [12]. It can be used when the MSE, in
terms of parameter h, is of the form MSE =
A/R™+B(t)h", where 0% (h) = A/h™ is the es-
timation variance, while the second term rep-
resents the squared bias, bias?(t, h) = B(t)h".
In the IF estimation case, the parameter h was
the window length. For implementation of the
FFT algorithms, it is suitable that the win-
dows have dyadic lengths, H = {h(®)|n(s) =
2h(=1 s = 1,2, ..., J}. The minimal MSE is
produced with hgp(t) = (mA/nB(t))Y/ (m+n),
Its value is:

MSE(hgp) =

A(mA/(nB(t))) "™ (m+m) ”*Tm (29)

In the worst case, the optimal window width
is the geometrical mean of two adjacent win-
dow lengths hopt(t) = v/2h(*). Then the MSE,
for the window width A(*) that can be selected
as optimal in the algorithm, is MSE(h(®)) =
MSE(hopt)(n2™/2 +m27/2) /(n+m). There-
fore, even in the worst case, error produced by
a reduced set H is of the same order of mag-
nitude as the one produced with the optimal
window size. It means that satisfactory results
can be obtained by considering a set with rela-
tively small number of the parameter i values.

Let f(t) be a true value of the estimated
variable. The estimates performed with dif-
ferent parameters from the set H are denoted
by fu(t), s = 1,2,...,J. For the estimate
fueo (), as for any other random variable, the
following inequality can be written:

|f (&)= (fnor (0) —bias(t, A*))) | < ko (h), (30)

with probability P(x). For the algorithm it is
essential that k is such that P(k) is close to 1.

The confidence interval around the estimate
is:

Dy € [fro (t) — (5 + Ar)a(h),

Fro () + (5 + Ar)a(h)]. (31)
The values of k and Ak should satisfy [13]:

m on/2
_ m/2
Ak = 2 2m/2 4 1

(32)



854

m 2n/2 -1
_2m/2—1 2(m+n)/2_1 . (33
S e T Y ) (33)

The adaptive (close to optimal) value of h
is determined as the largest h(®) € H where
two consecutive confidence intervals intersect:
[freo (8) = Faesn (D] < (5 + Ar)[o(h) +
U(h(s+1))].

According to (32) and (33), the range of
possible values of the basic algorithm parame-
ters (Section IIT) is Ax’ = 2.4, ¥ < 18 (for
m =4, n=4), A" = 1.9194, " < 9.8993
(for m = 3, n = 4), Ax" = 0.8787, and
K" < 2.0459 (for m =1, n =4).
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