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A Window Width Optimized

S-transform

Ervin Sejdié, Igor Djurovi¢ and Jin Jiang

Abstract— Energy concentration of the S-
transform in the time-frequency domain has
been addressed in this paper by optimizing the
width of the window function used. A new
scheme is developed and referred to as a win-
dow width optimized S-transform. Two opti-
mization schemes have been proposed, one for
a constant window width, the other for time-
varying window width. The former is intended
for signals with constant or slowly varying fre-
quencies, while the latter can deal with sig-
nals with fast changing frequency components.
The proposed scheme has been evaluated us-
ing a set of test signals. The results have indi-
cated that the new scheme can provide much
improved energy concentration in the time-
frequency domain in comparison with the stan-
dard S-transform. It is also shown using the
test signals that the proposed scheme can lead
to higher energy concentration in comparison
with other standard linear techniques, such as
short-time Fourier transform and its adaptive
forms. Finally, the method has been demon-
strated on engine knock signal analysis to show
its effectiveness.

I. INTRODUCTION

In the analysis of the nonstationary signals,
one often needs to examine their time-varying
spectral characteristics. Since time-frequency
representations (TFR) indicate variations of
the spectral characteristics of the signal as a
function of time, they are ideally suited for
nonstationary signals [1], [2]. The ideal time-
frequency transform only provides information
about the frequency occurring at a given time
instant. In other words, it attempts to com-
bine the local information of an instantaneous
frequency spectrum with the global informa-
tion of the temporal behavior of the signal [3].
The main objectives of the various types of
time-frequency analysis methods are to obtain
time-varying spectrum functions with high res-
olution and to overcome potential interferences
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[4].
The S-transform can conceptually be viewed
as a hybrid of short-time Fourier analysis and
wavelet analysis. It employs variable window
length. By using the Fourier kernel, it can
preserve the phase information in the decom-
position [5]. The frequency dependent window
function produces higher frequency resolution
at lower frequencies, while at higher frequen-
cies sharper time localization can be achieved.
In contrast to wavelet transform, the phase in-
formation provided by the S-transform is ref-
erenced to the time origin, and therefore pro-
vides supplementary information about spec-
tra which is not available from locally refer-
enced phase information obtained by the con-
tinuous wavelet transform [5]. For these rea-
sons, the S-transform has already been consid-
ered in many fields such as geophysics [6], [7],
[8], cardiovascular time series analysis [9], [10],
[11], signal processing for mechanical systems
[12], [13], power system engineering [14], and
pattern recognition [15].

Even though the S-transform is becoming
a valuable tool for the analysis of signals in
many applications, in some cases, it suffers
from poor energy concentration in the time-
frequency domain. Recently, attempts to im-
prove the time-frequency representation of the
S-transform have been reported in the litera-
ture. A generalized S-transform, proposed in
[12], provides greater control of the window
function, and the proposed algorithm also al-
lows nonsymmetric windows to be used. Sev-
eral window functions are considered, includ-
ing two types of exponential functions, am-
plitude modulation and phase modulation by
cosine functions. Another form of the gener-
alized S-transform is developed in [7], where
the window scale and shape are a function of
frequency. The same authors introduced a bi-
Gaussian window in [8], by joining two non-
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symmetric half-Gaussian windows. Since the
bi-Gaussian window is asymmetrical, it also
produces an asymmetry in the time-frequency
representation, with higher time resolution in
the forward direction. As a result, the pro-
posed form of the S-transform has better per-
formance in detection of the onset of the sud-
den events. However, in the current litera-
ture, none have considered optimizing the en-
ergy concentration in the time-frequency do-
main directly, i.e., to minimize the spread of
the energy beyond the actual signal compo-
nents.

The main approach used in this paper is
to optimize the width of the window used
in the S-transform. The optimization is per-
formed through the introduction of a new
parameter in the transform. Therefore, the
new technique is referred to as a window
width optimized S-transform (WWOST). The
newly introduced parameter controls the win-
dow width, and the optimal value can be de-
termined in two ways. The first approach
calculates one global, constant parameter and
its use is recommended for signals with con-
stant or very slowly varying frequency com-
ponents. The second approach calculates the
time-varying parameter, and it is more suit-
able for signals with fast varying frequency
components.

The proposed scheme has been tested using
a set of synthetic signals and its performance
is compared with the standard S-transform.
The results have shown that the WWOST en-
hances the energy concentration. It is also
shown that the WWOST produces the time-
frequency representation with a higher con-
centration than other standard linear tech-
niques, such as the short-time Fourier trans-
form and its adaptive forms. The proposed
technique is useful in many applications where
enhanced energy concentration is desirable.
As an illustrative example, the proposed algo-
rithm is used to analyze knock pressure signals
recorded from a Volkswagen Passat engine in
order to determine the presence of several sig-
nal components.

This paper is organized as follows. In Sec-
tion II, the concept of ideal time-frequency
transform is introduced, which can be used
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to compare with other time-frequency repre-
sentations including transforms proposed here.
The development of the WWOST is covered
in Section III. Section IV evaluates the per-
formance of the proposed scheme using test
signals, and also the knock pressure signals.
Conclusions are drawn in Section V.

II. ENERGY CONCENTRATION IN
TIME-FREQUENCY DOMAIN

The ideal TFR should only be distributed
along frequencies for the duration of signal
components. Thus, the neighboring frequen-
cies would not contain any energy and the
energy contribution of each component would
not exceed its duration [3].

For example, let’s consider two sim-
ple signals: an FM signal, x1(t) =
A(t) exp(jo(t)), where [dA(t) /dt| < |de(t)/dt|
and an instantaneous frequency is defined
as f(t) = (dé(t)/dt)/2m; and a sig-
nal with the Fourier transform given as
X(f) = G(f)exp(j2mx(f)), where the spec-
trum is slowly varying in comparison to phase
|[dG(f)/df| < |dx(f)/df]. Further, A(t) and
G(t) are real functions. The ideal TFRs for
these signals are given respectively as [16]:

i%) (1)

ITFR(t, f) = 2w A(t)5 ( f=5-=a

ITFR(t, f) =2nG(f) <t + d);—;f)> (2)
where ITFR stands for an ideal time-
frequency representation. These two represen-
tations are ideally concentrated along the in-
stantaneous frequency, (d¢(t)/dt)/2m, and on
group delay —dx(f)/df. Simplest examples of
these signals are a sinusoid with A = const.
and d¢(t)/dt = const. depicted in Fig. 1(a)
and a Dirac pulse z3(t) = §(t — tp) shown in
Fig. 1(b). The ideal time-frequency represen-
tations are depicted in Figs. 1(c) and 1(d).
These two graphs are compared with the TFRs
obtained by the standard S-transform in Figs.
1(e) and 1(f).

For the sinusoidal case, the frequencies sur-
rounding (d¢(t)/dt)/2m also have a strong con-
tribution, and from (1) it is clear that they
should not have any contributions. Similarly,
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Comparison of the ideal time-frequency representation and S-transform for the two simple signal forms:

(a) 30 Hz sinusoid; (b) sample Dirac function; (c) ideal TFR of a 30 Hz sinusoid; (d) ideal TFR of a Dirac
function (e) TFR by standard S-transform for a 30 Hz sinusoid; (f) TFR by standard S-transform of the

Dirac delta function.

for the Dirac function, it is expected that all
the frequencies have the contribution but only
for a single time instant. Nevertheless, it is
rather clear that the frequencies are not only
contributing during a single time instant as
expected from (2), but the surrounding time
instants also have rather strong energy contri-
bution.

The examples presented here are for illus-
trations only, since a priori knowledge about
the signals is assumed. In most practical situ-
ations, the knowledge about a signal is limited
and the analytical expressions similar to (1)
and (2) are often not available. However, the
examples illustrate a point that some modifi-
cations to the existing S-transform algorithm,
which do not assume a priori knowledge about

the signal, may be useful to achieve improved
performance in time-frequency energy concen-
tration. Such improvements only become pos-
sible after modifications to the width of the
window function are made.

III. THE PROPOSED SCHEME
A. Standard S-transform

The standard S-transform of a function z(t)
is given by an integral as [5], [7], [12]:

s.tn)= [ ato)

—00

xw(t —7,0(f)) exp(—j2n fr)dr (3)



926

with a constraint

“+o00
/ w(t—71,0(f))dr = 1. (4)
—00
A window function used in S-transform is a
scalable Gaussian function defined as

1 t2
w(t,o(f)) = mexp <_F(f)> - (5)

The advantage of the S-transform over the
short-time Fourier transform (STFT) is that
the standard deviation o(f) is actually a func-
tion of frequency, f, defined as

(6)

Consequently, the window function is also a
function of time and frequency. As the width
of the window is dictated by the frequency, it
can easily be seen that the window is wider
in the time domain at lower frequencies, and
narrower at higher frequencies. In other words,
the window provides good localization in the
frequency domain for low frequencies while
providing good localization in time domain for
higher frequencies.

The disadvantage of the current algorithm is
the fact that the window width is always de-
fined as a reciprocal of the frequency. Some
signals would benefit from different window
widths. For example, for a signal containing a
single sinusoid, the time-frequency localization
can be greatly improved if the window is very
narrow in the frequency domain. Similarly,
for signals containing only a Dirac impulse,
it would be beneficial for good time-frequency
localization to have very wide window in the
frequency domain.

B. Window Width Optimized S-transform

A simple improvement to the existing al-
gorithm for the S-transform can be made by
modifying the standard deviation of the win-

dow to
1

o(f) = 7P (7)

Based on the above equation, the new S-
transform can be calculated represented as:

_ P
=) a(7)

+o0

Sp(t, f)
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— 7)2f2p
X exp (—%) exp(—j2n fr)dr. (8)
The parameter p can control the width of the
window. By finding an appropriate value of
p, an improved time-frequency concentration
can be obtained. The window functions with
three different values of p are plotted in Fig.
2, where p = 1 corresponds to the standard
S-transform window. For p < 1, the window
becomes wider in the time domain, and for
p > 1, the window narrows in the time domain.
Therefore, by considering the example from
Section II, for the single sinusoid a small value
of p would provide almost perfect concentra-
tion of the signal, whereas, for the Dirac func-
tion, a rather large value of p would produce a
good concentration in the time-frequency do-
main. It is important to mention that in the
case of 0 < f < 1, the opposite is true.

The optimal value of p will be found based
on the concentration measure proposed in [17],
which has some favorable performance in com-
parison to other concentration measures re-
ported in [18][19], [20]. The measure is de-
signed to minimize the energy concentration
for any time-frequency representation based
on the automatic determination of some time-
frequency distribution parameter. This mea-
sure is defined as

1

M) =" 7 an e avar

(9)

where C'M stands for a concentration measure.

There are two ways to determine the optimal
value of p. One is to determine a global, con-
stant value of p for the entire signal. The other
is to determine a time-varying p(t), which de-
pends on each time instant considered. The
first approach is more suitable for the signals
with the constant or slowly varying frequency
components. In this case one value of p will
suffice to give the best resolution for all com-
ponents. The time-varying parameter is more
appropriate for signals with fast varying fre-
quency components. In these situations, de-
pending on the time duration of the signal
components, it would be beneficial to use lower
value of p (somewhere in the middle of the
particular component’s interval), and to use
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Fig. 2. Normalized Gaussian window for different values of p.

higher values of p for beginning and end of
the component’s interval, so the component is
not smeared in the time-frequency plane. It
is important to mention that both proposed
schemes for determining the parameter p are
the special cases of the algorithm which would
evaluate the parameter on any arbitrary subin-
terval, rather than over the entire duration of
the signal.

B.1 Algorithm for determining the time-
invariant p

The algorithm for determining the opti-
mized time-invariant value of p is defined
through the following steps:

1. For p selected from a set 0 < p < 1, com-
pute S-transform of the signal, SZ(¢, f) using
(8).

2. For each p from the given set, normalize
the energy of the S-transform representation,
so that all of the representations have the equal
energy:

s2(t, )
N R

Se(t, f) = (10)

3. For each p from the given set, compute the
concentration measure according to (9), that
is

CM(p) = — . (11)
S [EE )| der

4. Determine the optimal parameter p,p: by

popt =max[CMP). (12)

5. Select SP(t, f) with pyp: to be the WWOST:

Syt f) =

As it can be seen, the proposed algorithm
computes the S-transform for each value of
p and, based on the computed representa-
tion it determines the concentration measure,
CM(p), as an inverse of L' norm of the
normalized S-transform for a given p. The
maximum of the concentration measure cor-
responds to the optimal p which provides least
smear of SY(¢, f).

It is important to note that in the first step,
the value of p is limited to the range 0 < p < 1.

Spert(, f)- (13)
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Any negative value of p corresponds to an n**

root of a frequency which would make the win-
dow wider as frequency increases. Similarly,
values greater than 1 provide a window which
may be too narrow in the time domain. Unless
the signal being analyzed is a superposition of
Delta functions, the value of p should not ex-
ceed unity. As a special case, it is important
to point out that for p = 0, the WWOST is
equivalent to STFT with a Gaussian window
with 02 = 1.

B.2 Algorithm for determining p(t)

The time-varying parameter p(t) is required
for signals with components having greater or
abrupt changes. The algorithm for choosing
the optimal p(t) can be summarized through
the following steps:

1. For p selected from a set 0 < p(t) < 1, com-
pute S-transform of the signal, SZ(¢, f) using
(8).

2. Calculate the energy, Fi, for p = 1. For
each p from the set, normalize the energy of the
S-transform representation to E7, so that all
of the representations have the equal energy,
and the amplitude of the components is not
distorted:

D
ST = VB
VIS 22188 )P dedf
(14)
3. For each p from the set and a time instant
t compute

CM(t,p) = ! . (19)

S [SE@ R ar

4. Optimal value of p for the considered
instant ¢ maximizes concentration measure
CM(t,p)

Dopt (t) = arg mgx [CM(t,p)]. (16)
5. Set the WWOST to be:
SE(t, f) = Sper (¢, f). (17)

The main difference between the two tech-
niques lies in step 3. For the time invariant
case a single value of p is chosen, whereas in
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the time-varying case, an optimal value of p(t)
is a function of time. As it is demonstrated in
Section IV, the time-dependent parameter is
beneficial for the signals with the fast varying
components.

B.3 Inverse of the WWOST

Similarly to the standard S-transform, the
WWOST can be used as both an analysis and
a synthesis tool. The inversion procedure for
the WWOST resembles that of the standard S-
transform, but with one additional constraint.
The spectrum of the signal obtained by aver-
aging SP(t, f) over time must be normalized by
W (0, f), where W («, f) represents the Fourier
transform (from ¢ to «) of the window func-
tion, w(t,o(f)). Hence, the inverse WWOST
for a signal, x(¢), is defined as

+oo
"””(t):/_oo . WD)

xSP(r, f)exp(j2r ft)drdf.

In a case of the time-invariant p, it can be
shown that W(0, f) = 1. In a general case,
the Fourier transform of the proposed modified
window can only be determined numerically.

o0 1

(18)

IV. WWOST PERFORMANCE ANALYSIS

In this section, the performance of the pro-
posed scheme is examined using a set of syn-
thetic test signals first. Furthermore, the
analysis of signals from an engine is also given.
The first part includes several cases: (1) a sim-
ple case involving three slowly varying frequen-
cies and (2) more complicated cases involving
multiple time-varying components. The goal
is to examine the performance of WWOST
in comparison to the standard S-transform.
The proposed algorithm is also compared to
other time-frequency representations, such as
the short-time Fourier transform (STFT) and
adaptive STFT (ASTFT), to highlight the im-
proved performance of the S-transform with
the proposed window width optimization tech-
nique. In particular, the proposed algorithm
can be used for some classes of the signals for
which the standard S-transform would not be
suitable.
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As for the synthetic signals, the sampling
period used in the simulations is Ty = 1/256
seconds. Also, the set of p values, used in the
numerical analysis of both test and the knock
pressure signals, is given by p = {0.0ln : n € N
and 1 <n < 100}. The ASTFT is calculated
according to the concentration measure given
by (9). In the definition of the measure a nor-
malized STFT is used instead of the normal-
ized WWOST. The standard deviation of the
Gaussian window, 04, is used as the optimiz-
ing parameter, where the window is defined as

1 t2
’wSTFT(t) = 0_7\/% exXp (—F) . (19)
gw gw

The optimization for synthetic signals is per-
formed on the set of values defined by

ogw =1{n/128 :n € Nand 1 <n <128}
(20)
and both the time-invariant and time-varying
value of o4, are calculated.

A. Synthetic Test Signals
Example 1

The first test signal is shown in Fig. 3(a).
It has the following analytical expression:

x1(t) = cos(1327t + 147t?)

+ cos(107t — 2mt?) + cos(307t + 67t%)  (21)

where the signal exists only on the interval 0 <
t < 1. The signal consists of three slowly vary-
ing frequency components. It is analyzed us-
ing the STFT (Fig. 3(b)), ASTFT with time-
invariant optimum value of o4, (Fig. 3(c)),
standard S-transform (Fig. 3(d)) and the pro-
posed algorithm (Fig. 3(f)). A Gaussian win-
dow is also used in the analysis by the STFT,
with standard deviations equal to 0.05. The
optimum value of standard deviation for the
ASTFT is calculated to be ooy = 0.094. The
colormap used for plotting the time-frequency
representations in Fig. 3 and all the subse-
quent figures is a linear grayscale with values
from 0 to 1.

The standard S-transform, shown in Fig.
3(d), depicts all three components clearly.
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However, only first two components have rela-
tively good concentration, while the third com-
ponent is completely smeared in frequency. As
shown in Fig. 3(b), the STFT provides bet-
ter energy concentration than the standard S-
transform. The ASTFT, depicted in Fig. 3(c),
shows a noticeable improvement for all three
components. The results with the proposed
scheme is shown in Fig. 3(f) for p = 0.57.
The value of p is found according to (12). For
the determined value of p, the first two com-
ponents have higher concentration even than
the ASTFT, while the third component has
approximately the same concentration.

In Fig. 3(e), the normalized concentration
measure is depicted. The obtained results ver-
ify the theoretical predictions from Section ITI-
B. For this class of signals, i.e., the signals
with slowly varying frequencies, it is expected
that smaller values of p will produce the best
energy concentration. In this example, the op-
timal value, found according to (12), is deter-
mined numerically to be 0.57.

Based on the visual inspection of the time-
frequency representations shown in Fig. 3, it
can be concluded that the proposed algorithm
achieves higher concentration among the con-
sidered representations. To confirm this fact,
a performance measure given by

e ([ )

(22)
is used for measuring the concentration of the
representation, where )TF(t, f)) is a normal-

ized time-frequency representation. The per-
formance measure is actually the concentra-
tion measure proposed in (9). A more con-
centrated representation will produce a higher
value of Z7p. Table I summarizes the perfor-
mance measure for the STFT, the ASTFT, the
standard S-transform and the WWOST.

The value of the performance measure for
the standard S-transform is the lowest, fol-
lowed by the STFT. The WWOST produces
the highest value of Z7p, and thus achieves
a TFR with the highest energy concentration
amongst the transforms considered.
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(d) SL(t, f) of z1(¢t) with p = 1 (standard S-transform); (e) Concentration measure CM (p); (f) S (¢, f) of

z1(t) with the optimal value of p = 0.57.

TABLE I
PERFORMANCE MEASURE FOR THE THREE
TIME-FREQUENCY TRANSFORMS.

TFR ErE

STFT 0.0119

ASTFT 0.0131

Standard S-transform | 0.0080

WWOST 0.0136
Example 2

The signal in the second example contains
multiple components with faster time-varying
spectral contents. The following signal is used:

x2(t) = cos[40m(t — 0.5) arctan(21¢ — 10.5)
—207 In((21¢ — 10.5)% + 1) /21 + 1207t

+ cos (407t — 8t?) (23)
where x5(t) exists only on the interval 0 <
t < 1. This signal consists of two components.
The first has a transition region from lower
to higher frequencies, and the second is a lin-
ear chirp. In the analysis, the time-frequency
transformations that employ a constant win-
dow exhibit a conflicting issue between good
concentration of the transition region for the
first component versus good concentration for
the rest of the signal. In order to numeri-
cally demonstrate this problem, the signal is
again analyzed using the STFT (Fig. 4(a)),
ASTFT with the optimal time-invariant value
of 04y (Fig. 4(c)), ASTFT with the optimal
time-varying value of o4, (Fig. 4(e)), stan-
dard S-transform (Fig. 4(b)), the proposed al-
gorithm with both time-invariant (Fig. 4(d)),
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and time-varying p (Fig. 4(f)). A Gaussian
window is used for the STFT, with ¢ = 0.03.
The optimum time-invariant value of the stan-
dard deviation for the ASTFT is determined
to be gop = 0.055.

The standard deviation of the Gaussian win-
dow used should be small in order for the
STFT to provide relatively good concentra-
tion of the transition region. However, as the
value of the standard deviation decreases, so
is the concentration of the rest of the signal.
To a certain extent, the standard S-transform
is capable of producing a good concentration
around the instantaneous frequencies at the
lower frequencies and also in the transition re-
gion for the first component. However, at the
high frequencies the standard S-transform ex-
hibits poor concentration for the first compo-
nent. The WWOST with a time-invariant p
enhances the concentration of the linear chirp,
as shown in Fig. 4(d). However the concentra-
tion of the transition region of the first compo-
nent is deteriorated in comparison to the stan-
dard S-transform. The concentration obtained
with the WWOST with the time-invariant p
for this transition region is equivalent to the
poor concentration exhibited by the STFT.
Even though the ASTFT with both time-
invariant and time-varying optimum value of
standard deviation provide good concentration
of the linear FM component and the stationary
parts of the second component, the transition
region of the second component is smeared in
time.

Fig. 4(f) represents the signal optimized S-
transform obtained by using p(¢). A signifi-
cant improvement in the energy concentration
is easily noticeable in comparison to the stan-
dard S-transform. All components show im-
proved energy concentration in comparison to
the S-transform. Further, a comparison of the
representations obtained by the proposed im-
plementation of the S-transform and the STFT
shows both components have higher energy
concentration in the representation obtained
by the WWOST with p(¢).

As mentioned previously, for this type of sig-
nals it is more appropriate to use the time-
varying p(t) rather than a single constant p
value in order to achieve better concentration
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TABLE II
PERFORMANCE MEASURES FOR THE TIME-FREQUENCY
REPRESENTATIONS CONSIDERED IN EXAMPLE 2.

TFR Err
STFT 0.0108
ASTFT with ooy | 0.0115
ASTFT with oope(t) | 0.0119
WWOST with p 0.0116
WWOST with p(t) | 0.0124

of the nonstationary data. By comparing Fig.
4(d) and 4(f), the component with the fast
changing frequency has better concentration
with p(f) than a fixed p, which is calculated
according to (12), while the linear chirp has
similar concentration in both cases.

It would be beneficial to quantify the re-
sults by evaluating the performance measure
again. The performance measure is given by
(22) and the results are summarized in Table
II. A higher value of the performance mea-
sure for WWOST with p(t) reconfirms that
the time-varying algorithm should be used for
the signals with fast changing components.
Also, it is worthwhile to examine the value
of (22) for the STFT and the ASTFT. The
time-frequency representations of the signal
obtained by the STFT and ASTFT algorithms
achieve smaller values of the performance mea-
sure than WWOST. This supports the earlier
conclusion that the WWOST produces more
concentrated energy representation than the
STFT and the ASTFT. The WWOST with the
time-invariant value of p produces higher con-
centration than the ASTFT with the optimum
time-invariant value of o4, and the WWOST
with p(t) produces higher concentration than
the ASTFT with the optimum time-varying
value of the o gq,.

Example 3

Another important class of signals are those
with crossing components that have fast fre-
quency variations. A representative signal as
shown in Fig. 5(a) is given by

x3(t) = cos(20m In(10¢ + 1))
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+ cos(48mt + 8t?) (24)
with z3(t) = 0 outside the interval 0 < ¢ < 1.
For this class of signals, similar conflicting is-
sues occur as in the previous example; how-
ever, here exists an additional constraint, i.e.,
the crossing components. The time-frequency
analysis is performed using the STFT (Fig.
5(b)), the ASTFT with the time-varying o g,
(Fig. 5(c)), the standard S-transform (Fig.
5(d)) and the proposed algorithm for the S-
transform (Fig. 5(f)). In the STFT, a
Gaussian window with a standard deviation
of 0.02 is used. Due to the time-varying na-
ture of the frequency components present in
the signal, the time-varying algorithm is used
in the calculation of the WWOST in order to
determine the optimal value of p.

The representation obtained by the STFT

depicts good concentration of the higher fre-
quencies, while having relatively poor concen-
tration at the lower frequencies. An improve-
ment in the concentration of the lower frequen-
cies is obtained with the ASTFT algorithm.
The standard S-transform is capable of provid-
ing better concentration for the high frequen-
cies, but for the linear chirp the concentration
is equivalent to that of the STFT.

From the time-frequency representation ob-
tained by the WWOST, it is clear that the
concentration is preserved at high frequencies,
while the linear chirp has significantly higher
concentration in comparison to the other rep-
resentations. It is also interesting to note how
p(t) varies between 0.6 and 1.0 as a function
of time as shown in Fig. 5(e). In particular,
p(t) is close to 1 at the beginning of the sig-
nal in order to achieve good concentration of
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Fig. 5. Time-frequency analysis of signal with fast variations in frequency: (a) Time-domain representation; (b)
STFT of z3(t); (c) ASTFT of z3(t) with ogopt(t); (d) SL(¢, f) of 3(t) with p = 1 (standard S-transform);

(e) p(t); (f) SE(¢, f) of x3(t) with the optimal p(¢).

the high frequency component. As time pro-
gresses, the value of p(t) decreases in order to
provide a good concentration at the lower fre-
quencies. Towards the end of the signal, p(t)
increases again to achieve a good time local-
ization of the signal.

In Section III, it was stated that for the
components with faster variations, it is recom-
mended that the time-varying algorithm with
the WWOST be used. In order to substan-
tiate that statement, the performance mea-
sure implemented in the previous examples is
used again and the results are shown in Table
ITI. The optimized time-invariant value of the
parameter po,: for this signal, found accord-
ing to (12), is determined numerically to be
0.71. These performance measures verify that
the time-varying algorithm should be used for
the faster varying components. For compar-

ison purposes, the performance measures for
the representations given by the STFT and
its time-invariant (oo = 0.048) and time-
varying adaptive algorithms are calculated as
well. By comparing the values of the per-
formance measure for different time-frequency
transforms, these values confirm the earlier
statement that the each algorithm for the
WWOST produces more concentrated time-
frequency representation in its respective class
than the ASTFT.

In the analysis performed so far, it was as-
sumed that the signal-to-noise ratio (SN R) is
infinity, i.e., the noise-free signals were consid-
ered. It would be beneficial to compare the
performance of the considered algorithms in
the presence of additive white Gaussian noise
in order to understand whether the proposed
algorithm is capable of providing the enhanced
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TABLE III
PERFORMANCE MEASURES FOR THE TIME-FREQUENCY REPRESENTATIONS CONSIDERED IN EXAMPLE 3.

TFR Err (Noise-free) | Epp(SNR = 25 dB)
STFT 0.0106 0.0100
ASTFT with oot 0.0121 0.0114
ASTFT with oop(t) 0.0122 0.0113
WWOST with p 0.0122 0.0110
WWOST with p(t) 0.0126 0.0116
performance in noisy environment. Hence, the shown in Figs. 6 and 7. These results

signal x3(t) is contaminated with the additive
white Gaussian noise and it is assumed that
SNR = 25 dB. The results of such an analy-
sis are summarized in Table III. Even though,
the performance has degraded in comparison
to the noiseless case, the WWOST with p(t)
still outperforms the other considered repre-
sentations.

B. Demonstration Example

In order to illustrate the effectiveness of the
proposed scheme, the method has been applied
to the analysis of engine knocks. A knock is
an undesired spontaneous auto-ignition of the
unburned air-gas mixture causing a rapid in-
crease in pressure and temperature. This can
lead to serious problems in spark ignition car
engines, e.g., environment pollution, mechani-
cal damages, and reduced energy efficiency [21]
[22]. In this paper, a focus will be on the analy-
sis of knock pressure signals.

It has been previously shown that high-
pass filtered pressure signals in the presence
of knocks can be modeled as multi-component
FM signals [22]. Therefore, the goal of this
analysis is to illustrate how effectively the
proposed WWOST can decouple these com-
ponents in time-frequency representation. A
knock pressure signal recorded from a 1.81
Volkswagen Passat engine at 1200 rpm is con-
sidered. Note that the signal is high-pass fil-
tered with a cut-off frequency of 3000 Hz. The
sampling rate is f; = 100 kHz and the signal
contains 744 samples.

The performance of the proposed scheme
in this case is evaluated by comparing it
with that of the STFT, the ASTFT, and
the standard S-transform. The results are

represent two sample cases from fifty tri-
als. For the STFT, a Gaussian window,
with a standard deviation of 0.3 millisec-
onds, is used for both cases. The optimiza-
tion of the standard deviation for the ASTFT
is performed on the set of values defined
by 04w = {0.01n:n € N and ¥ < x < pFF}
milliseconds.

A comparison of these representations show
that the WWOST performs significantly bet-
ter than the standard S-transform. The pres-
ence of several signal components can be easily
identified with the WWOST, but rather diffi-
cult with the standard S-transform. In addi-
tion, both proposed algorithms produce higher
concentration than the STFT and the corre-
sponding class of the ASTFT. This is accu-
rately depicted through the results presented
in Table IV. The best concentration is achived
with the time-varying algorithm, while the
time invariant value p produces slightly higher
concentration than the ASTFT with the time-
invariant value of 04, (0opt = 0.2 milliseconds
for the signal in Fig. 6 and ooy = 0.19 mil-
liseconds for the signal in Fig. 7).

The direct implication of the results is that
the WWOST could potentially be used for the
knock pressure signal analysis. A major ad-
vantage of such an approach in comparison to
some existing methods is that the signals could
be modeled based on a single observation, in-
stead of multiple realizations required by some
other time-frequency methods such as Wigner-
Ville distribution [23], since the WWOST does
not suffer from the cross-terms present in the
bilinear transforms.
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Fig. 6. Time-frequency analysis of engine knock pressure signal (17th trial): (a) Time-domain representation; (b)
STFT; (c) ASTFT with oopt(t); (d) SL(t, f) with p = 1 (standard S-transform); (e)SE (¢, f) with p = 0.86;

(f) SEL(t, f) with the optimal p(t).

TABLE 1V
CONCENTRATION MEASURES FOR THE TWO SAMPLE TRIALS.

Trial ESTFT | BASTFTo0p | BASTFTown ) | Zp=1 | Zpopr | Zpopet)
17th trial | 0.0057 | 0.0059 0.0068 0.0054 | 0.0065 | 0.0074
48th trial | 0.0052 | 0.0054 0.0060 0.0053 | 0.0058 | 0.0069
C. Remarks which can achieve good energy concentra-

It should be noted that, in some cases, when
implementing the proposed algorithm, it may
be beneficial to window the signal before eval-
uating SE(t, f) in step 1. This additional step
diminishes the effects of a discrete implemen-
tation. As shown in [24], wideband signals
might lead to some irregular results unless they
are properly windowed.

The STFT and the ASTFT are valuble
signal decomposition based representations,

tion for a wide variety of signals. How-
ever, throughout this manuscript, it is shown
that the proposed optimization of the window
width used in the S-transform is beneficial, and
in presented cases, outperforms other standard
linear techniques, such as the STFT and the
ASTFT. It is also crucial to mention that the
WWOST is designed to achieve better concen-
tration in the class of the time-frequency repre-
sentations based on the signal decomposition.

In comparison to the standard S-transform
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Fig. 7. Time-frequency analysis of engine knock pressure signal (48th trial): (a) Time-domain representation; (b)
STFT; (c) ASTFT with oopt(t); (d) SL(t, f) with p = 1 (standard S-transform); (e)SE (¢, f) with p = 0.87;

(f) SEL(t, f) with the optimal p(t).

or the STFT, the WWOST does have a higher
computational complexity. The algorithm for
the WWOST is based on an optimization pro-
cedure and requires a parameter tuning. How-
ever, when compared to the transforms of
similar group algorithms (e.g. ASTFT), the
WWOST has almost the same degree of com-
plexity.

The sampled data version of the standard
S-transform and their MATLAB implementa-
tions have been discussed in several publica-
tions [5][7], [25]-, [27]. The WWOST is a
straightforward extension of the standard S-
transform. Therefore, the sampled data ver-
sion of the WWOST follows the steps pre-
sented in earlier publications.

V. CONCLUSION

In this paper, a scheme for improvement of
the energy concentration of the S-transform
has been developed. The scheme is based on
the optimization of the width of the window
used in the transform. The optimization is car-
ried out by means of a newly introduced pa-
rameter. Therefore, the developed technique
is referred to as a window width optimized
S-transform (WWOST). Two algorithms for
parameter optimization have been developed:
one for finding an optimal constant value of
the parameter p for the entire signal; while
the other is to find a time-varying parameter.
The proposed scheme is evaluated and com-
pared with the standard S-transform by using
a set of synthetic test signals. The results have
shown that the WWOST can achieve better
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energy concentration of the signals in compari-
son with the standard S-transform. As demon-
strated, the WWOST is capable of achieving
higher concentration than other standard lin-
ear methods, such as the STFT and its adap-
tive form. Furthermore, the proposed tech-
nique has also been applied to engine knock
pressure signal analysis, and the results have
indicated that the proposed technique provides
a consistent improvement over the standard S-
transform.
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