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An Approach to Variable Step-Size
LMS Algorithm

Božo Krstajić, LJubiša Stanković, Zdravko Uskoković

Abstract–A new approach to step size adap-
tation in the Variable Step-Size Least Mean
Square (VS LMS) algorithm is proposed. This
solution is based on the weighting coefficients
bias/variance trade-off.

I. I������	�
��

The LMS algorithm is the most popular
one for implementation of adaptive filters [1],
[2]. The VS LMS adaptive algorithms, [6]
aim to improve the LMS algorithm perfor-
mance. These algorithms use a different step
size for each adaptive filter coefficient; the step
size is adjusted individually as adaptation pro-
gresses. They are more efficient than the LMS
algorithm for coefficients tracking in nonsta-
tionary environments [6]. The increase in com-
plexity of implementation is relatively low.

Our approach for adaptation of step
size is based on the investigation of the LMS
weighting vector error in a nonstationary en-
vironment, due to both the effects of additive
noise and weighting vector lag,[1], [2]. Mini-
mization of the mean square deviation (MSD),
i.e. the covariance of the weighting vector er-
ror, with respect to the step size, leads to the
conclusion that the influences of additive noise
and weighting vector lag are equal for the opti-
mal step size [1], [2]. This condition is used in
a specific statistical approach to produce the
adaptive step size close to the optimal one, [3],
[4], [5]. It is employed here to obtain the new
formula for step size adaptation, based on the
MSD minimization, which leads to a new type
of the VS LMS algorithm. Its performance is
illustrated by simulation results.

II. A N
� VS LMS A����
���

In the LMS algorithm, the vector of the
weighting coefficients is obtained from, [1], [2],
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[3], [4]:

W (k + 1) =W (k) + 2µe(k)X(k) (1)

where µ is the step size, X(k) is the N -
dimensional input signal vector, e(k) = d(k)−
y(k) = d(k) − WT

(k)X(k) is the output er-
ror, d(k) is the reference signal and y(k) is
the filter output. The LMS adaptive filter
tries to adjust a set of weighting coefficients

so that y(k) tracks d(k) =W
T

o (k)X(k)+n(k),
where n(k) is a zero-mean Gaussian noise with
the variance σ2n and W o(k) = W o(k − 1) +
∆W o(k− 1) is time-varying optimal (Wiener)
vector, where the covariance of ∆W o(k − 1)
is Θ(k) = diag(θ, θ, ..., θ), as in [2]. As
shown in [2], W (k) can be decomposed as
W (k) = E(W (k)) + Wn(k) + W l(k), where
E(W (k)) is the mean, Wn(k) and W l(k) are
the zero mean fluctuation of W (k) due to the
additive noise and to the tracking lag, respec-
tively. The MSD for the i − th weighting co-
efficient (MSDi), obtained for step size µi, in
steady state, is a sum of MSD’s for each com-
ponent,MSDi =MSDib+MSDin+MSDil,
where MSDib = θ/(4µiλi) is the MSD due to
lag bias, refered to as the squared weighting
coefficient bias, i.e. bias2i , MSDin = µiσ

2
n

is the MSD due to additive noise, refered to
as the weighting coefficient variance σ2i , and
MSDil = θ(N + 1)/4 is MSD due to lag vari-
ance, [2]. Since the MSDil is independent on
the step size µi, it will not affect our analy-
sis, where we consider the abrupt changes of
optimal vector. Thus, it is negligible with re-
spect to the first two components of MSDi,
i.e. MSDi ∼= bias2i+σ2i . As shown in [2], mini-
mization ofMSDi with respect to µi gives the
optimal step size µoi =

√
θ/(4λiσ2n), for which

the MSDin is equal to the MSDib, i.e. the
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MSD optimality condition follows:

MSDin|µo
i
=MSDib|µo

i
, i.e. bias2i |µoi = σ

2
i |µoi
(2)

Since the relation for µoi is not applicable in
practice, because one needs to known the input
signal autocorrelation matrix eigenvalue (λi),
the nature of optimal vector changes (θ) and
noise variance (σ2n), we will here provide one
possible way to estimate µoi . Our approach
does not require knowledge of λi and θ, while
we estimate σ2n by the weighting coefficient
variance σ2i .

Namely, note that the i − th weighting co-
efficient Wi(k) assumes random values around
the optimal W o

i (k) one with the biasi(k) and
the variance σ2i , related by, [3], [4], [5]:

|Wi(k)−W o
i (k)− biasi(k)| ≤ κσi, (3)

where the above inequality holds with the
probability P (κ), dependent on κ. For exam-
ple, for κ = 2 and a Gaussian distribution,
this is satisfied with 95% probability. Let us
now define the confidence intervals for random
values Wi(k):

Ci(k)=[Wi(k)−(κ+∆κ)σi,Wi(k)+(κ+∆κ)σi]
(4)

where the parameter∆κ takes into account the
biasi(k). Then, from (3) and (4) we can con-
clude that, as long as the biasi(k) is small, i.e.
|biasi(k)| < ∆κσi, the optimal value W o

i (k)
belongs to the confidence interval Ci(k), inde-
pendently on the step size. It means that, for
small bias, the confidence intervals (4) for dif-
ferent step sizes intersect. When, on the other
hand, the bias becomes large, then the central
positions of the intervals are far apart for dif-
ferent step sizes, and they do not intersect, [4],
[5], [6].

Taking, as a criterion for the bias/variance
trade-off, the condition that the bias and
variance are of the same order of magnitude
|biasi(k)| ≈ ∆κσi we get the criterion for
choosing the step size value. Namely, by us-
ing the MSD optimality condition (2) we take
∆κ ≈ 1.

Note that VS LMS coefficients updates
are obtained from (1) if µ is replaced with
M(k) = diag(µ0(k), µ1(k), ..., µN−1(k)).

Aiming to optimize the step size µi(k) for the
i − th weighting coefficient of VS LMS, we
will compare its confidence interval with the
one of the LMS with maximal allowed step
size µM max, i.e. the one with best tracking
of abrupt changes of optimal vector, [1], [2]. If
we take that both algorithms start the k − th
iteration with the same coefficients values from
the (k− 1)− st iteration, then, taking into ac-
count (3), (4), and (1), the above comparison
reduces to following inequality:

2 |e(k)x(k − i)| (µmax − µi(k))
≤ (κ+ 1)σ2n(

√
µmax +

√
µi(k)) (5)

Here we used the known fact that the vari-
ance for LMS is σ2i = µikσ

2
n, [1], [2]. The best

bias/variance ratio is obtained for the partic-
ular step size that turns (5) into an equality,
thus producing the relation for the step size
close to the optimal one:

√
µi(k)=

{√
µmax − (κ+1)σn

2a(k) if µi(k) > µmin√
µmin if µi(k) ≤ µmin

(6)
where a(k) = |e(k)x(k − i)|, and µmin is the
particular defined minimal step size value.

In our simulations we have estimated the
noise power σ2n by the weighting coefficient
variance σ2i , obtained by [5], [6]:

σi = median(|Wi(k)−Wi(k − 1)|)/0.675
√
2,
(7)

for k = 1, 2, .., L.
The above relation produces good estimates

for all stationary cases, as well as for nonsta-
tionary ones, including abrupt changes of the
optimal vector.

III. E�����
 ��� C��	���
��

The proposed New VS LMS (NVSS) al-
gorithm is implemented in nonstationary en-
vironments, in a system identification setup.
The algorithm performance is compared with
the Harris VS LMS algorithm (HVSS) and the
robust VS LMS (RVSS) algorithm [6]. Pre-
sented results are obtained by averaging over
200 independent runs, with number of weight-
ing coefficients N = 4 and same order of un-
known system. In the first 30 iterations the
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Fig. 1. Comparison of MSE for the considered algorithms

noise power was estimated according to (7)
and our algorithm used µmax. Other para-
meters values are: µmax=0.1, µmIN=0.001,
SNR = 16dB (for all algorithms); κ = 2 (for
the NVSS),α = 0.97, β = 0.99, γ = 0.5 (for the
RVSS) andmo=4,m1=3 (for the HVSS). Mul-
tiplying all the system coefficients by -1 at the
333 − th and the 666 − th iteration generates
the abrupt changes of optimal vector. Figure
1 shows the mean square error (MSE) char-
acteristics for each considered algorithm. In
order to clearly compare the obtained results,
we calculated the average MSE(MSEa). It
was MSEa = 0.23164, MSEa = 0.29565and
MSEa = 0.29271, for the NVSS, the RVSS
and HVSS, respectively.

The proposed NVSS algorithm differs from
other known VS LMS algorithms only in the
criterion for the step size change. It enables
one to get close to the MSD minimum, which
cannot be reached due to the unknown signal
nature, the introduced assumptions and to the
inevitable estimation error for σ2n. Presented
simulation results and analysis, for the case
of abrupt optimal vector changes, show ad-
vantages of the proposed solution with respect
to other known algorithms. Note that vari-
ous performed simulations, not included here,
show that NVSS performs as well as the known
VS LMS algorithms in other stationary and
nonstationary cases.
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