
904 TIME-FREQUENCY SIGNAL ANALYSIS

Performance Analysis of the Adaptive
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Abstract– An algorithm for the mean
squared error minimization, through the bias-
to-variance ratio optimization, has been re-
cently proposed and used in the literature. This
algorithm is based on the analysis of the inter-
section of confidence intervals (ICI). The algo-
rithm does not require explicit knowledge of the
estimation bias for a “near to optimal” parame-
ter estimation. This paper presents a detailed
analysis of the algorithm performances, includ-
ing procedures and relations that can be used
for a fine adjustment of the algorithm parame-
ters. Reliability of the algorithm is studied for
various kinds of the estimation noise. Results
are confirmed on a simulated example with uni-
form, Gaussian and Laplacian noise. An illus-
tration of the algorithm application on a simple
filtering example is given.

I. I������	�
��

In numerous signal processing methods and
applications of noisy signals, the result is
a biased random variable. This is the
case in filtering, smoothing, Fourier trans-
form calculation, instantaneous frequency es-
timation, time-frequency distributions calcu-
lations, LMS adaptive algorithms, direction
of arrival estimation, image and multidimen-
sional signal processing, and many other ap-
plications, not restricted to signal process-
ing [1]-[18]. The variance and bias in most
of these cases are functions of one parame-
ter (smoothing interval, number of samples,
lag window, step-size value, number of sen-
sors,...). Behavior of bias and variance is usu-
ally opposite with respect to this parameter.
When the parameter increases then the vari-
ance increases (decreases) and the bias de-
creases (increases). The optimal parameter
value can be determined by minimizing the es-
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timation mean squared error (MSE), provided
that some signal and noise parameters are ex-
plicitly known. However, these parameters are
not available in advance. This is especially
true for the estimation bias which is deter-
mined by the signal changes. The adaptive
algorithm for determination of the parameter
value close to the optimal one is recently pro-
posed and intensively used [1]-[18]. The algo-
rithm is based on the intersection of confidence
intervals (ICI) [14], [15]. This algorithm does
not require knowledge of the estimation bias
value.

In the first part of this paper, after a review
of the algorithm, a method for fine adjustment
of the algorithm parameters is proposed. The
second part of the paper introduces reliability
analysis of the algorithm for various kinds of
estimation noise. The paper is completed with
a statistical study and numerical confirmation
of the presented results.

II. M���
 ��� O��
��
 P��������

V�
��

Consider a noisy signal:

x(k) = f(k) + ε(k), (1)

with f(k) being a signal and ε(k) being a sta-
tionary noise. Suppose that we want to esti-
mate a quantity Q(k) from this noisy signal.
In general, this quantity (signal value, trans-
form value, distribution value, instantaneous
frequency, adaptive coefficient, direction of ar-
rival...) is time-dependent. Also assume that

its estimate Q̂(k) depends on a parameter h
(smoothing interval, number of samples, lag
window width, adaptive step-size value, num-
ber of sensors,...). Let the estimation bias be

bias(k, h) =
√
B(k)hn,
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and the variance be

σ2(h) = V/hm. (2)

Here, the parameter B(k) depends on the un-
known signal f(k), and it is not known in ad-
vance. The variance of the estimate is assumed
to be time-invariant (as it is true in all of the
above mentioned applications), but it is de-
pendent on the parameter h. Variance and
squared bias dependence on h is of the m− th
and n − th power, respectively. Note that,
depending on the nature of parameter h, in
some cases the bias and variance expressions
can assume the form bias(k, h) =

√
B(k)/hn

and σ2(h) = V hm. It does not influence the
algorithm applicability, since a simple substi-
tution h→ 1/h produces (2).

The MSE is of the form

E
{
(Q(k)− Q̂(k))2

}
=

V

hm
+B(k)hn. (3)

The MSE in (3) has a minimum with respect
to h. This minimum occurs for the optimal
value of h = hopt(k). Thus, the optimal value
of h follows from

∂E
{
(Q(k)− Q̂(k))2

}

∂h
=

−m V

hm+1
+ nB(k)hn−1 = 0|h=hopt , (4)

in the form

hopt(k) = [mV/(nB(k))]1/(m+n). (5)

Note that this relation is not useful in prac-
tice, because its right-hand side contains B(k)
which depends on the unknown signal f(k).

For the optimal value of h relation (4) holds.
Multiplying (4) by h, we get the relationship
between the bias and standard deviation (2)
for h = hopt(k),

bias(k, hopt) =

√
m

n
σ(hopt). (6)

Thus, the bias-to-standard deviation ratio
is signal independent at h = hopt(k),

bias(k, hopt)/σ(hopt) =
√
m/n.

Note 1: The bias-to-standard deviation ra-
tio is signal independent when h = hopt(k)

for a more general form of the bias and vari-
ance functions: bias(k, h) =

√
B(k)z(h), and

σ2(h) = V w(h), where z(h) and w(h) are pos-
itive monotonous functions satisfying the rela-
tion z(h) = C1/w

C2(h), and C1, C2 are arbi-
trary positive constants. Proof is the same as
for (4),(6).
Note 2: In many applications we can

assume that the bias and standard devia-
tion are of the same order of magnitude
for a parameter h close to the optimal one,
bias(k, hopt)/σ(hopt) ∼= 1. Then the presented
analysis can be used in quite general cases,
when the bias and standard deviation are just
monotonous functions with opposite behavior.

III. R��
�� �� ��� A����
��

A
���
���

Here, we will review the adaptive algorithm
[1]-[4], and introduce the parameters that will
be analyzed in the sections that follow. The
algorithm can produce hopt(k) or, due to dis-
crete nature of h, inherent to this algorithm,
a value close to hopt(k), without having to
know B(k).

Let us introduce a set H of discrete values
of parameter h,

H = {hs | hs = ahs−1, s = 1, 2, ..., J } , (7)

with a > 1 and h0 > 0. The algo-
rithm can be generalized for any set H =
{hs | hs > hs−1, s = 1, 2, ..., J, h0 > 0} .

In general, the exact optimal parameter hopt
is not equal to any of the values from the set
H. In order to relate hopt with the values hs
from the set H, assume that hopt is close to a
parameter hs+ belonging to H, hs+ ∈ H, i.e.,
hs+ ≈ hopt. Then, we can write hs+ = aphopt,
where p is a constant close to 0. According to
(7) all other parameter values can be written
as a function of hs+ or hopt as

hs = hs+a
(s−s+) = hopta

s−s++p,

(s− s+) = ...,−2,−1, 0, 1, 2, ....
With this notation, having in mind (6), the
bias and the standard deviation from (2) can
be expressed, for any hs ∈ H, as

σ(hs) =
√
V/hms

= σ(hopt)a
−(s−s++p)m/2,
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bias(k, hs) =
√
B(k)hns

=

√
m

n
σ(hopt)a

(s−s++p)n/2. (8)

After we have defined the bias and the stan-
dard deviation of the estimate Q̂s(k), obtained
by using hs, we can introduce the confidence
intervals of the random variable Q̂(k). The
confidence intervals play a crucial role in the
algorithm. The estimate Q̂s(k) is a random
variable distributed around Q(k) with the bias
bias(k, hs) and the standard deviation σ(hs).

The unbiased estimate
(
Q̂s(k)− bias(k, hs)

)

is centered around the true value Q(k). Thus,
we may write the relation:

∣∣∣Q(k)−
(
Q̂s(k)−bias(k, hs)

)∣∣∣≤κσ(hs), (9)

where the inequality holds with probability
P (κ) depending on parameter κ.1 We will as-
sume that κ is such that P (κ)→ 1.

The confidence intervals of the estimate, ob-
tained by using a parameter hs ∈ H, are de-
fined by Ds = [Ls, Us], where the lower and
upper bound read

Ls = Q̂s(k)− (κ+∆κ)σ(hs),

Us = Q̂s(k) + (κ+∆κ)σ(hs). (10)

Here, Q̂s(k) is an estimate of Q(k) obtained by
parameter h = hs, and σ(hs) is the standard

deviation of Q̂s(k).
For small values of hs, when s 
 s+, the

bias is negligible, (8), thus Q(k) ∈ Ds (with
probability P (κ+∆κ)→ 1). Then, obviously,
Ds−1 ∩ Ds �= ∅, since at least the true value

1If we assume, for example, that the random variable

Q̂s(k) is Gaussian, with the mean value M = Q(k) +
bias(k, hs) and the standard deviation σ(hs), then the

probability that Q̂s(k) takes a value within the interval

[M−κσ(hs),M+κσ(hs)], i.e.,
∣∣∣Q̂s(k)−M

∣∣∣ ≤ κσ(hs),
is P (κ) = 0.95 for κ = 2 , and P (κ) = 0.997 for κ = 3.

If the random variable Q̂s(k) is uniformly distributed

then the probability that Q̂s(k) takes a value within

[M − κσ(hs),M + κσ(hs)] is P (κ) = 1 for κ >
√
3.

Therefore, a value of κ which guaranties P (κ) close
to 1 is the only algorithm condition. The algorithm
applicability does not depend on the particular distri-

bution of random variable Q̂s(k). Detailed analysis of
the algorithm reliability will be presented in Section
V.

Q(k) belongs to both confidence intervals. For
s � s+ the variance is small, but the bias is
large (8). It is clear that there always exists
such a large s that Ds ∩Ds+1 = ∅ for a finite
(κ+∆κ).

The parameter ∆κ in Ds can be determined
so that the largest s, for which the sequence of
pairs of the confidence intervals Ds−1 and Ds
intersect, is s = s+. Then, the intersection of
confidence intervals Ds−1 and Ds, which oc-
curs when
∣∣∣Q̂s−1(k)− Q̂s(k)

∣∣∣ ≤ (κ+∆κ)[σ(hs−1)+σ(hs)],

(11)
works as an indicator of the event s = s+, i.e.,
the event hs ≈ hopt. Illustration of the prob-
ability density functions (pdf) of the estimate

Q̂s(k) for various values of hs is shown in Fig.1.

IV. P��������� 
� ��� A����
��

A
���
���

There are three possible ways of choosing
algorithm parameters κ, ∆κ, and p.

A. Heuristic Approach

When our knowledge about the variance and
bias behavior, given by (3), is not quite reli-
able, an approximative approach for determi-
nation of κ, ∆κ, and p can be used. Then, we
can use a = 2 and assume, for example, a value
of κ ∼= 2.5 such that P (κ) ∼= 0.99 for Gaussian
distribution of estimation error. The value of
∆κ should take into account the bias for the
expected optimal parameter value (6). It is
common to assume that, for the optimal value
of h, the bias and standard deviation are of
the same order (Note 2), resulting in ∆κ ∼= 1.
Then we can expect that the obtained value
hs+ is close to hopt, thus p ∼= 0, and the algo-
rithm is completely defined, since all parame-
ters for the key algorithm equation (11)
are defined. This simple heuristic procedure
has been successfully used in [1],[2].

B. “Analytic” Approach

When the knowledge about the variance and
bias behavior is reliable, i.e., when (3) accu-
rately describes estimation error, then we can
calculate all algorithm parameters. Accord-
ing to the algorithm basic idea and monoto-
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Fig. 1. Illustration of the probability density functions (pdf) of the estimate Q̂s for various values of hs

TABLE I

P��������� 
� ��� �����
�� �
���
��� ��� a = 2 ��� ���
��� m,n, ��� κ.

m 1 1 3 3 3 3 3 3

n 4 4 4 4 4 8 8 8

κ 2 3 2 3 5 2 3 5

∆κ 0.86 1.29 0.39 0.58 0.97 0.09 0.14 0.23

p 0.97 1.22 0.34 0.51 0.72 -0.13 -0.03 0.11

p1 1.18 1.41 0.59 0.76 0.97 0.19 0.30 0.43

nous nature of the bias and standard deviation
with respect to h, only three confidence inter-
vals, Ds+−1,Ds+ , and Ds++1, should be con-
sidered. The confidence intervals Ds+−1 and
Ds+ should intersect, while Ds+ and Ds++1
should not intersect. Assuming that rela-
tion (9) holds, and that the bias is positive,
this condition means that the minimal possible
value of upper Ds+−1 bound, (10), denoted by
min{Us+−1}, is always greater than or equal
to the maximal possible value of the lowerDs+
bound, denoted by max{Ls+}, i.e.,

min{Us+−1} ≥ max{Ls+}.
The condition that Ds+ and Ds++1 do not in-
tersect is given by

max{Us+} < min{Ls++1}.

The maximal and minimal values of Q̂s(k) fol-
low from (9), as Q(k)+ bias(k, hs)−κσ(hs) ≤

Q̂s(k) ≤ Q(k) + bias(k, hs) + κσ(hs). By sub-
stituting these values into (10), the above two
inequalities result in

bias(hs+−1) +∆κσ(hs+−1) ≥
bias(hs+)−∆κσ(hs+),

and

bias(hs+) + (2κ+∆κ)σ(hs+) <

bias(hs++1)− (2κ+∆κ)σ(hs++1). (12)

Since the inequalities are written for the worst
case, we can calculate the algorithm parame-
ters by using the corresponding equalities. By
using (8) we get the parameters

∆κ =
2κ

a(n+m)/2 − 1
,

ap =

(
∆κ

√
n

m

am/2 + 1

1− a−n/2
)2/(m+n)

. (13)
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Values of parameters ∆κ and p for various val-
ues of m and n, and the most commonly used
case a = 2, are given in Table I.

Note 3: “Linear or logarithmic scale”? For
further, and very fine, tuning of the algorithm
parameters, one may wish that the adap-
tive parameter is unbiased in the logarithmic,
rather than in the linear scale (due to defin-
ition (7)). The additional logarithmic shift,
due to a difference in arithmetic and geomet-
ric mean, is denoted by ∆p.2 Logarithmic shift
p1 = p+∆p is presented in Table I.

Therefore, the adaptive value (as an esti-
mate of the optimal parameter h value) should
be

ha = ĥopt = hs+/a
p1

Note that the set H of parameter h values is
a priori assumed and fixed. Therefore, as
long as we can calculate the logarithmic shift
p1, we can use it in the following ways:

a) To calculate value of Q(k) with the new
value ha = hs+/a

p1 as the best estimate of
hopt,

b) To remain within the assumed set of hs ∈
H, and to decide only whether to correct the
obtained hs+ or not. If |p1| ≤ 1/2, the correc-
tion of hs+ is ap1 . In this case it is smaller than
the parameter h discretization step. Thus, if
we remain within the assumed setHwe can use
ha = hs+ . For parameters m,n and κ (Table
I) which produce 1/2 < p1 ≤ (1+1/2) it is bet-
ter to use ha = hs+/a = hs+−1, as the adap-
tive parameter value. Fortunately, the loss of
accuracy for the adaptive ha, as long as they
are of hopt order, is not significant since the
MSE varies slowly around its stationary point,
(4). Thus, in numerical implementations we
can use only the values of h from the given set
H.

2The estimation bias and variance are exponential
functions with respect to m and n, (8). Thus, the

confidence interval limits change as 2(s−s
+)(m+n)/2,

for the case when a = 2. The mean value for
this exponential function, for two successive confi-
dence intervals, for example (s − s+) = 0 and (s −
s+) = 1, is (1 + 2(m+n)/2)/2. With respect to the

geometrical mean
√
2(m+n)/2 of these two intervals

the mean value is shifted by approximately ∆p ∼=
2
[
log2

(
(1 + 2(m+n)/2)/2

)]
/(m + n) − 1/2, resulting

in logarithmic shift p1 = p+∆p, presented in Table I.

C. Statistical Approach

The third approach for the parameter (κ +
∆κ) estimation is based on the statistical na-
ture of confidence intervals, and on the a pos-
teriori check of the fitting quality [2]. This
approach is beyond the scope of this article.

V. A
���
��� R�

��


�� A��
��
�

Here we will analyze the probability that the
algorithm produces “a false result” when the
algorithm parameters are chosen according to
Section IV.B. Consider values of parameter h
from the discrete set H. In general, the opti-
mal parameter hopt does not correspond to any
particular value from H. Let the optimal value
hopt lie between two adjacent values from the
setH, denoted by hk and hk+1. A false result is
the value ha obtained by the algorithm, which
does not correspond to either hk or hk+1. A
false result may be produced when the prob-
ability of (9) being satisfied is not P (κ) = 1.
Since we start the analysis with the lower bi-
ases and larger variances, a false result will
appear if two confidence intervals do not
intersect, despite a small bias. Now, we
will find that probability.

Assume that the error Q̂s−1(k)−Q(k) takes
a value x, x > 0, for a parameter h = hs−1.
Probability of this event is ps−1(x)dx, where

ps−1(x) is a pdf of the error Q̂s−1(k)−Q(k).
A false result will be produced if the error
Q̂s(k)−Q(k), with the next parameter h value
(h = hs ), is such that two confidence intervals,
for hs−1 and hs, do not intersect despite a very
small (assume zero) bias, i.e.,

∣∣∣
(
Q̂s−1(k)−Q(k)

)
−
(
Q̂s(k)−Q(k)

)∣∣∣

> (κ+∆κ)[σ(hs−1) + σ(hs)],

see (11). Since we assumed Q̂s−1(k)−Q(k) =
x, this event occurs when the estimation error
Q̂s(k)−Q(k) produced by using hs is greater
than x + (κ + ∆κ)[σ(hs−1) + σ(hs)] or lower
than −(κ+∆κ)[σ(hs−1) + σ(hs)] + x. Proba-
bility of this event is

℘(x) =

∫ ∞

x+(κ+∆κ)[σ(hs−1)+σ(hs)]

ps(y)dy
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+

∫ −(κ+∆κ)[σ(hs−1)+σ(hs)]+x

−∞
ps(y)dy.

Therefore, the false result probability is:

PF = 2

∫ ∞

0

∫ ∞

x+(κ+∆κ)[σ(hs−1)+σ(hs)]

ps−1(x)ps(y)dydx

+2

∫ ∞

0

∫ −(κ+∆κ)[σ(hs−1)+σ(hs)]+x

−∞
ps−1(x)ps(y)dydx.

(14)
Special cases:

1. Limited distribution of error,
ps(x) = 0 for |x| > (κ + ∆κ)σ(hs) : Then
we have PF = 0, i.e., it is impossible to get
a false result. For example, for a uniformly
distributed error (κ + ∆κ) >

√
3 guaranties

PF = 0.
2. Gaussian distributed error Q̂(k) −

Q(k), with ps(x) = exp
(
−x2/(2σ2s)

)
/(σs

√
2π):

The false result probability is:

PF = erfc

(
(κ+∆κ)√

2

α+ 1√
α2 + 1

)
, (15)

where α = σ(hs−1)/σ(hs) = am/2 and
erfc(x) = 2√

π

∫∞
x

exp(−t2)dt. The last expres-

sion is derived by considering integration do-
main of (14) in the joint two-dimensional space
(x, y).

For a = 2, n = 4, m = 1 and other para-
meters from Table I, we get that for κ = 2 the
false result probability is PF < 0.0001. For
m = 3 we get PF < 0.003 with κ = 2. For
κ = 3 these probabilities are PF < 10−8 and
PF < 10−5 for m = 1 and m = 3, respectively.

3. Heavy-tailed Laplacian error Q̂(k)−
Q(k), with ps(x) = exp(− |x/σs|)/(2σs): In
this case (14) assumes the form:

PF =
exp(−(κ+∆κ)(1 + 1/α))α2

α2 − 1

−exp(−(κ+∆κ)(1 + α))

α2 − 1
. (16)

Heavy-tailed distributed error requires larger
values of κ in order to satisfy the condition
that P (κ) is close to 1. For example, for a = 2,
n = 4, m = 3 and κ = 2, we get PF < 0.05,
while for κ = 3 we get PF < 0.009. For κ = 5

the false result probability is PF < 0.0004. For
m = 1 and the same other parameters we get
PF < 0.015, PF < 0.0013, and PF < 0.000011,
for κ = 2, κ = 3, and κ = 5, respectively.
Obviously, for heavy-tailed distributed errors
larger values of κ are required in order to pro-
duce highly reliable results.

The false result probability PF is calculated
for two confidence intervals with hs−1 and hs.
For an optimal value hopt close to hs+ the over-
all false result probability is equal to the sum
of probabilities that the false result occurred:
in h0 and h1 confidence intervals check, that
it did not occur during the first check but it
occurred in h1 and h2 check, and so on un-
til hs+−1 and hs+ . This probability is equal
to PFO = PF + (1− PF )PF + (1− PF )2PF +

... + (1 − PF )s
+−1PF . Since PF is small we

can write PFO ∼= s+PF . Probability that a
false result will be obtained trough more confi-
dence intervals checks, for large hopt, is slightly
higher than the overall false result probability
for a small hopt, when only a few checks should
be done.

In this section we have considered false re-
sults due to nonintersection of confidence in-
tervals intersection, when the bias is small and
the standard deviation is large. The opposite
event of confidence intervals intersection when
the bias is large and the standard deviation is
small is almost impossible, Fig.1.

VI. I

������
��� �
�� S���
��
	�


S����

Example 1 (Gaussian error): We have
modeled a biased random variable as

�Q = Q̂−Q = w
√
V/hm +

√
B(k)hn, (17)

whose MSE is of form (3). Here, w = N (0, 1)
is a Gaussian (zero-mean, unity-variance) ran-
dom variable, m = 3, n = 4, and V = 1. The
bias parameter B(k) in �Q is logarithmically
changed within 1

7 log2(mV/nB(k)) ∈ [−4, 4],
with the step 0.008 (in total 1000 values are
considered).

For each of 1000 parameter B(k) values, we
have calculated optimal value for h according
to (5), and plotted log2 hopt as a thick gray line
in Fig.1.
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Fig. 2. Gaussian distribution of error: Optimal window width hopt (straight gray line), and adaptive window
widths ha (end of the vertical lines, starting from the optimal window width line) for a = 2, m = 3, n = 4,
V = 1. The variance to bias ratio V/B(t) is logaritmicaly changed, in 1000 points. The adaptive width
ha = hs+/2

p1 is obtined by correcting hs+ by 2−p1 , Table I. False results are indicated by ”x“.

Now, we have assumed that the bias pa-
rameter was not known, as it is the case in
practical application. For a given unknown
B(k), the value of �Q̂(k) was simulated for
each hs ∈ H, according to (17). The assumed
set of possible values of h was

H = {1/16, 1/8, 1/4, 1/2, 1, 2, 4, 8, 16, 32, 64},

and κ = 2. The key algorithm relation (11)
was tested for each of B(k) values, with the
known standard deviation σ(hs) =

√
V/hms .

The largest value of hs for which the equation
(11) was still satisfied, was denoted by hs+.
Value ∆κ = 0.39, corresponding to m = 3,
n = 4, κ = 2, was used (Table I). The adap-
tive values ha = hs+/2

p1 , p1 = 0.59 (Table
I), obtained in this way, are connected with
the optimal value line by thin vertical lines in
Fig.1.

The same simulation is repeated with κ = 3
and κ = 5.

We can conclude that the presented algo-
rithm almost always chooses the value hs from
H which is one of two the nearest values to
the optimal one. However, for relatively small
κ = 2 there are few complete misses of the
optimal value. The number of these misses
(“false results”) is in full accordance with the
algorithm reliability analysis from the previous
section, eq.(15).

Example 2 (Uniform error): When the er-

ror Q(k)−Q̂(k) is uniformly distributed within
the interval [−∆h,∆h] (for example, the er-
ror due to the quantization noise), then the
variance is σ(h) = ∆2

h/3. It is obvious that

(9) is satisfied with P (κ) = 1 for κ >
√
3.

The previous experiment is repeated with a
simulated random variable �Q = Q̂ − Q =
w
√
V/hm +

√
B(k)hn where w = U(0, 1) is

a uniform (zero-mean, unity-variance) random
variable, again with m = 3, n = 4, κ = 2 and
V = 1. Values ∆κ = 0.39 and ha = hs+/2

p1 ,
p1 = 0.59, follow from Table I. The bias pa-
rameter B(k) in �Q is logarithmically varied
within the same interval, 17 log2(mV/nB(k)) ∈
[−4, 4], with step 0.008. The adaptive values
ha obtained by the algorithm are again con-
nected with the optimal thick line, by vertical
lines, Fig.2. We can see that, opposite to the
Gaussian distributed case, there is no false re-
sults, since P (κ) = 1 for all used κ.

Example 3 (Laplacian error): The same
parameters as in the previous two examples
are assumed here, but with the Laplacian dis-
tributed error Q− Q̂. Laplacian random vari-
able of unity variance w =L(0, 1) is formed by
using w = (w1w2 +w3w4)/

√
2, where wi are

Gaussian random variables wi = N (0, 1). Val-
ues of κ = 2, κ = 3, and κ = 5, are considered.
Since this noise is of a heavy-tailed type, the
lowest κ = 2 here produces quite low P (κ),
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Fig. 3. Uniformly distributed error: Optimal window width hopt (straight gray line), and adaptive window
widths ha (end of the vertical lines, starting from the optimal window width line) for a = 2, m = 3, n = 4,
V = 1. The variance-to-bias ratio V/B(t) is logaritmicaly changed, in 1000 points. The adaptive width
ha = hs+/2

p1 is obtined by correcting hs+ by 2−p1 , Table I.

with a small reliability of the algorithm, Fig.3.
Number of false result points is in agreement
with (16). Thus, in order to improve the algo-
rithm performance, higher values of κ (κ = 3,
κ = 5) should be used.
Example 4: Application of the proposed al-

gorithm on the smoothing of signal f(t), cor-
rupted by a zero mean stationary Gaussian ad-
ditive noise ε(t) of variance σ2ε , will be the topic
of this example. The aim of this example is
not to show the efficiency of the proposed al-
gorithm in signal denoising, or to compare it
with other methods for the same application.
The aim is only to illustrate the presented al-
gorithm on one specific, very simple example,
already used in literature, for example [11].

Consider estimation of f(t) from

x(t) = f(t) + ε(t)

based on a simple smoothing:

f̂(t) =
1

h

∫ h/2

−h/2
x(t+ τ)dτ.

Bias of this estimator is:

bias(t, h) = E{f̂(t)} − f(t)

=
1

h

∫ h/2

−h/2
f(t+ τ)dτ − f(t) ∼= f ′′(t)

h2

24
,

where the Taylor expansion f(t+ τ) = f(t) +
f ′(t)τ + f ′′(t)τ2/2 + ... is used.
Note 4: The bias given by the last equa-

tion is only an approximation up to the sec-
ond order term. The bias increases as para-
meter h increases. However, the bias cannot
increase infinitely as h → ∞. In this exam-
ple, it is obvious that there is a limit for the
bias. The maximal possible bias is equal to
the maximal possible difference in the signal,
i.e., |bias(t, h)| ≤ 1. We should be aware of
this fact, especially in order to avoid using ex-
tremely large values for κ.

Variance of the estimator is

σ2(h) =
σ2ε
h
.

Therefore, this case approximately corre-
sponds to the described model, with m = 1
and n = 4.

For illustration we will consider

f(t) =
1

1 + (t/7.5)40

within the interval |t| < 25, with the step
∆t = 1/25. The nonnoisy signal is shown in
Fig.4a, while the signal with additive Gaussian
white noise, with standard deviation σε = 0.1,
is shown in Fig.4b. The noise standard de-
viation value σε, needed for the algorithm, is
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Fig. 4. Laplacian (heavy-tailed) distributed error: Optimal window width hopt (straight gray line), and adaptive
window widths ha (end of the vertical lines, starting from the optimal window width line) for a = 2, m = 3,
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width ha = hs+/2

p1 is obtined by correcting hs+ by 2−p1 , Table I. False results are indicated by ”x“

estimated by using

σ̂ε =
median |x(n)− x(n− 1), n = 1, ..., N |

0.6745
√
2

.

(18)
In our case it resulted in σ̂ε = 0.101, what is
very close to the original σε value. Values of
a = 2 and κ = 2 are used, while ∆κ = 0.86
is taken from Table I. Mean absolute errors
(MAE) are: MAE = 0.041 for constant h with
129 smoothing points, Fig.4d, MAE = 0.047
for constant h with 3 smoothing points, Fig.4f,
and MAE = 0.009 for the adaptive parameter
h, Fig.4e. Note that in Fig.4 the total number
of smoothing points was 2h(t) + 1.

VII. C��	
��
��

The algorithm for parameter optimization,
in a quite general formulation of the estima-
tion problem, is considered. Presented study
enables fine adjustment of the algorithm pa-
rameters. Reliability study for a general form
of estimation error is done. It has been shown
that even in the cases of some heavy tailed
types of the estimation noise, like the Lapla-
cian one, the algorithm can produce accurate
and reliable results.
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