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Combined Adaptive Filter with
LMS-Based Algorithms

Božo Krstajić, LJubiša Stanković, Zdravko Uskoković

Abstract– A combined adaptive filter is pro-
posed. It consists of parallel LMS-based adap-
tive FIR filters and an algorithm for choosing
the better among them. As a criterion for com-
parison of the considered algorithms in the pro-
posed filter, we take the ratio between bias and
variance of the weighting coefficients. Simula-
tions results confirm the advantages of the pro-
posed adaptive filter.

I. I������	�
��

Adaptive filters have been applied in sig-
nal processing and control, as well as in many
practical problems, [1], [2]. Performance of
an adaptive filter depends mainly on the al-
gorithm used for updating the filter weight-
ing coefficients. The most commonly used
adaptive systems are those based on the Least
Mean Square (LMS) adaptive algorithm and
its modifications (LMS-based algorithms).

The LMS is simple for implementation and
robust in a number of applications [1], [2], [3].
However, since it does not always converge
in an acceptable manner, there have been
many attempts to improve its performance by
the appropriate modifications: sign algorithm
(SA) [8], geometric mean LMS (GLMS) [5],
variable step-size LMS (VS LMS) [6], [7].

Each of the LMS-based algorithms has at
least one parameter that should be defined
prior to the adaptation procedure (step for
LMS and SA; step and smoothing coefficients
for GLMS; various parameters affecting the
step for VS LMS). These parameters crucially
influence the filter output during two adap-
tation phases: transient and steady state.
Choice of these parameters is mostly based on
some kind of trade-off between the quality of
algorithm performance in the mentioned adap-
tation phases.
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We propose a possible approach for the
LMS-based adaptive filter performance im-
provement. Namely, we make a combination
of several LMS-based FIR filters with differ-
ent parameters, and provide the criterion for
choosing the most suitable algorithm for differ-
ent adaptation phases. This method may be
applied to all the LMS-based algorithms, al-
though we here consider only several of them.
The paper is organized as follows. An

overview of the considered LMS-based algo-
rithms is given in Section 2. Section 3 proposes
the criterion for evaluation and combination
of adaptive algorithms. Simulation results are
presented in Section 4.

II. LMS ����� �����
����

Let us define the input signal vector
X̄k = [x(k)x(k − 1)...x(k −N + 1)]Tand vec-
tor of weighting coefficients as W̄k =
[W0(k)W1(k)...WN−1(k)]

T . The weighting co-
efficients vector should be calculated according
to:

W k+1 =W k + 2µE{ekXk} (1)

where µ is the algorithm step, E{·} is the es-
timate of the expected value and ek = dk −
W

T

kXk is the error at the instant k, and dk is
a reference signal. Depending on the estima-
tion of expected value in (1), one defines var-
ious forms of adaptive algorithms: the LMS
(E{ekXk} = ekXk), the GLMS (E{ekXk} =
a

k∑

i=0

(1 − a)iek−iXk−i, 0 < a ≤ 1), and the

SA (E{ekXk} = Xk sign(ek)), [1], [2], [5], [8].
The VS LMS has the same form as the LMS,
but in the adaptation the step µ(k) is changed
[6], [7].
The considered adaptive filtering problem

consists in trying to adjust a set of weighting
coefficients so that the system output, yk =

W
T

kXk, tracks a reference signal, assumed as
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dk = W
∗T

k Xk + nk, where nk is a zero mean

Gaussian noise with the variance σ2n, and W
∗

k

is the optimal weight vector (Wiener vector).

Two cases will be considered: W
∗

k = W
∗

is

a constant (stationary case) and W
∗

k is time-
varying (nonstationary case). In nonstation-
ary case the unknown system parameters (i.e.

the optimal vector W
∗

k) are time variant. It

is often assumed that variation of W
∗

k may be

modeled as W
∗

k+1 =W
∗

k + Z̄k,where Z̄k is the
zero-mean random perturbation, independent
on Xk and nk,with the autocorrelation matrix

G = E
[
Z̄kZ

T

k

]
= σ2ZI. Note that analysis for

the stationary case directly follows for σ2Z = 0.
The weighting coefficient vector converges to
the Wiener one, if the condition from [1], [2] is
satisfied.

Define the weighting coefficients misalign-
ment, [1], [2], [3], V k = W k −W

∗

k. It is due
to both the effects of gradient noise (weight-
ing coefficients variations around the average
value) and the weighting vector lag (difference
between the average and the optimal value),
[3]. It can be expressed as:

V k = (W k −E(W k)) + (E(W k)−W
∗

k), (2)

According to (2), the i-th element of V k is:

Vi(k) = (E(Wi(k))−W ∗

i (k))

+(Wi(k)−E(Wi(k))

= bias(Wi(k)) + ρi(k) (3)

where bias(Wi(k)) is the weighting coefficient
bias and ρi(k) is a zero-mean random variable
with the variance σ2. The variance depends
on the type of LMS-based algorithm, as well as
on the external noise variance σ2n.Thus, if the
noise variance is constant or slowly-varying, σ2

is time invariant for a particular LMS-based
algorithm. In that sense, in the analysis that
follows we will assume that σ2 depends only
on the algorithm type, i.e. on its parameters.

An important performance measure for an
adaptive filter is its mean square deviation
(MSD) of weighting coefficients. For the
adaptive filters, it is given by, [3]: MSD =
lim
k→∞

E
[
V̄ Tk V k

]
.

III. C���
��� �����
�� �
����

The basic idea of the combined adaptive
filter lies in parallel implementation of two
or more adaptive LMS-based algorithms, with
the choice of the best among them in each iter-
ation [9]. Choice of the most appropriate algo-
rithm, in each iteration, reduces to the choice
of the best value for the weighting coefficients.
The best weighting coefficient is the one that
is, at a given instant, the closest to the corre-
sponding value of the Wiener vector.
Let Wi(k, q) be the i − th weighting coeffi-

cient for LMS-based algorithm with the chosen
parameter q at an instant k. Note that one
may now treat all the algorithms in a unified
way (LMS: q ≡ µ, GLMS: q ≡ a, SA: q ≡ µ).
LMS-based algorithm behavior is crucially de-
pendent on q. In each iteration there is an
optimal value qopt, producing the best perfor-
mance of the adaptive algorithm. Analyze now
a combined adaptive filter, with several LMS-
based algorithms of the same type, but with
different parameter q.
The weighting coefficients are random vari-

ables distributed around the W ∗

i (k), with
bias(Wi(k, q)) and the variance σ2q , related by
[4], [9]:

|Wi(k, q)−W ∗

i (k)− bias(Wi(k, q))| ≤ κσq,
(4)

where (4) holds with the probability P (κ), de-
pendent on κ. For example, for κ = 2 and a
Gaussian distribution, P (κ) = 0.95 (two sigma
rule).
Define the confidence intervals for Wi(k, q),

[4], [9]:

Di(k) = [Wi(k, q)− 2κσq,Wi(k, q) + 2κσq]
(5)

Then, from (4) and (5) we conclude that,
as long as |bias(Wi(k, q))| < κσq, W

∗

i (k) ∈
Di(k), independently on q. This means that,
for small bias, the confidence intervals, for dif-
ferent q′s of the same LMS-based algorithm,
intersect. When, on the other hand, the bias
becomes large, then the central positions of
the intervals for different q′s are far apart, and
they do not intersect.
Since we do not have apriori information

about the bias(Wi(k, q)), we will use a spe-
cific statistical approach to get the criterion
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for the choice of adaptive algorithm, i.e. for
the values of q. The criterion follows from
the trade-off condition that bias and vari-
ance are of the same order of magnitude, i.e.
|bias(Wi(k, q))| ∼= κσq, [4].

The proposed combined algorithm (CA) can
now be summarized in the following steps:

Step 1. Calculate Wi(k, q) for the algo-
rithms with different q′s from the predefined
set Q = {q1, q2, ...}.
Step 2. Estimate the variance σ2q for each

considered algorithm.

Step 3. Check if Di(k) intersect for the con-
sidered algorithms. Start from an algorithm
with largest value of variance, and go toward
the ones with smaller values of variances. Ac-
cording to (4), (5) and the trade-off criterion,
this check reduces to the check if

|Wi(k, qm)−Wi(k, ql)| < 2κ(σqm + σql) (6)

is satisfied, where qm, ql ∈ Q, and the following
relation holds: ∀qh: σ2qm > σ2qh > σ2ql ,⇒ qh /∈
Q.

If no Di(k) intersect (large bias) choose the
algorithm with largest value of variance. If the
Di(k) intersect, the bias is already small. So,
check a new pair of weighting coefficients or, if
that is the last pair, just choose the algorithm
with the smallest variance. First two intervals
that do not intersect mean that the proposed
trade-off criterion is achieved, and choose the
algorithm with large variance.

Step 4. Go to the next instant of time.

The smallest number of elements of the set
Q is L = 2. In that case, one of the q′s should
provide good tracking of rapid variations (the
largest variance), while the other should pro-
vide small variance in the steady state. Ob-
serve that by adding few more q′s between
these two extremes, one may slightly improve
the transient behavior of the algorithm.

Note that the only unknown values in (6) are
the variances. In our simulations we estimate
σ2q as in [4]:

σq = median(|Wi(k)−Wi(k − 1)|)/0.675
√
2,
(7)

for k = 1, 2, .., L and σ2Z 
 σ2q.

The alternative way is to estimate σ2n as:

σ2n ≈
1

T

∑T

i=1
e2i , for x(i) = 0. (8)

Expressions relating σ2n and σ
2
q in steady state,

for different types of LMS-based algorithms,
are known from literature. For the standard
LMS algorithm in steady state, σ2n and σ

2
q are

related by σ2q = qσ2n, [3]. Note that any other

estimation of σ2q is valid for the proposed filter.
Complexity of the CA depends on the con-

stituent algorithms (Step 1), and on the deci-
sion algorithm (Step 3). Calculation of weight-
ing coefficients for parallel algorithms does not
increase the calculation time, since it is per-
formed by a parallel hardware realization, thus
increasing the hardware requirements. The
variance estimations (Step 2), negligibly con-
tribute to the increase of algorithm complex-
ity, because they are performed at the very be-
ginning of adaptation and they are using sep-
arate hardware realizations. Simple analysis
shows that the CA increases the number of
operations for, at most, N(L − 1) additions
and N(L − 1) IF decisions, and needs some
additional hardware with respect to the con-
stituent algorithms.

A. Illustration of combined adaptive filter

Consider a system identification by the com-
bination of two LMS algorithms with differ-
ent steps. Here, the parameter q is µ, i.e.
Q = {q1, q2} = {µ, µ/10}.
The unknown system has four time-

invariant coefficients, and the FIR filters are
with N = 4. We give the average mean square
deviation (AMSD) for both individual algo-
rithms, as well as for their combination, Fig.
1. Results are obtained by averaging over 100
independent runs (the Monte Carlo method),
with µ = 0.1. The reference dk is corrupted
by a zero-mean uncorrelated Gaussian noise
with σ2n = 0.01 and SNR = 15 dB, and κ
is 1.75. In the first 30 iterations the variance
was estimated according to (7), and the CA
picked the weighting coefficients calculated by
the LMS with µ.
As presented in Fig. 1, the CA first uses

the LMS with µ and then, in the steady state,
the LMS with µ/10. Note the region, between
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the 200th and 400th iteration, where the algo-
rithm can take the LMS with either step-size,
in different realizations. Here, performance of
the CA would be improved by increasing the
number of parallel LMS algorithms with steps
between these two extrems. Observe also that,
in steady state, the CA does not ideally pick
up the LMS with smaller step. The reason is
in the statistical nature of the approach.
Combined adaptive filter achieves even bet-

ter performance if the individual algorithms,
instead of starting an iteration with the coef-
ficient values taken from their previous itera-
tion, take the ones chosen by the CA. Namely,
if the CA chooses, in the k-th iteration, the
weighting coefficient vector W̄p, then each in-
dividual algorithm calculates its weighting co-
efficients in the (k + 1)-th iteration according
to:

W k+1 =Wp + 2µE{ekXk} (9)

Fig. 2 shows this improvement, applied on
the previous example. In order to clearly
compare the obtained results, for each simu-
lation we calculated the AMSD. For the first
LMS (µ) it was AMSD= 0.02865, for the sec-
ond LMS (µ/10) it was AMSD= 0.20723, for
the CA (CoLMS) it was AMSD= 0.02720
and for the CA with modification (9) it was
AMSD=0.02371.

IV. S
�����
�� R������

The proposed combined adaptive filter with
various types of LMS-based algorithms is im-
plemented for stationary and nonstationary
cases in a system identification setup. Perfor-
mance of the combined filter is compared with
the individual ones, that compose the partic-
ular combination.
In all simulations presented here, the refer-

ence dk is corrupted by a zero-mean uncor-
related Gaussian noise with σ2n = 0.1 and
SNR = 15 dB. Results are obtained by aver-
aging over 100 independent runs, with N = 4,
as in the previous section.
(a) Time Varying Optimal Weighting

Vector: The proposed idea may be applied
to the SA algorithms in a nonstationary case.
In the simulation, the combined filter is com-
posed out of three SA adaptive filters with dif-
ferent steps, i.e. Q = {µ, µ/2, µ/8}; µ = 0.2.

The optimal vector is generated according to
the presented model with σ2Z = 0.001, and
with κ = 2. In the first 30 iterations the vari-
ance was estimated according to (7), and CA
takes the coefficients of SA with µ (SA1).

Figure 3 shows the AMSD characteris-
tics for each algorithm. In steady state the
CA does not ideally follow the SA3 with
µ/8, because of the nonstationary problem
nature and a relatively small difference be-
tween the coefficient variances of the SA2 and
SA3. However, this does not affect the over-
all performance of the proposed algorithm.
AMSD for each considered algorithm was:
AMSD= 0.4129 (SA1,µ), AMSD=0.4257
(SA2, µ/2), AMSD=1.6011 (SA3, µ/8) and
AMSD=0.2696 (Comb).

(b) Comparison with VS LMS algo-
rithm [6]: In this simulation we take the
improved CA (9) from 3.1, and compare its
performance with the VS LMS algorithm [6],
in the case of abrupt changes of optimal vec-
tor. Since the considered VS LMS algorithm
[6] updates its step size for each weighting co-
efficient individually, the comparison of these
two algorithms is meaningful.

All the parameters for the improved CA are
the same as in 3.1. For the VS LMS algo-
rithm [6], the relevant parameter values are
the counter of sign change m0 = 11, and
the counter of sign continuity m1 = 7. Fig-
ure 4 shows the AMSD for the compared al-
gorithms, where one can observe the favor-
able properties of the CA, especially after the
abrupt changes. Note that abrupt changes are
generated by multiplying all the system coef-
ficients by -1 at the 2000-th iteration (Fig. 4).
The AMSD for the VS LMS was AMSD =
0.0425, while its value for the CA (Co LMS)
was AMSD = 0.0323.

For a complete comparison of these algo-
rithms we consider now their calculation com-
plexity, expressed by the respective increase
in number of operations with respect to the
LMS algorithm. The CA increases the num-
ber of requres operations for N additions and
N IF decisions. For the VS LMS algorithm,
the respective increase is: 3N multiplications,
N additions, and at least 2N IF decisions.
These values show the advantage of the CA
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Fig. 1. Average MSD for considered algorithms
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with respect to the calculation complexity.

V. C��	���
��

Combination of the LMS based algorithms,
which results in an adaptive system that takes
the favorable properties of these algorithms in
tracking parameter variations, is proposed. In
the course of adaptation procedure it chooses
better algorithms, all the way to the steady
state when it takes the algorithm with the
smallest variance of the weighting coefficient

deviations from the optimal value.
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