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Adaptive Windowed Fourier Transform

Igor Djurovié, LJubisa Stankovié

Abstract— Adaptive Fourier transform with
a data-driven window function is proposed in
the paper. The algorithm, based on the confi-
dence intervals intersection, is used for deter-
mination of the window length. It produces
an adaptive, close to optimal, bias-to-variance
trade-off. Generalization for the case of time-
varying signals is given. Numerical examples
and statistical analysis illustrate and confirm
the presented theory.

I. INTRODUCTION

In biased estimators the bias value is usually
proportional to an estimator parameter. In
many cases the estimation variance caused by
a stochastic influence is inversely proportional
to the same parameter. In these cases there ex-
ists a bias-to-variance trade-off which results
in the minimal mean squared error (MSE).
The MSE is defined as a sum of the squared
bias and the variance.

The bias usually cannot be determined in
advance since it depends on the estimated
value and its derivatives. Thus, the opti-
mal estimation parameter, producing a bias-
to-variance trade-off, cannot be used in prac-
tical realizations. In order to produce an esti-
mate of this parameter, as close as possible to
the optimal one, the non-parametric algorithm
is proposed [1]. Tt is based on the intersection
of the confidence intervals (ICI). Algorithm
origins are in non-parametric regression [2].
The algorithm is applied on the instantaneous
frequency (IF') estimation based on the Wigner
distribution and on other time-frequency (TF)
distributions [1], [3]. Other algorithm applica-
tions are: signal and image filtering [4], [5], sig-
nal denoising [6], [7], determination of the TF
distributions’ values [8], variable-step LMS al-
gorithms, and the direction-of-arrival estima-
tion [9)].

In this paper, the algorithm is applied on
the calculation of the Fourier transform (FT).
Namely, the bias-to-variance trade-off exists in
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the case of the F'T. This fact is noted in the fa-
mous book [10], where optimal window width
in the FT is derived. It cannot be used in cal-
culations since the bias of the FT depends on
its unknown derivatives. Note that an optimal
smoothed periodogram, based on the bias-to-
variance trade-off, is proposed in [11]. How-
ever, method for derivation, background the-
ory, and application field of the approach from
[11], is quite different than the approach pro-
posed in this paper.

The paper is organized as follows. Optimal
window width in the case of the FT is derived
in Section II. Algorithm for the optimal win-
dow width estimation is given in Section III.
The FT produced with estimate of the opti-
mal window width is called adaptive windowed
Fourier transform. Numerical examples and
statistical analysis are presented in Section I'V.

II. OpriMAL WINDOW WIDTH IN THE
FOURIER TRANSFORM

Consider signal f(n) corrupted by a white

Gaussian noise v(n) with the variance o2,

N(0,0?). The goal is to estimate the FT of
signal f(n):
N-1 4
Fw) = f(n)e7em, (1)
n=0

based on the noisy signal z(n) observations.
Here, the estimation will be performed by us-
ing the windowed FT:

N—-1 ‘
X(w) =Y a(n)w(n)e 7" (2)
n=0

Variance of the windowed FT (2):

o*(w) = B{|X(w)|*} — [E{X (w)}I”

N—-1
=o° ) win) 3)

n=0
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is window dependent. For a Hanning window,
that will be used in numerical examples, the
variance is:

o?(N) = g0—21\7 (4)
It is proportional to the window width. Simi-
lar conclusion holds for all window forms used
in practice.
The bias and variance of the FT can be con-
sidered separately since

E{X(w)} = Z f(n)w(n)e™ ™. (5)
The bias can be derived from:
PG} = 3 slnputa)e=
% ’ WOF@=0d. (6)

By expanding the FT F(w) into the Taylor
series around w:

Jri ka)( )9

k=1

(w 9 ’ (7)

expression (6), for even and symmetric window
function, can be written as:

B{X(w

1 F<2k> ok
+27r > / W(9)6**dg,  (8)

)} = Fw

where the second term on the right hand side
of (8) represents the bias. By neglecting the
higher-order derivatives of the FT, F®*)(w) =
0 for k > 2, we get

E{X(w)} ~ F(w) + F4—£rw) W (0)62do =
= F(w) — %w”@). (9)

For Hanning window holds w”(0) = 272/N?,
and the bias is:

bias{X(w)} = E{X(w)}—F(w) N2
(10)

2
=L _F'(w).
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The MSE of the FT estimate is:
MSE(w; N) = bias*{ X (w)} + o*(N)
7 3
— m[F”(w)]z + ga2N. (11)

The optimal window width, producing mini-
mal MSE value, follows from

OMSE(w; N)

ON |N:Nopt(w) = 07
4t 3
*W[FU(W)P + 502 = 0, (12)
resulting in:
5/ 32w [ F" (w)]?
Nopt(w) = — ez (13)
Similar relationship is derived in [10]. How-

ever, the optimal window width determination
was not discussed. As it can be seen, expres-
sion (13) contains the unknown FT derivative,
F"(w). Thus, it cannot be used for a direct
‘optimal’ FT calculation. Next we will present
a method for the parameter N, (w) estima-
tion without knowing the value of F"(w).

ITII. NON-PARAMETRIC ALGORITHM

An adaptive algorithm, based on the ICI
rule, for the IF estimation has been developed
n [1]. It can be used when the MSE, in terms
of parameter N, is of the form:
Aw)

BN’IL + N\

MSE(w,N) = e

(14)

where

0?(N) = BN™, (15)

is the estimation variance, while the second
term in (14) represents the squared bias

A(w)/N™.

The MSE is a relatively slow varying function
around its minimum [12]. It means that satis-
factory results can be obtained by considering
a set with relatively small number of the para-
meter IV values. In the IF estimation case, the
same as in our case of the adaptive FT calcu-
lation, the parameter N is the window width.
For implementation of the FET algorithms it is

bias*(w, N) = (16)
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Fig. 1. Adaptive FT for a sum of three complex sinusoids: First column - o = 0.1; second column - o = 1; third
column - o = 2. First row - logarithm of the MSE as function of the window width, thick line represents
MSE for the adaptive algorithm; second row - FTs with the constant window width: N = 2048 - dashed
line; N = 128 - thick line; third row - adaptive FT; fourth row - adaptive window width.

suitable that the windows have dyadic widths.
Define a set N with such window widths:

N={NONG® =2NC"D s =12 . J}
(17)
staring with a very narrow window N up
to a very wide window N (/).

Let F(w) be the true value of the esti-
mated variable (true FT). The estimates ob-
tained with parameters from set N are de-
noted by FN<S> (w), s=1,2,...,J. For an esti-
mate F’ 'w(s (w) as a random variable, with bias
bias(w, N©®)) and standard deviation o(N()),
like for any other random variable, the follow-

ing inequality can be written as

|F(w)—(Fye (w)—bias(w, N))| < ko(N®).
(18)
This inequality is holds with probability P(x).
We will assume that parameter x is such that
the probability P(k) is very close to 1.
The confidence interval around the estimate
is

D, e [FNM (w) — (K + AH)J(N(S)),

Fye (W) + (k4 Ar)a(NG)].  (19)

Values « and Ak determine algorithm accu-
racy and they depend on m and n in (14).
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Fig. 2. MSE for various constant window widths, and for adaptive algorithm with various (k4 Ak) for the case

of a sum of three complex sinusoids.

Details on determination of x and Ak can be
found in [13].

Basic idea of the algorithm: When the bias
is small, ie., F”(w)/N? can be neglected,
then the confidence intervals intersect since
Fx (w) are unbiased estimates. Therefore,
the true FT F(w) belongs to these intervals
with probability P(k + Ax) — 1. This is al-
ways true for extremely wide windows. For
narrow windows the bias is dominant with re-
spect to the variance and the confidence in-
tervals do not intersect. The optimal win-
dow is somewhere between these two extreme
cases, for finite and nonzero values of F"'(w)
and o2. It can be shown that the parameters
k and Ak can be determined in such a way
that the intersection of the confidence intervals
(DsN Ds_1) works as an indicator of the win-
dow width close to the optimal one, for a given
frequency w. A detailed analysis, which may
be applied here, in a straightforward manner,
can be found in [13].

It has been derived that the values of x and
Ak should satisfy:

(20)

2n/2 -1
K< /%Qm/Z—l T2 — (2(m+n)/2 _ 1)-

(21)

The adaptive value of N is determined as the
smallest N*) € N where two consecutive con-
fidence intervals intersect:

|Ene (@) = Fyeen ()] <

(k+ AR)[o(N®) + o(NCD). (22)

Note that in practical considerations the ex-
act value of the estimation standard devia-
tion o(N®)) is not known. Therefore, it is
necessary to estimate the standard deviation
6(N(). Estimation procedure depends on the
particular problem nature.

A. Algorithm

Based on the facts from this section, the fol-
lowing algorithm for the adaptive F'T determi-
nation can be defined.

1. Consider a set of the window widths N =
{NGING) =2NG=D s =12 ... J}

2. Calculate the FT for each window from
the set N, X;(w), s =1,2,...,J.

3. The initial guess is the FT produced with
the widest window from the set N, X ;(w).
Note that this FT has the smallest bias from
all FTs obtained with windows from the con-
sidered set.

4. The adaptive FT, F (w), for a consid-
ered w, is the one produced with the narrow-
est window from the set N where the following
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Fig. 3. Adaptive FT for a sum of complex sinusoid, dumped complex sinusoid and linear FM signal: First

column - o = 0.1; second column - ¢ = 1; third column - ¢ = 2. First row - logarithm of the MSE as the
function of the window width, thick line represents MSE for the adaptive algorithm; second row - FTs with
the constant window width: N = 2048 - dashed line; N = 128 - thick line; third row - adaptive FT; fourth

row - adaptive window width.

inequality still holds:
X, (@) = X,o1 ()] <
(5 + Ar)[o(N®)) + o(NED)],
Fw) = X,(w).

5. The adaptive (an estimate of the optimal)
window width is:

(23)
(24)

N(w)=N®, (25)
Comments on the Algorithm:
a) Model described by equations in (11) and
(14) has parameters m = 4 and n = 1, that
produce Ax = 0.6627, £ < 1.5431 (20) and

(21). Thus, values of (k + Ax) can be chosen
within the interval (k+Ak) € [0.6627, 2.2059)].
For smaller (k + Ak), probability that algo-
rithm produces narrower window is smaller
while, for larger (k + Ak), probability that
algorithm takes narrower window is higher.
Therefore, higher (k + Ak) gives better noise
suppressing, but at the same time it can sup-
press weak signal components. Smaller (k +
Ak) exhibits worse performance for noise sup-
pressing, but it is better for keeping weak sig-
nal components. Weak components can be es-
sential for speech signals analysis where they
are very important for the audio quality. Thus,
the choice of (k + Ak) depends on the consid-
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Fig. 4. MSE for various constant window widths and for adaptive algorithm with various (k + Ak) for the case
of the sum of complex sinusoids, dumped complex sinusoid and linear FM signal.

ered application. Its influence will be analyzed
within the numerical examples.

b) The unknown standard deviation (N ()
of the FT (23) should be estimated. It can be
done on numerous ways. For the FM signal
it can be done as in [1], while for the speech
signal it can be done by considering the speech
signal pause, as it is described in [14].

¢) The adaptive FT for the Hanning window
can be written as:

N-1 ,
= Z z(n)w(n,w)e 7" (26)
n=0
where:
w(n,w) = % (1 — cos ;?Z)) . (27)

B. Application in Time-Frequency Analysis

For signals with time variations of the spec-
tral content, the short-time Fourier transform
(STFT):

N-1
STFT(n,w) an—i—m m)e Im,
m=0
(28)

can be used instead of the standard FT. The
adaptive STFT can be calculated with the
same algorithm as in the previous subsection,
for each time-instant. For an instant m, the

algorithm can be performed by using samples
z(n +m), m € [0,N), where N is a width
of the widest window from the considered set
N. Resulting adaptive F'T can be further used
for calculation of distributions from the Cohen
class according to [15], [16], [17].

IV. NUMERICAL EXAMPLES

Example 1. Consider a signal:
f(t) = exp(j256mt)

1 1
+3 exp(j512mt) + 1 exp(j7687t),  (29)
sampled with At = 1/1024, within ¢ € [-1,1].
Signal is corrupted by

v(n) = —=(1(n) +jrva(n),  (30)

i(
V2

where v;(n), i = 1,2 are mutually independent
white Gaussian noises with unitary variance.
The adaptive algorithm is applied on the set
of the Hanning windows whose widths are:

N =[2048 1024 512 256 128 64 32 16 8 4].

(31)
Results obtained with the proposed algorithm
for (k + Ak) = 1 are summarized in Fig.

1. The first column represents a small noise
case o = 0.1, while the second and the third
columns represent higher noise amounts, o = 1
and o = 2. The logarithm of the MSE, as a
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Fig. 5. Adaptive FT of signal whose FT represents an ideal pass-band filter: First column - SNR = 20dB;

second column - SN R = 10dB; third column - SNR = 0dB. First row - logarithm of the MSE as function of
the window width, thick line represents MSE for the adaptive algorithm; second row - FTs with the constant
window width: N = 2048 - dashed line; N = 128 - thick line; third row - adaptive FT; fourth row - adaptive

window width.

function of the window width, is shown in the
first row of the Fig. 1. Thick lines represent
the MSE obtained by the adaptive algorithm.
By increasing the amount of noise, the MSE
rapidly increases for the FT with wider win-
dows, while for the FT with narrower windows
it has almost a constant value. The FT ob-
tained with windows of the constant width is
shown in Fig. 1, second row. The FT with the
widest window from the set N, N = 2048, is
marked with dashed lines, while the FT with
window N = 128 is marked with thick lines.
The adaptive FT is shown in the third row of
Fig. 1, while the adaptive window width is
shown in Figure 1, forth row. It can be seen

that by increasing the noise amount, window
width around the signal component decreases.

Statistical analysis is performed on the pre-
sented signal, as well. The standard deviation
range o € [0, 3] has been considered. Loga-
rithm of the MSE for three constant windows,
from the set N, and for the adaptive algo-
rithm, by using (k + Ax) = (1,1.25,1.5), is
shown in Fig. 2. Also, the adaptive algorithm
with varying (k+ Ak) is calculated. The value
(k + Ak) = 1.75 is used for w = 0. Value of
(k+Ak) is linearly decreased toward the max-
imal frequency, where (k + Ax) = 1 is used.
Performance of the adaptive algorithm with
(k+Ak) = (1,1.25,1.5), and with a frequency



ADAPTIVE WINDOWED FOURIER TRANSFORM

895

IogmMSE

- N=1024
.=. N=16
(k+AK)=1
(k+Ak)=1.25
(k+Ax)=1.5 b
(k+AKk) varying

5 0

SNR [dB]

Fig. 6. MSE for various constant window widths and for adaptive algorithm with various (k + Ax) for the case

of the ideal pass-band filter.

05

a)

-0.5
-1000 0

1000

~

IogmMSE

Adaptive STFT

0 200

400

-0.5

-1000 0

Fig. 7.

05

-0.5

0.5

-0.5

0.5

t |

| b)
-1000 0 1000
t ]

n ®| d)
-1000 0 1000
t [

i Sl b}

-1000 0 1000

Adaptive TF representation: a) STFT of the non-noisy signal calculated with the widest window; b)

STFT of noisy signal; ¢) MSE as a function of the window width; d) adaptive STFT; e) adaptive window
width; f) S-method calculated by using the adaptive STFT.



896

varying (k+Ak) are almost the same. It shows
that all values of (k + Ak) from the proposed
range produce similar performance. The adap-
tive algorithms perform better than the FT
with any constant window from the considered
set.

Example 2. Consider a sum of the complex
sinusoid, damped complex sinusoid, and linear
FM signal:

f(t) = 2exp(j256mt) exp(—32t2)+

exp(j5127t) 4 2 exp(j64mt? + j7687t). (32)

The numerical tests and the statistical analysis
are performed under the same assumptions, as
in the previous example. Results are given in
Figs. 3 and 4.

Example 3. Consider a signal:

in(1287t
F(t) = 8exp(j512ms)%, (33)
that represents an ideal passband filter:
[ 8 w e [384m,640m7],
Flw)= { 0 elsewhere. (34)

Signal is sampled with At = 1/1024. Applica-
tion of the proposed algorithm for signal (33),
embedded in (30) with SNR equal to 20dB,
10dB and 0dB is shown in the columns of Fig.
5, respectively. Algorithm parameters are the
same as in Example 1. It can be seen from the
first two columns that a wide adaptive window
is taken only around the cut-off frequencies,
where |F"(w)| is different from zero. This is
in a full agreement with the proposed theory.
However, outside this region the adaptive algo-
rithm took narrow window since |F"(w)| ~ 0.
In a heavier noise environment, third column
in Fig. 5, adaptive window length around
the cut-off frequencies is decreased in order to
avoid noise influence. Statistical analysis for
this case is shown in Fig. 6.

Example 4. TF analysis is performed on
the signal

f(t) = 2exp(j256mt) exp(—32t2)+
exp(—j384nt) exp(—8t?), (35)

corrupted by a white complex Gaussian noise
(30) with 0 = 1.5. The STFT of non-noisy

TIME-FREQUENCY SIGNAL ANALYSIS

signal (35), produced with the widest window
from the considered set N = 512, is shown
in Fig. 7a, while for the noisy signal it is
shown in Fig. 7b. The adaptive algorithm
with (k+ Ax) = 1.25 is applied. The MSE for
windows with constant widths, as well as for
the adaptive algorithm, is shown in Fig. T7c.
The adaptive STFT is shown in Fig. 7d, while
the adaptive window width is shown in Fig.
7e. The S-method, as a distribution from the
Cohen class that can be realized by using the
adaptive STFT [16]

L
SM(n,w) = Z STFT (n,w + lAw) X
=L

STFT* (n,w — lAw), (36)

where Aw is the frequency step, is shown in
Fig. 7f. The value of L = 3 is used.

V. CONCLUSION

Non-parametric algorithm for determina-
tion of the adaptive FT is presented. The
algorithm produces adaptive window length
that gives a bias-to-variance trade-off, with
the MSE smaller than for any constant win-
dow from the considered set. Generalization
of the algorithm to the TF analysis of the
signal with varying spectral content is done.
The frequency-varying algorithm parameter
(k + Ak) is introduced in order to keep weak
signal components that can be very important
for audio quality of the speech signals. The
algorithm produces almost the same MSE for
a wide range of (k + Ak) values.
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