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Abstract– The non-parametric algorithm for
instantaneous frequency (IF) estimation, based
on the intersection of the confidence intervals
(ICI) rule and the Wigner distribution (WD),
is modified in order to produce an accurate IF
estimate for a high noise environment. Orig-
inal approach is developed under the assump-
tion that a small amount of noise can move the
WD maxima only within the auto-term. This
is not true for high noise environments. Prob-
ability that the WD maxima are outside the
auto-term is high for narrow windows used in
the WD calculation. Estimates obtained with
these windows are used as an initial guess in
the adaptive algorithm. In this paper we set
the initial estimate as the one produced by the
narrowest window for which the probability of
error due to high noise is smaller than a thresh-
old. The error probability is estimated based
on the estimates of signal amplitude and noise
variance. The IF estimates for some windows
are additionally improved by applying a median
filter directly to the IF estimate.

I. I������	�
��

Numerous instantaneous frequency (IF) es-
timators are used in practical applications
such as communications, seismology, radars,
sonars, biomedicine, speech processing, under-
water acoustics, oceanography, (for details see
[1], [2]). Many of them are based on time-
frequency (TF) distributions [1]-[13]. Com-
mon non-parametric estimator is based on the
positions of TF distributions maxima [1], [4],
[8], [9], [13]. Here, we will consider the IF esti-
mator based on the Wigner distribution (WD).
Sources of error in the WD based IF estimator
are analyzed in [8], [13], [14]:

- Bias caused by the IF higher order deriva-
tives;

- Errors due to small noise that can move
the WD maxima within the auto-term;

- Errors due to high noise that can move the
WD maxima outside the auto-term.
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The bias and small noise influence have op-
posite behavior with respect to the window
width [8]. Namely, the bias is increasing func-
tion of the window width, while the variance is
a decreasing one. Therefore, the mean squared
error (MSE) can be minimized by using an ap-
propriate window width. A non-parametric al-
gorithm for estimation of the optimal window
width is proposed in [8]. It is shown that the IF
estimate obtained by using the adaptive win-
dow width has smaller MSE than in the case of
any constant size window from the considered
set. Unfortunately, for high noise cases the val-
ues of WD maxima can be found outside the
auto-term. Complexity of the non-parametric
algorithm application, in this case, is addition-
ally increased by the fact that probability of
errors due to high noise is highest for the nar-
rowest window from the set, which is used to
produce the initial guess in the algorithm. If
the initial guess is outside the auto-term, the
non-parametric algorithm fails to produce ac-
ceptable accuracy. In order to treat that kind
of signals, we will present a modification of the
non-parametric algorithm.

Based on the estimate of the signal am-
plitude and noise variance, we estimated the
probability of errors due to high noise. The
initial guess in the algorithm is obtained by
the window that produces probability of error
smaller than a threshold. For such windows,
when probability of errors due to high noise is
not negligible, the IF estimation is improved
by using the median filter. The WD could
have very emphatic inner interferences for sig-
nals with highly nonlinear IF. Then, the WD
maximum can be dislocated to the position of
these interferences. In order to avoid the inter-
ference problem, the proposed algorithm can
be applied to the reduced interference distrib-
utions. Note that the median filter is used for
improvement of the IF estimation accuracy in
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[15], [16]. The approach is extended in this
paper to the adaptive window lengths in the
IF estimation, by applying the ICI rule based
algorithm. In this way the estimate robust to
the high noise errors and the estimation bias
is obtained.

The paper is organized as follows. Brief the-
oretical overview is given in Section II. Modi-
fied algorithm is presented in Section III, while
numerical examples and statistical analysis are
given in Section IV.

II. T�
��
�
	�� O�
��

�

A. Wigner Distribution and Signal Model

Consider a signal f(t) = A exp(jφ(t)) cor-
rupted by a complex white Gaussian noise ν(t)
with variance σ2:

x(t) = f(t) + ν(t). (1)

Signal is sampled with the interval ∆t, x(n) =
x(n∆t). Our goal is to estimate the IF, ω(n) =
φ′(t)|t=n∆t, by using the WD:

WDN(n,ω) =

N/2−1∑

k=−N/2

wN(k)x(n+ k)x∗(n− k)e−j2ωk, (2)

where N is the window width, wN(k) = 0 for
k /∈ [−N/2, N/2). The IF estimate obtained
by using the WD maxima is:

ω̂N(n) = argmax
ω

WDN(n, ω). (3)

The MSE of the IF estimation for moderate
noise environment is approximately, [8]:

MSE(N ;n) = bias2{ω̂N(n)}+ var{ω̂N(n)}

∼= [bN2φ′′′(n)]2 + c
σ2

A2
(1 +

σ2

A2
)
1

N3
, (4)

where b and c include the parameters depend-
ing on the applied window function. Opti-
mal value of the window width depends on the
third phase derivative φ′′′(n), and it cannot be
determined from (4). An algorithm based on
the ICI rule is proposed in [8] to determine a
window width in the WD producing the MSE
close to the minimal value. This algorithm
produces accurate results for moderate noise
environment. However, its original form can-
not be used for high noise cases.

B. Errors due to the High Noise

The WD maxima can be found outside the
auto-term when the noise amount is higher
than a certain threshold [13]. Then, assump-
tions under which the original algorithm [8] is
derived don’t hold. For the linear FM signal,
probability that the WD takes maximal value
outside the auto-term position is [13]:

PE(N) = 1−

∫
∞

−∞

(
1− 0.5erfc

(
ξ√
2σWD

))N−1

×e−(ξ−NA2)2/2σ2WDdξ, (5)

where σ2WD is variance of the WD, σ2WD =
Nσ2(2A2 + σ2) [17], [18]. The probability of
error (5) is high for small N , i.e., for narrow
windows from the considered set. These win-
dows are used for the initial guess in the algo-
rithm.

Consider, for example, a signal whose am-
plitude is A = 1, variance of the noise is
σ2 = 0.36, and windows are of the width
N = 4, 8, 16, ..., 512. The probability of error
for the narrowest window is PE(4) = 60.48%,
while for the next wider windows it is PE(8) =
23.48% and PE(16) = 1.6%. For other win-
dows from the set, the value of PE is smaller
than 0.01%. Thus, the first window produces
error in more than half of the instants. It
means that its application in the adaptive al-
gorithm produces inaccurate initial estimate
in more than a half of the instants. There-
fore, the initial guess should be obtained by
the next window, N = 8. However, this win-
dow also produces high probability of error,
but accuracy can be improved by application
of the median filter directly to the IF estimate
[16].

This example illustrates the motivation for
introducing a more accurate initial IF estimate
in the algorithm. This estimate will be based
on the value of PE(N). The modified algo-
rithm is proposed in the next section, in order
to deal with the high noise cases.
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In order to avoid large bias in the initial es-
timate, the adaptive algorithm starts with the
IF produced by the WD with a very narrow
window. However, narrow windows are prone
to errors due to high noise. Algorithm with
inaccurate initial estimate cannot produce sat-
isfactory final results. More sophisticated pro-
cedures are required for non-parametric IF es-
timation in the high noise environment.

An algorithm based on the graph theory
for the IF estimation in extremely high noise
environment is proposed in [19]. This algo-
rithm uses two criteria: (a) The IF should pass
through as high as possible values of the WD;
(b) The IF estimate variations between two in-
stants should be small. This algorithm is cal-
culationally very demanding and, in addition,
it cannot produce accurate results for signals
with abrupt changes in the IF.

In this paper we will propose a modified al-
gorithm based on the ICI rule. Two additional
tools are used in the modified algorithm, in
order to make it robust to the high noise in-
fluence: (a) The narrowest window, that can
produce IF estimate satisfying minimal accu-
racy requirements, is determined based on the
estimates of signal amplitude and noise vari-
ance; (b) Median filtering of the IF estimates
is performed in order to reduce the impulse
errors due to the high noise.

The algorithm for the IF estimation can be
summarized as follows.
Step 1: Consider an instant t = n∆t and

a set of windows with dyadic widths Ni, i =
0, ..., q, where Ni = 2iN0 and N0 = 2r, r ∈
N
+.
Step 2: Estimate the noise variance σ̂2(N)

and the signal amplitude Â1 .

1Estimation of the amplitude and variance can be
done in numerous ways. Here we use a simple

method: Â2 + σ̂2 = 1
N

∑N/2−1
n=−N/2 |x(n)|

2, σ̂2 �
[

m edian{| real(x(n)−x(n−1))|,n∈[1,N)}
0.6745

√
2

]2
+

[
m edian{|im ag(x(n)−x(n−1))|,n∈[1,N)}

0.6745
√
2

]2
,

Â2 � 1
N

∑N/2−1
n=−N/2 |x(n)|

2 − σ̂2,

σ̂(N) = v̂ar{ω̂N (n)} = c
σ̂2

Â2
(1 + σ̂2

Â2
) 1
N3
.

Step 3: Based on the estimate of the am-
plitude and variance, the probability of error
P̂i = P̂E(Ni) is estimated.
Step 4: Determine the WDs for win-

dows from the considered set, WDi(n, ω) =
WDNi

(n, ω), for i = l, ...., q where Nl is the

narrowest window satisfying P̂l ≤ p1.
Step 5: Estimate the IF by using the WDs:

ω̂i(n) = argmax
ω

WDi(n, ω), i = l, ..., q. (6)

The initial estimate is the one produced by
Nl. Set j = l.
Step 6: For all windows that satisfy p0 ≤

P̂i ≤ p1 the IF estimate is modified by:

ω̂m,i(n) = median{ω̂i(n), n ∈ [n−K,n+K]},
(7)

where 2K + 1 is the width of used median fil-
ter. Estimates, obtained by using windows for
which P̂i < p0, are not modified. For these
windows ω̂m,i(n) = ω̂i(n).
Step 7: If the statistical test inequality of

the ICI rule based algorithm [21]:

|ω̂m,j+1(n)− ω̂m,j(n)| ≤

(κ+∆κ)[σ̂(Nj+1) + σ̂(Nj)], (8)

is satisfied, then set j = j + 1 and repeat
Step 7. If (8) is not satisfied, go to Step
8. Inequality (8) represents test if the con-
fidence intervals constructed around the esti-
mates ω̂m,j+1(n) and ω̂m,j(n) intersect. Then,
with probability depending on (κ + ∆κ) the
true IF will be within this intersection. An
appropriate range of (κ + ∆κ) values is an-
alyzed in [21], while detailed analysis of the
algorithm behavior in various noise environ-
ments and fine adjustment of the algorithm
parameters is given in [22].
Step 8: Adaptive IF estimate is ω̂(n) =

ω̂m,j(n), while adaptive window width is

N̂(n) = Nj .
Step 9: Consider new instant and go to

Step 4.
For additional improvement of the accuracy

it is possible to apply the median filter to the
resulting estimate ω̂(n).

Note that the basic algorithm can be ob-
tained if Steps 3, 4 and 6, are skipped and if
ω̂j(n) are used instead of ω̂m,j(n), in Step 7.
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Comments on the Algorithm: In prac-
tice the median filters are used for removing
up to 50% of impulses in a sequence. How-
ever, the median filter does not produce satis-
factory accuracy when it is applied to the IF
estimation. Namely, the WD in the n-th and
(n + 1)-th instant uses N − 2 samples which
are the same. Thus, the IF estimate values
are highly correlated, i.e., if the error in IF es-
timation exists in a considered instant, then it
is highly probable that it will also exist in the
neighboring instants. This is the reason why
the probability threshold p1 should be smaller
than 50%. In our numerical examples we took
p1 = 1/3. Application of the median filter can
introduce small error in the result when there
are no errors due to high noise. Thus, in our
simulations we set p0 = 0.1%.

For signals with non-linear IF function, the
WD can have inner interferences. They could
be very emphatic for wide windows. In order
to improve accuracy for this application, we
can use the proposed algorithm with the S-
method, instead of the WD. The S-method is
a reduced interference distribution proposed in
[20]. It can produce signal auto-terms close to
those in the WD, with significantly reduced
interferences. In this application we used the
following form of the S-method:

SMN(n, ω) = |STFTN(n, ω)|2+

2Re

{
L∑

l=1

STFTN(n, ω + l∆ω)

× STFTN(n, ω − l∆ω)} , (9)

where ∆ω is frequency step, L is width of the
used frequency window, while STFTN(n, ω) is
the short-time Fourier transform:

STFTN(n, ω) =

N/2−1∑

k=−N/2

wN(k)x(n+ k)e−jωk.

(10)

IV. N��
�
	�� E�����
� ���

S���
��
	�� S���!

We consider signals of amplitude A = 1, em-
bedded in the complex white Gaussian noise
with values of the standard deviation within

the interval σ ∈ [0.05, 2.5]. Windows of the
width 4, 8, 16, 32, 64, 128, 256 and 512 are
used. For σ ∈ [0.05,0.20] probability of er-
ror obtained by using the narrowest window
is less than 0.1%. The initial window is the
narrowest one, without application of the me-
dian filter. This form then reduces to the
case of nonparametric algorithm presented in
[8]. For σ ∈ [0.25, 0.35], the initial guess is
produced by the narrowest window with me-
dian filter application. Window of the width
N = 8 is used to produce the initial estimate
for σ ∈ [0.40, 0.50], N = 16 for σ ∈ [0.55, 0.70],
N = 32 for σ ∈ [0.75, 0.90], N = 64 for
σ ∈ [0.95, 1.20], N = 128 for σ ∈ [1.25, 1.50],
N = 256 for σ ∈ [1.55, 1.90], while for σ ≥ 1.95
only window N = 512 produces satisfactory
robustness to the high noise influence.

Three signals are used for numerical testing:

f1(t) = exp(jat|t|), (11)

f2(t) = exp(jbt
3), (12)

f3(t) = exp(jc|t|), (13)

where a = 128π, b = 256π, c = 128π. The
IFs are: ω1(t) = 2a|t|, ω2(t) = 3bt2 and
ω3(t) = csgn(t). Signals are considered within
t ∈ [−0.5, 0.5] and sampled with the sampling
rate ∆t = 1/512. The IF estimate for signal
f1(t) is shown in Figure 1. Columns represent
results for noise of the variance σ2 = 0.52 =
0.25, σ2 = 1 and σ2 = 1.52 = 2.25, respec-
tively. Results obtained by using the original
non-parametric algorithm are presented in the
first row, while application of the proposed al-
gorithm is given in the second row. Adaptive
window width produced with the modified al-
gorithm is given in the third row. The median
filter, applied in the modified adaptive algo-
rithm, is 2K+1 = 11 samples wide. Graphical
presentation of the same simulations for sig-
nals f2(t) and f3(t) are shown in Figures 2 and
3, respectively. Detailed statistical analysis is
presented in Table I obtained with 100 realiza-
tion of the noisy process. Columns of Table I
represent the MSE produced by the constant-
sized window from the considered set that
gives minimal MSE, original non-parametric
algorithm, original non-parametric algorithm
with the median filter applied to the output
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and the proposed modified algorithm. It can
be seen that proposed modification performs
better than all the others, especially as the
amount of noise increases. An average adap-
tive window width for cases from Figures 1-3
for 100 trials is shown in Figure 4.

Comments: Accurate IF estimation is
done for signal f1(t) in a wide range of the
noise standard deviation. It can be explained
by the fact that this is the linear FM signal far
from the origin t = 0. In this region algorithm
selects wide window that is also resistant to
the high noise influence. Also, the bias around
origin does not disturb the estimation accu-
racy in this case.

Relatively high accuracy is achieved in the
case of signal f2(t), as well. However, this sig-
nal is quite different from the linear FM model.
Note that relationship for the probability of er-
rors due to the high noise (5) is derived under
the assumption of linear FM noisy signal. If
the signal shape is known in advance, the ex-
act probability of error could be determined.
In the case of signal f2(t) the WD values along
the IF are smaller than for the linear FM sig-
nal for the same amplitude of the input signal,
but at the same time, width of the auto-term
is larger than in the case of the linear FM sig-
nal. These two effects partially compensate
each other. However, the probability of error
in this case is higher than the one given by
(5). This effect produces slightly worse accu-
racy than in the previous case.

The main problem in the case of the third
signal f3(t) is a significant bias around in-
stant t = 0 for wide windows. This effect is
especially emphatic for high noise case with
σ = 1.5. It is caused by the cross-term ap-
pearing between signal components in t < 0
and t > 0. Here, we applied the proposed algo-
rithm to the S-method (9) with L = 16. Note
that determination of the optimal value of L is
discussed in [20]. The IF estimation performed
by using the proposed algorithm and the S-
method is depicted in Figure 5 for σ = 0.5,
σ = 1 and σ = 1.5. Average window widths
obtained in 100 trials are presented in Figure
6. The MSE of the estimates obtained in 100
trials for algorithm with the S-method is given
in Table I, last three rows.

V. C��	���
��

The modified version of the non-parametric
algorithm for the IF estimation is presented.
This algorithm can produce good accuracy for
different signals in a high noise environment.
Algorithm is slightly more complex than the
original algorithm since it needs estimation of
the probability of error due to high noise and
median filter application.

VI. A	#����
���
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This work is supported by the Volkswagen
Stiftung, Federal Republic of Germany. Work
of I. Djurovíc is supported in part by the Post-
doctoral Fellowship for Foreign Researchers of
Japan Society for the Promotion of Science.

R
�
�
�	
�

[1] B. Boashash: “Estimating and interpreting the
instantaneous frequency of a signal - Part I: Fun-
damentals,” Proc. IEEE, Vol.80, No.4, Apr. 1992,
pp.521-538.

[2] B. Boashash: “Estimating and interpreting the
instantaneous frequency of a signal - Part II: Al-
gorithms and Applications,” Proc. IEEE, Vol.80,
No.4, Apr. 1992, pp.540-568.

[3] V. Katkovnik: “Discrete-time local polynomial
approximation of the instantaneous frequency,”
IEEE Trans. Sig. Proc., Vol.46, No.10, Oct. 1998,
pp.2626-2637.

[4] B. Barkat, B. Boashash and LJ. Stankovíc:
“Adaptive window in the polynomial Wigner-
Ville distributions for the instantaneous frequency
estimation of FM signal in additive Gaussian
noise,” in Proc. IEEE ICASSP 1999, pp.1317-
1320.

[5] H.K. Kwok and D.L. Jones: “Improved instan-
taneous frequency estimation using an adaptive
short-time Fourier transform,” IEEE Trans. Sig.
Proc., Vol.48, No.10, Oct. 2000, pp. 2964-2972.

[6] S. Barbarossa and O. Lemoine: “Analysis of non-
linear FM signals by patterns recognition of their
time-frequency representation,” IEEE Sig. Proc.
Let., Vol.3, No.4, Apr. 1996, pp.112-115.

[7] A. Doucet and P. Duvaut: “Bayesian estimation
of instantaneous frequency,” in Proc. of IEEE
TFTSA 1996, pp.5-8.

[8] V. Katkovnik and LJ. Stankovíc: “Instantaneous
frequency estimation using the Wigner distri-
bution with varying and data driven window
length,” IEEE Trans. Sig. Proc., Vol.46, No.9,
Sept. 1998, pp.2315-2325.

[9] B. Barkat: “Instantaneous frequency estimation
of nonlinear frequency-modulated signals in the
presence of multiplicative and additive noise,”
IEEE Trans. Sig. Proc., Vol.49, No.10, Oct. 2001,
pp.2214-2222.

[10] J.C. Wood and D.T. Barry: “Radon transfor-
mation of time-frequency distributions for analy-
sis of multicomponent signals,” IEEE Trans. Sig.
Proc., Vol.42, No.11, Nov. 1994, pp.3166-3177.



MODIFICATION OF THE ICI RULE BASED IF ESTIMATOR FOR HIGH NOISE ENVIRONMENTS 919

-0.4 -0.2 0 0.2 0.4

-500

0

500

-0.4 -0.2 0 0.2 0.4

-500

0

500

-0.4 -0.2 0 0.2 0.4
0

200

400

600

-0.4 -0.2 0 0.2 0.4

-500

0

500

-0.4 -0.2 0 0.2 0.4

-500

0

500

-0.4 -0.2 0 0.2 0.4
0

200

400

600

-0.4 -0.2 0 0.2 0.4

-500

0

500

-0.4 -0.2 0 0.2 0.4

-500

0

500

-0.4 -0.2 0 0.2 0.4
0

200

400

600

a) 

ω(t) 

t 

ω(t) 

b) t c) t 

ω(t) 

t d) 

ω(t) 

t e) 

ω(t) 

t f) 

N 

t g) 

N 

t h) 

N 

t i) 

Fig. 1. IF estimation for signal f1(t): First column - σ = 0.5; Second column - σ = 1; Third column - σ = 1.5;
First row - Original algorithm; Second row - Modified algorithm; Third row - Adaptive window width.
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Fig. 2. IF estimation for signal f2(t): First column - σ = 0.5; Second column - σ = 1; Third column - σ = 1.5;
First row - Original algorithm; Second row - Modified algorithm; Third row - Adaptive window width.
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Fig. 3. IF estimation for signal f3(t): First column - σ = 0.5; Second column - σ = 1; Third column - σ = 1.5;
First row - Original algorithm; Second row - Modified algorithm; Third row - Adaptive window width.
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Fig. 4. Average adaptive window width obtained by 100 trials of modified algorithm: Columns - for signals
f1(t), f2(t) and f3(t) respectively; Rows - standard deviations σ = 0.5, 1, and 1.5 respectively.
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 ���
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���� f3(t) ���

S-�
����.
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