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Moments of Multidimensional
Polynomial FT

Igor Djurovíc, LJubiša Stanković

Abstract–Moments of the second order poly-

nomial Fourier transform are considered. Re-

lations between moments for various parame-

ters in the polynomial FT are established. Es-

timation of multidimensional FM signals para-

meters based on the moments is proposed and

compared with the phase derivative based esti-

mator. Implementation issues of the proposed

estimator are discussed.

I. I������	�
��

The ambiguity function (AF) of 1D signals
has been treated in details in [1]. Signal mo-
ments calculated based on the AF are used for
determination of the optimal chirp-rate para-
meter in an FM signal. This approach can
easily be related with the second order poly-
nomial Fourier transform (FT) [2]. Moments
of this polynomial Fourier transform for var-
ious chirp-rate parameters are not indepen-
dent. All second order moments can be evalu-
ated based on the signal and two second order
polynomial FT moments calculated for differ-
ent chirp-rate parameters [1]. A simple lin-
ear relationship can be established between the
fractional Fourier transform (FRFT), recently
reintroduced in the signal processing [3], and
the second order polynomial FT. Moments of
the FRFT are considered in [4]. It has been
shown that all second order FRFT moments
can be determined based on the signal and
two other FRFT moments. Multidimensional
(MD) signal moments, with their mutual rela-
tions, are studied in [5].
In this paper we consider second order mo-

ments of Q-dimensional signals and show that
all of them can be determined based on 2Q2+
Q second order moments. As a possible appli-
cation of the proposed technique we consider
estimation of the signal phase second partial
derivatives.
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The approach from [1] is extended here in
several directions: (a) Moments of MD signals
are determined based on the MD AF; (b) Para-
meters of MD FM signals are estimated based
on the MD polynomial FT moments; (c) Im-
plementation issues (not studied in [1], even
for 1D signal) are discussed.

II. M��
��� �� MD �
�����

Consider an MD signal f(�t ), �t =
(t1, t2, ..., tQ), with its FT given by F (�ω) =∫
�t
f(�t ) exp(−j�ω�t )d�t, �ω = (ω1, ω2, ..., ωQ).

The scalar multiplication of vectors is defined
as �ω�t = ω1t1 + ω2t2 + ... + ωQtQ. Sec-
ond order moments of the signal and its FT
are wmn =

∫
�t
tmtn|f(�t )|

2d�t and Wmn =

(1/2π)Q
∫
�ω
ωmωn|F (�ω)|

2d�ω, m,n = 1, ..., Q.
These moments, for m = n, can be considered
as widths of the signal and the FT along the
considered coordinate. The MD AF is defined
as A(�θ,�τ ) =

∫
�t
f(�t+�τ/2)f∗(�t−�τ/2)e−j

�θ�td�t =

(1/2π)Q
∫
�ω
F (�ω+�θ/2)F ∗(�ω−�θ/2)ej�ω�τd�ω. Mo-

ments of signal and its FT can be expressed
as wmn = −∂2A(�θ,�τ )/∂θm∂θn|(�θ,�τ )=(�0,�0 ) and

Wmn = −∂2A(�θ,�τ )/∂τm∂τn|(�θ,�τ )=(�0,�0 ), re-

spectively. Mixed moments are defined by

µmn =

=
j

2π

∫

�t

tm

[
f∗(�t )

∂f(�t )

∂tn
− f(�t )

∂f∗(�t )

∂tn

]
d�t

= −
j

4(2π)Q

∫

�ω

ωn

×

[
F ∗(�ω)

∂F (�ω)

∂ωm
− F (�ω)

∂F ∗(�ω)

∂ωm

]
d�ω (1)

or, by using the AF, as µmn = −∂2A(�θ,�τ )/
∂θm∂τn|(�θ,�τ )=(�0,�0 ).

Consider an auxiliary signal fP (�t ) produc-
ing a linear coordinate transformation of the
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AF A(�θ,�τ ), i.e., AP (�θ,�τ ) = A(A�θ+B�τ,C�θ+
D�τ ), where A = [amn,m, n = 1, ..., Q], B =
[bmn,m, n = 1, ..., Q], C = [cmn,m, n =
1, ..., Q], D = [dmn,m, n = 1, ..., Q]1 . Mo-
ments of the signal fP (�t ) can be expressed
by using the corresponding moments of f(�t ),
as

wPmn =

Q∑

k=1

Q∑

l=1

[wklakmaln+

µklakmcln + µlkckmaln +Wklckmcln] (2)

µPmn =

Q∑

k=1

Q∑

l=1

[wklakmbln+

µklakmdln + µlkckmbln +Wklckmdln] (3)

WP
mn =

Q∑

k=1

Q∑

l=1

[wklbkmbln+

µlkdkmbln + µklbkmdln +Wkldkmdln]. (4)

Let the auxiliary signal be of the form fP (�t ) =

f(�t ) exp(−j
Q∑

r=1
ρrrt

2
r/2−j

Q∑

r=1

Q∑

p=1,r>p
ρrptrtp).

Note that its FT can be considered as a gen-
eralized polynomial FT [6]. Its AF reads

AP (�θ,�τ) = A(θ1 +

Q∑

r=1

ρ1rτr, ...,

θk +

Q∑

r=1

ρkrτr, ..., θQ +

Q∑

r=1

ρQrτr; τ1, ..., τQ).

The corresponding coordinate transforma-
tion matrices are A = IQ, B = R =
[ρmn,m, n = 1, 2, ..., Q] (note that R = R

T ,
since ρmn = ρnm), C = 0Q, D = IQ, where
IQ is a Q × Q identity matrix, and 0Q is
a Q × Q zero matrix. Moments of the sig-
nal fP (�t ) are equal to wPmn = wmn, µPmn =∑Q
l=1wmlρln + µmn, and

WP
mn =

Q∑

k=1

Q∑

l=1

wklρkmρln+

1Determination of a generalized signal transform,
fP (�t ) = T{f(�t )}, that produces linear coordinate

transformation of the AF, AP (�θ,�τ ), is not of our par-
ticular interest. Thus, due to the lack of space, this
transform is not considered in our derivations.

+

Q∑

k=1

µlmρln +

Q∑

k=1

µknρkm +Wmn. (5)

Spectral moments WP
mm represent widths of

the polynomial FT along the corresponding di-
rection. Assume that the original signal can
be written as f(�t ) = A(�t ) exp(jφ(�t )), where
the signal amplitude is slow-varying as com-
pared to the signal phase2 , |∂A(�t )/∂tm| �
|∂φ(�t )/∂tm|, m = 1, ..., Q. Values of ρmn,
m,n = 1, ..., Q, that minimize the moments
WP
mm are estimates of the signal phase partial

derivatives, ρmn ≈ ∂2φ(�t )/∂tm∂tn [1]. Mini-
mization of WP

mm, with respect to ραβ, by us-

ing ∂WP
mm/∂ραβ = 0, yields

Q∑

k=1

wkαρkm = −µαm,

α = 1, ..., Q,m = 1, ..., Q





w11 w21 ... wQ1
w12 w22 ... wQ2

... ... ... ...
w1Q w2Q ... wQQ











ρ1m
ρ2m
...
ρQm




 =

= −






µ1m
µ2m
...
µQm




 , (6)

m = 1, ..., Q. Since ρmn = ρnm, (6) repre-
sents a system ofQ2 equations withQ(Q+1)/2
unknowns. A way to solve this system, with
a discussion of the implementation issues, is
given in the next section.

III. I���
�
����
�� 
���
�:

1. Discretized limited-space signals, sam-
pled according to the Nyquist rate, and the
discrete-spatial frequency MD FT are consid-
ered in realizations. We assume that errors
introduced by discretization are negligible, as
compared with other possible sources of dis-
turbances.

2Since the amplitude and phase functions of a real-
valued FM signal cannot be defined uniquely, an appro-
priate definition of the complex-valued signals is still
important research topic [8]. We assume that a real-
valued signal satisfies conditions given in [9] and that
the complex-valued signal is formed as its analytical
extension.
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2. Solving system of equations (6) requires
determination of the mixed moments. Cal-
culation of these moments is based on a dif-
ferentiation of the signal or its spectra (1).
Differentiation can be sensitive, even to the
quantization error. Therefore, instead of a
direct calculation of the mixed moments we
will calculate moments of an auxiliary signal
fα(�t ) = f(�t ) exp(−jt2α/2). Its spectral mo-
ments are given as:

Wα
αα = wαα + 2µαα +Wαα,

Wα
α,α�=n = µαn +Wαn for n �= α.

Thus, based on the signal’s and spectral
moments, all mixed moments can be calcu-
lated as µαα = (Wα

αα − wαα − Wαα)/2 and
µαn = Wα

αn − Wαn, for α �= n. In this
way, the differentiation of signal or its FT is
avoided. Determination of the mixed moments
requires calculation of Q2moments, in addi-
tion to Q(Q+ 1)/2 signal moments wmn, and
Q(Q + 1)/2 spectral moments, i.e., 2Q2 + Q
moments in total. Also, it is required to calcu-
lateQ additional MD FTs of the signals fα(�t ),
i.e., (Q+ 1) in total.

3. Consider the 1D signal case. The chirp
rate parameter can be estimated as: w11ρ11 =
µ11, i.e., ρ11 = µ11/w11, where µ11 = (W

1
11 −

w11−W11)/2, and ρ11 = (W
1
11−W11)/2w11−

1/2.

4. For a 2D signal we obtain four equations
with three unknowns:






w11 w21 0
w12 w22 0
0 w11 w21
0 w12 w22









ρ11
ρ12
ρ22



 = −






µ11
µ21
µ12
µ22




 .

(7)
Mixed moments can be calculated as µ11 =
(W 1

11 − w11 − W11)/2, µ22 = (W 2
22 − w22 −

W22)/2, µ12 =W
1
12 −W12, µ21 =W

2
12 −W12.

5. Problem of larger number of equations
than unknowns (see (6) and (7)) can be solved
in several ways. Here we use the Moore-

Penrose pseudo-inverse (denoted by #) as




ρ11
ρ12
ρ22



 = −






w11 w21 0
w12 w22 0
0 w11 w21
0 w12 w22






#




µ11
µ21
µ12
µ22




 .

(8)
Similar form follows in the case of signals with
Q > 2. Since our realization is discrete-
space and discrete-spatial frequency, bounded
in space and spatial-frequency domain, we can-
not be sure that various subsystems of equa-
tions (6) will produce the same solution for
ρmn. Therefore, implementation involving the
pseudo-inverse (resulting in the mean squared
error solution) is better than other possible
procedures based on subsystems of (7).
6. Consider an 1D noisy signal x(t) =

f(t) + ν(t), E{ν(t)} = 0 and E{|ν(t)|2} =
σ2. Mathematical expectation is E{W 1

11,x −

W11,x} = W 1
11,f − W11,f , where additional

index denotes the considered signal. How-
ever, estimate of the signal moment is bi-
ased, since E{w11,x} = w11,f + g1σ2, where
g1 =

∫
�t
t21d�t (g1 is bounded because the signal

is considered within the limited space). Then,
the estimate of ρ11 is also biased, namely
|E{ρ11,x}| < |ρ11,f |. Note that, in practice,
there are numerous estimators of the noise pa-
rameters. If we can estimate noise variance
σ̂2, the estimate of ρ11 can be calculated as
ρ̂11

∼= (W 1
11,x −W11,x)/2(w11,x − g1σ̂

2)− 1/2.
Similarly, for Q > 1 all wαα should be de-
creased for gασ̂

2, gα =
∫
�t
t2αd�t. Further im-

provement can be achieved by applying a lo-
calized evaluation of the moments.

IV. N��
�
	�� 
�����


Consider a 2D signal, Q = 2, f(t1, t2) =
A exp(jat21/2+jbt1t2+jct

2
2/2+jd1t1+jd2t2+

jφ). We set parameters d1, d2 and φ to zero,
and parameter A to one. Signal is considered
within the range [t1, t2] = [−1, 1) × [−1, 1),
with the sampling rate 1/64 × 1/64 (number
of samples is 128× 128). Gaussian noise envi-
ronment has been considered, with the varying
signal-to-noise ratio SNR ∈ [−40, 40]dB. We
compared the proposed estimator of parame-
ters (a, b, c) (with the correction of moments
wαα) with the phase derivative (PD) based es-
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timator [10], [11], [12]. Several comments on
the PD based estimator are given in the Ap-
pendix. Three realizations of the PD based
estimator are considered: (1) without interpo-
lation in the frequency domain; (2) and (3)
with interpolation with factors 2 and 4 along
each coordinate. The interpolation is required
in order to decrease the error caused by fre-
quency discretization. In order to compare
these estimators on a fair basis, we randomly
selected values of parameters (a, b, c) in each
trial. For each noise variance from the range,
we performed 1000 trials. The mean squared
error in the parameters estimation, obtained
by using these estimators, is depicted in Fig.1.
The region of high signal to noise ratio has
been magnified to the right3 . It can be seen
that for SNR > 13dB the moments based es-
timator outperforms the PD based estimator
without interpolation, as well as the PD es-
timator with interpolation factor 2. The PD
based estimators with interpolation factor 4
produces the highest accuracy. One trial in the
case of the moments based estimator requires
6.47×106 floating point operations (evaluated
by using the MATLAB flops function), while
for the PD based estimator without interpo-
lation 2.60 × 106 operations are needed, and
7.24 × 106 and 2.76 × 107 operations for in-
terpolation with factors 2 and 4, respectively.
Note that in numerous applications signal is
embedded in a moderate noise. In that case
the proposed estimator could be, at the same
time, more accurate and more efficient than
the PD based counterpart. However, the PD
based estimator can improve results by inter-
polation with a larger factor. In that case cal-
culation demands would be increased.

3Lower bound of the MSE in the case of PD based
estimators is determined by (∆ω)2/12K2, where ∆ω
is the frequency discretization step, while K is the in-
terpolation factor. Similar bound exists in the case
of the proposed estimator. It is caused by evaluation
of moments based on the discrete-time and discrete-
spatial frequency observations, (see Fig.1). The PD
based estimators for small SNR, SNR < −13dB, as-
sume constant value since for high noise the probability
distribution function of the estimation error is uniform
(the estimate is randomly selected from the whole con-
sidered range in the FFT).

V. C��	���
��

Moments of the multidimensional signals
have been considered. It has been shown that
all the second order moments can be deter-
mined based on 2Q2+Q different moments of
the local polynomial FT. Useful relations for
calculation of the moments are derived. The
procedure for estimation of the chirp-rate pa-
rameters of multidimensional signals, based on
the moments of the polynomial Fourier trans-
form, has been presented. Implementation is-
sues are discussed. Accuracy and efficiency of
the proposed estimator are compared with the
phase derivative based one.

VI. A��
��
�: P���
 �
�
���
�
 ���
�


��
�����

Consider a signal embedded in a white
Gaussian noise x(t1, t2) = f(t1, t2)+ν(t1, t2) =
A exp(jat21/2+jbt1t2+jct

2
2/2+jd1t1+jd2t2+

jφ) + ν(t1, t2). The signal auto-correlation
functions are:

rx1(t1, t2; τ1) = x(t1 + τ1, t2)x
∗(t1, t2) =

f(t1 + τ1, t2)f
∗(t1, t2) + r̃n1(t1, t2; τ1) =

rf1(t1, t2; τ1) + r̃n1(t1, t2; τ1) (9)

rx2(t1, t2; τ2) = x(t1, t2 + τ2)x
∗(t1, t2) =

rf2(t1, t2; τ2) + r̃n2(t1, t2; τ2),

where τ1 and τ2 are known quantities, while
rf1(t1, t2; τ1) and rf2(t1, t2; τ2) are the 2D
complex sinusoids:

rf1(t1, t2; τ1) =

= A2 exp(jat1τ1 + jbt2τ1 + jaτ
2
1/2 + jω1τ1)

rf2(t1, t2; τ2) =

= A2 exp(jbt1τ2 + jct2τ2 + jcτ
2
2/2 + jω2τ2).

Their 2D FTs are ideally concentrated at the
frequencies (aτ1, bτ1) and (bτ2, cτ2), respec-
tively. Therefore, the unknown chirp-rate pa-
rameters can be estimated as:

(â, b̂′) =
1

τ1
arg max

(ω1,ω2)
|Rx1(ω1, ω2; τ1)|

(b̂′′, ĉ) =
1

τ2
arg max

(ω1,ω2)
|Rx2(ω1, ω2; τ2)|
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Fig. 1. MSE in the polynomial phase signals parameter estimation. Thick line - moments based estimator;
thin line - PD based estimator without interpolation; dash-dot line - PD estimator with interpolation with
factor 2; dotted line - PD estimator with interpolation with factor 4. Region of high SNR is magnified on
the right.

where Rxi(ω1, ω2; τ i), i = 1, 2, are 2D FTs of
rxi(t1, t2; τ i), i = 1, 2. We set the estimate of b

as b̂ = (b̂′+b̂′′)/2. The frequency discretization
in the 2D FT calculation, introduced by apply-
ing the FFT algorithms, produces error in the
algorithm that can be higher than the noise in-
fluenced errors. Therefore, an interpolation of
2D FT is usually performed (by zero-padding
of rxi(t1, t2; τ i), i = 1, 2 in space domain) in
order to decrease this error. The interpolation
increases the calculation complexity of the al-
gorithm.
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