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Generalized Representation of Phase
Derivatives for Regular Signals
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Abstract— This paper introduces a new gen-
eralized complex lag moment which produces
joint time-"phase derivatives” distributions.
For the choice of the time-"first order phase
derivative” which stands for time-frequency
representation, this distribution can be seen as
a form of the Wigner-Ville distribution. More-
over, this generalization leads to distributions
with highly reduced inner interferences caused
by the nonlinearity of the signal’s phase. It can
also be seen as a polynomial distribution since
the N'" order distribution produces no inner
interferences for polynomial phase law of or-
der N. Implementation of these distributions
is addressed. The results are illustrated by ex-
amples.

I. INTRODUCTION

A General form of complex lag distribu-
tions, that estimates any order of instanta-
neous phase derivative, is introduced. This
class of distributions is based on complex lag
arguments. It will be referred to as a general
form of the complex time distributions. Be-
side the fact that these distributions provide
estimation of an arbitrary order of instanta-
neous phase derivative, high concentration of
the distributions can be achieved. Since the
first phase derivative is the instantaneous fre-
quency, time-frequency distributions follow as
a special case of this class of distributions, [1],
[2]. Time-frequency distributions, introduced
by the proposed approach, are highly concen-
trated in the time-frequency plane providing
an accurate instantaneous frequency estima-
tion, even in the case of significant instanta-
neous frequency variation within only a few
signal samples. Recently, O’Shea analyzed the
second order phase derivative, i.e. the Instan-
taneous Frequency Rate (IFR), [3]. The esti-
mation introduced in [3] can be obtained with
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a slight modification of a particular form of
the generalized complex lag distribution. In
addition, better instantaneous frequency rate
concentration can be achieved by using higher
order time frequency rate distributions belong-
ing to the proposed class of distributions. Dis-
tributions providing the third instantaneous
phase derivative are also introduced and an-
alyzed.

The paper is organized through five sec-
tions. The concept and theory of the proposed
class of distributions are presented in Section
II. The theory is illustrated by various ex-
amples in Section III. The problem of numeri-
cal implementation is considered in Section I'V.
The most interesting specific distributions, be-
longing to the proposed class of distributions,
are illustrated in Section V. Special attention
is devoted to the cases of the first, the sec-
ond and the third phase derivatives. In the
case of first phase derivative (instantaneous
frequency), the superiority of the proposed ap-
proach is illustrated by introducing the sixth
order distribution that estimates the instan-
taneous frequency, even when it could not be
achieved by other time-frequency tools.

II. INSTANTANEOUS PHASE DERIVATIVES
A. Concept

The ideal representation of an arbitrary In-
stantaneous Phase Derivative (IPD), for sig-
nals of the form Ae/®®) can be written in the
form:

IPDg(t,Q) = 6(Q2 — 5 (2)), (1)

where € is the axis which corresponds to the
K derivative of the phase function ®(¢). The
distribution which provides this representation
will be called, in general, the ideal time-"phase
derivatives” distribution. Note that, for K =
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1, the instantaneous frequency representation
is obtained as:

IPD:(t,w) = §(w — @' (1)), 2)

where Q@ = w and ®'(¢) stands for the first
phase derivative, i.e. instantaneous frequency.
The well known time-frequency distributions,
[1], [2], could be used for this representation.

For K = 2 instantaneous frequency rate fol-
lows:

IPDy(t,9Q) = 6(Q — (1)), (3)

where Q is the frequency rate axis. In-
stantaneous frequency rate estimation can be
provided by using, recently defined, time-
"frequency rate” representation, [3].

Note that these two special cases have al-
ready been studied (especially the case K = 1)
while the case K = 3 has not been considered
yet. A reason for this could be the elaborate
forms of distributions even for the first two
cases. Namely, ideal representations given by
equations (2) and (3) can not, generally, be
achieved by using any time-frequency or time-
"frequency rate” distribution. Terms which
cause the distribution spread, around the in-
stantaneous phase derivative, are inner inter-
ference terms. For K = 1, they depend on
{(I>(i) (t)}i, for 7 > 2. Note that, for the spec-
trogram we have i = 2,3,..., while for the
Wigner distribution we have i = 3,5, 7, ..., [4].

Distribution proposed in the next section
provides not only an arbitrary instantaneous
phase derivative representation, but also high
distribution concentration.

Observe that energetic distributions should
provide representation in the form:

IPD(t,Q) = A%5(Q — o5 (1)),  (4)

where A is the amplitude of the signal s(t) =
Aed®®) | Thus, the signal energy is concen-
trated along the K*" phase derivative.

A general form of the distribution which
provides instantaneous K** phase derivative is
introduced in the next subsection.

B. Introducing generalized complex lag time-
"phase derivatives” distribution

In the sequel we will show that, by using
the complex-lag argument concept, a set of

new distributions can be defined. In order
to reduce inner interferences in time-frequency
representation of highly nonstationary signals,
the complex lag argument was introduced in
[4]. In this section, we prove that the distrib-
utions based on Generalized Complex lag Mo-
ment (GCM) provide the representation of ar-
bitrary instantaneous phase derivatives. The
distributions as the short time Fourier trans-
form, the Wigner-Ville distribution (WVD), or
O’Shea’s time-frequency rate estimator, can be
obtained as special cases. However, it is impor-
tant to emphasize that this concept provides
new, highly concentrated, distributions along
the arbitrary phase derivative.

Let us consider a signal in the form:
s(t) = Aed®®), (5)

In order to obtain distribution concentrated
along K" phase derivative, we define a com-
plex moment' as:

N-1
GCME[s](t,7) = [ 8% (¢ +wwir),

k=0
. (6)
where wy i = e727k/N - The phase function of
GCMY is:
Angle [GC’MJ}@[S](t,T)] =

N-1

= Z O (t+wniT) w%’;K. (7
k=0

By expanding @ into Taylor’s series, the
above equation can be written as:
Angle [GC’MJ}@[S](t,T)] =

Y S a0
B il R
k=0 i=0

Having in mind that:

N

—1
N
szz)v,k = { 0

k=0

ifp=0
if not

(mod N)

IComplex variable analysis provide the follow-

ing derivative formula: ®®)(t) = 27]:-|rk 027'r D(t +
Te7%)e=9%9dh. The equation (6) is introduced in or-
der to produce the phase in discrete domain, (7), that

is analog with the previous formulation.
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only the terms for i=K, K+N, K+2N, ..., K+
EN, ... will remain in (8). Therefore, we have:

N—-1
DOt +wy Tl =
k=0

Nk+K

_ NZ (I)(Nk+K)( ) (Nk — K)

k=0

(9)

which can be written as:

N—-1
Dt + wN,k.T)w%fk,K =
k=0

K
NK| + Q(t,7),

where the remainder Q(t,7) is

= (91

NEk+K

Qt,7) =N i PR+ ()L

< Z e (Y

If we want to obtain a distribution concen-
trated along ®5)(t), we have to linearize the
first term in (10) with respect to variable 7.
Thus, the GCM should be of the form:

GC’MJ{,{[S](t,T) =

N-—1
- | K!
= H Sw%ka t+wnk N—r]. (12)
k=0 N

After this lag warping, the phase function of
the moment becomes:

Angle [GC M [s](t,7)] = o) ()1 4+ Q(t, 1),
(13)
where:

Q(t7 T) =

+00 Nk q S|
- NZ(I)(NkJrK) (t) TE K\ % )
P (NE+K)!'\ N
(14)
The Fourier transform of the generalized

complex moment produces the generalized
complex lag distribution:
GCDX[s](t,w) = F~ [GC’M]I\f[s](t,T)]

=5, [em(’“(twem(w)}
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= 3w — @) (1) 5 5 [ejQ(t’T)] . (15)
where Q(t,7) is the spread factor of the dis-
tribution. In the ideal case, it should be zero.
We observe that the first term appearing in
this factor is the phase derivative of order
K + N, the second one is of order K + 2N,
etc. Thus, the parameter N highly affects the
factor Q(t, 7). It can be concluded that a high
value of N reduces interferences, since Q(t, 7)
is reduced. In order to give a more compre-
hensive overview of this theoretical framework,
several specific distributions and illustrative
examples are given in the next section.

III. SOME SPECIFIC DISTRIBUTIONS
BELONGING TO THE GENERALIZED
COMPLEX LAG DISTRIBUTION

A. Case K =1 : instantaneous frequency rep-
resentation - time-frequency distributions

Taking K = 1, we focus on the instan-
taneous frequency. Observing that w%jﬁl =
Wi x> moment (12) becomes :

WN,k
SNk ( —’T) .
H N
(16)
Depending on the parameter N, various
forms of time-frequency distribution moments

can be obtained. Let us begin with the first
one, i.e. N =1:

GOMY 5]

GC M [s](t,T) = s(t +T)

3
Qt, ) = 2>()2'+<I>3>()3'+...

Here, the associated distribution is the short
time Fourier transform (if a lag window is as-
sumed). In the spread factor Q(¢,7), all phase
derivatives of order 2 and higher are implied.
Thus, the short-time Fourier transform is well
suited only for sinusoids localization.

For N = 2 we have:

GOM[s|(t,7) = s(t + %)sfl(t _ %)
3) 73 (5) °
Qt,7) = 0 (W) g0 + @V (1) oy +
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This leads to a Wigner-Ville like distrib-
ution, with a difference in the second expo-
nent of the moment which is —1 instead of a
conjugate. However, both have the same ef-
fect on the phase. The first term appearing
in Q(t,7) is related to the third derivative.
Indeed, the Wigner-Ville distribution is well
suited for time frequency representation of lin-
ear frequency modulations.

Suppose now N = 4:
GCM;[s](t,T) =

= s(t+2)s 7 (= D)t =G T)s Tt +5T)

— p® 70 o) 7’

We observe that the same complex lag mo-
ment as the one introduced in [4] is ob-
tained. The complex time distribution (CTD)
is ideally concentrated for polynomial instan-
taneous frequency laws of order 3 or less. How-
ever, it has been shown that it is still highly
efficient for polynomial phase of order greater
than 4, since the derivative coefficients in the
spread factor decay rapidly. For even N val-
ues, —1 is always a root of the unity and the
exponent with value —1 can be replaced with
a conjugate, since the effect on the phase func-
tion will be the same.

Hereafter, GCM J{f will denote the moment
GCM¥ modified by replacing exponents —1
with conjugates. Thus, according to this
notation the corriglt_ef time distribution de-

fined in [4] is GCD}.
JGCDY[sldw = 1 and [GCDY[sldw =
|s(t)|2. Of course, it is possible to choose a
higher value for N. For N = 6, highly concen-
trated, the sixth order time-frequency distrib-
ution moment is obtained:

i 2w j=2m  -w
{wﬁyk}k:O..S = {1;6‘73;6‘7 3 ;*1;6‘7 3 ;6‘7 3 }

We can see that:

5
1 o w We,k
GOM[s)(t,7) = [ s (t+—6 )
k=0
) il (13) T

The first derivative appearing in the factor
Q(t,7) is of order 7. It means that a poly-
nomial phase of order 6 or less will not pro-
duce any interferences in this distribution. For
other signals, the interferences will be highly
reduced, as a consequence of the very fast de-
creasing coefficients.

B. Case K =2 : time-"frequency rate” repre-
sentation

A general form of the time-frequency rate
distribution moments, with complex lag argu-
ment is given by:

N-1
N-2 5/ 2
GCM%[s|(t,7) = k[[() SNk (t +wn it/ NT)

(17)
For N =2 in (17), follows:

GCM3[s|(t,7) = s (t+/T) s (t — /7). (18)

Relation (18) should be compared to the
IFR representation and estimator introduced
by O’Shea ([3]):

+oo
CPD(L,Q) = / s(t47)s(t—1) ¥ dr, (19)
0
IFR(t) = argmax [CPD(t,Q)]. (20)
Q
By using the time warping operation 7 —

/7, and the Fourier transform instead of the
polynomial Fourier transform, the distribution

GC D3 is obtained.
Taking N = 4, we will introduce a new,

fourth order, time-”frequency rate” distribu-
tion moment:

S WA
xsL <t+j\/§> st (tj\/g) . (@

or:

GOt =5 (143 ) s (1= 3)
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T T
Nt /=) s (t—d4/= ). 22
o () () e
The sixth order time-”frequency rate” dis-
tribution moment is obtained by taking N = 6:

GCM2[s(t, ) = ﬁ 90K (t +w6,k</§> .
H (23)

C. Case K = 3 : instantaneous third phase
derivative representation

Note that, if we want to obtain distribu-
tions concentrated around third phase deriv-
ative, the parameter N must be N > K. Tak-
ing N = 3, we have:

{w3,i} = {17 ej27r/3, eijTr/3} )

aeMilslt,r) = [[ s (t +W3,kf’/ﬂ) . (24)
k=0

It is easy to conclude that for N = 4, better
distribution concentration can be achieved. In
this case we obtain the fourth order distribu-
tion moment:

3
3
GCM;[s](t,7) = H Pl <t+w4,kf/§> .

k=0

(25)

Taking N = 6, the sixth order distribution
moment is introduced:

5

GOME[s|(t,7) = [[ s V" (t +wen /7).
kzo (26)

IV. GCD IMPLEMENTATION
A. Analytical continuation

Computation of the signal’s value in the
complex plane must be done, based on the
real signal samples. In mathematics, this con-
cept is known as analytical continuation, [5].
A function s(t) is said to be analytical if it can
be written as a power series within a conver-
gence disk of radius R # 0, as:

2 ®)
st+m) =3 k!(t) (7)™

k=0

(27)
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According to the Paley-Wiener theorem, a
band limited signal can be regarded as an an-
alytical function restricted on the real axis.
Therefore, the analytical continuation of a
band limited signal can be written using the
inverse Fourier transform:

+

s(t+jm) =

vl

S(f)e 2mmfei2mftgr  (28)

vl

With the previous formulation, and due to
the finite support spectrum, it appears that
the continuation could be computed for any
band limited signal. However, in analysis we
use windowed signals.

If S(f) is the Fourier transform of a win-
dowed signal by using the rectangular window,
Fig.1.b, then it will have decay proportional
to 1/f. Therefore, due to the fast increas-
ing exponential e2™™/  the analytical con-
tinuation, calculated via (28), could diverge.
Problem is the same when the spectrum is ob-
tained through the Discrete Fourier Transform
(DFT):

s(n+jm) = S(k)e*%mkeﬂ”k”. (29)

The sampled spectrum involves repetition
of the original signal in time. Necessary con-
dition to have a fast decreasing spectrum is
the continuity of all signal’s derivatives, in-
cluding repetition bounds. It can be achieved
by applying a time axis warping to the sig-
nal. Let’s suppose we have, s € C*°[—1, 1] and
s(—1) # s(1). Let us also consider a warping
function defined below:

.
w:it— by = sm(gt). (30)

The new defined function $(t) = s(w(t)) is
now periodical and C*° over the whole real
axis, Fig.l.c. Moreover, one can expect its
spectrum to be rapidly decreasing. To com-
pute s(t + jm), one must compute 3( + jmn),
which is 5(2asin(t + jm)), from the spectrum
of 5. The correspondence between the complex
planes is illustrated in Fig. 2.
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>
a b time

)

Fig. 1. Signal windowing: (a) Original signal, (b) Windowed signal, (c¢) 5(¢) for t € R

Note that possible discontinuities within the
signal itself will not be solved in this way.

Since the Fourier transform is used for ana-
lytical continuation calculation, we try to have
the support of the Fourier transform as com-
pact and small as possible. The ideal case for
calculation would be a Dirac in the Fourier
domain. For complex time values, the spec-
trum is multiplied with a very fast increasing
exponential, equation (29). Reduction of the
spectrum support involves the reduction of the
range of this exponential and the amplification
of the noise. The noise sensibility problem is
described in section IV-B.

Ezample with GC M}

By using moment (22), a distribution con-
centrated along the instantaneous frequency
rate will be obtained. To compute it, one
should calculate s(t+jm) over the needed com-
plex plane points. In order to simplify the cal-
culation, in this case, we will present another
solution. First, compute half part of the mo-

973
A
a b time
b)
>
b time
ment which is a function of real variables:
M(t,7) = s(t + \/g)s(t /5 e

This part of the moment also provides a
distribution more or less concentrated along
half of the frequency rate (as much as Wigner-
Ville distribution is concentrated along in-
stantaneous frequency). It means that for a
given time instant ¢, §,(M (¢, 7)) is more con-
centrated than the Fourier transform of s(¢).
Therefore, it is numerically easier to compute
its analytical continuation M (¢, —7) than the
analytical continuation of signal s(t+ j7). We

will then compute GCM? as:

GCM2[s)(t,7) = M(t, )M (t,—7)*.  (32)

Similar optimizations can be defined for the
other complex time distributions. For exam-
ple, in the case of time-frequency distributions,
we have:

GOMly(t,7) = GOMY (t, %)

xGemk (4 %wwl)w”l L (33)
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Fig. 2. Correspondance of complex-time planes

B. Noise and sampling frequency influence on
analytical continuation

If the noise is present, it will be highly am-
plified for high frequencies due to multiplica-
tion by exponential function in (29). Thus, a
slight noise in the high frequency range of the
spectrum will have stronger influence than a
strong signal at the lower frequencies. An il-
lustration is presented in Fig. 3. In this case
(m = 0.12), the exponential takes high val-
ues for negative part of the spectrum. At the
beginning of the negative frequency part, the
signal is correctly multiplied with the exponen-
tial. Then, as the signal has a fast decreasing
spectrum, the multiplied spectrum tends to-
ward zero. However, we observe a increased
values at the end of the spectrum. It is due to

TIME-FREQUENCY SIGNAL ANALYSIS

the presence of noise. In this particular case,
it would be easy to separate both parts of the
spectrum, but when the noise level is higher,
it is not so obvious. An efficient filtering be-
comes absolutely necessary.

Two interesting approaches are developed
for efficient implementation of the complex-
time distributions of noisy signals [6], [7]. In
the first one, a region of support for complex-
time distribution computation is obtained by
using the short-time Fourier transform. Thus,
the complex time distribution is computed,
only, within the region where the short-time
Fourier transform is above a certain thresh-
old value, keeping complex argument small.
The second method is based on the concept of
cross complex-time distribution (similar with
the cross Wigner-Ville based instantaneous
frequency estimation [8]). An initial estima-
tion is done by using any existing method
and then the cross complex-time distribution
is computed by using iterative procedure. In
both approaches a high robustness to noise is
achieved. These approaches, with correspond-
ing quantitative analysis, can be used in the re-
alization of the generalized complex-time dis-
tributions.

The sampling frequency also has an influ-
ence on the calculation. Indeed, when the
spectrum is multiplied with e™2™™*  some
parts of the spectrum are revealed depend-
ing on the value of m. This effect is shown
in Fig. 4. The top figure shows the multi-
plied spectrum for m = 0 which is the original
spectrum. As m is increasing, the maximum
shifts to the left on the frequency axis. Aslong
as the multiplied spectrum vanishes before the
end of the frequency axis, it is not a problem.
However, one can see in the bottom figure, for
m = 0.3, that one part of the multiplied spec-
trum is missing. In this case, the analytical
continuation will be miscalculated.

As a consequence, the maximum value of m
is mainly limited by the noise level but also by
the sampling frequency.

In practical implementations, windowed
forms of the time-frequency distributions are
used. For the short time Fourier transform,
the size of the window is subject to the trade
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frequency

Fig. 5.

off between time and frequency resolutions.
For the pseudo Wigner-Ville distribution, the
choice is made assuming that the signal is a
linear chirp within the windows. Since this hy-
pothesis is weaker than stationarity, the length
of the window can be increased in comparison
to the spectrogram. It is possible to further
reduce the negative influence of the window.
Namely, the size of the window can be in-
creased, by using the generalized complex mo-
ment, proportionally to the parameter N. In
this way, the accuracy could be, theoretically,
highly improved. However, numerical imple-
mentations introduce some limits for the size
of the window in the GCM based distributions.
It is especially important in order to avoid in-
fluence of the high values of m. In Section V,
we will rather use equal size window for all
distributions in order to compare interferences
reduction.

V. TESTS AND ILLUSTRATIONS

In this section we will test the presented
complex-time distributions on several signals,
including noisy ones. The results will be com-
pared with conventional representations.

A. Signals

The distributions, introduced in this paper,
are tested on the three signals described below:

Sl(t) — ej(6605(7rt)+%cos(37rt)+%cos(57rt))
o) = si(t)+n(t)
s3 (t) _ ej(lOcos(ﬂ't)-l-%cos(37rt)+cos(97rt)) )

The first one is a periodically frequency
modulated signal with rather rapid frequency

TIME-FREQUENCY SIGNAL ANALYSIS

(b)

time time

Time-frequency representations: (a) WVD, (b) CTD, (c) 6t GCD.

variations. Noise is added in the second signal.
The last one is still a periodically modulated
signal with faster frequency variations. Note
that, in real cases, these signals correspond
to a radar signals produced by nonuniform
rotation of a reflecting point. The normal-
ized distance changes caused by the nonuni-
form rotation is described by d(t) = 6cos(mt)+
3cos(3mt) + 3cos(5mt) in s1(t).

B. Instantaneous frequency representation

Various time-frequency representations of
s1(t) are depicted in Fig. 5. The WVD can-
not follow the frequency variation of the sig-
nal since it is highly non linear. The result is
better with the CTD because the interferences
are highly reduced. However they are still visi-
ble in the figure. Some of the artifacts, around
zero frequency, are due to miscalculation of the
analytical continuation. The sixth order GCD
exhibits a better signal representation. It is
almost interferences-free and has no artifacts
in this case.

The signal s(t) is contaminated with a
white gaussian noise. The SNR is about 10dB.
The WVD, the CTD and the sixth order GCD
are shown in Fig. 6. The last representation is
the best since the sixth order GCD is naturally
more robust to noise than the CTD.

The last signal, s3(t), has very rapid fre-
quency variations. It is used to show the lim-
its of the CTD. The results are depicted in
Fig. 7. The sixth order GCD is still well fit-
ted to the theoretical instantaneous frequency
and the interferences level is negligible com-
pared with the WVD and the CTD.
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Fig. 6.

frequency

time

Fig. 7.
CTD, (c) 6" GCD.

C. Second and third phase derivatives

We now tackle the problem of higher order
derivatives with second and third derivatives,
K ={2,3}. With N = 2, it is still possible to
compute instantaneous frequency rate, since
we must have K S/]X/ To Lll\uﬁtrate the/(io/n—
cept, we applied GCMZ, GCMZ and GCM;
on s1(t). The results are depicted in Fig. 8. A
more significant smoothing has been used for
this example. In Fig. 8.a, it is shown that the
representation is more spread around instanta-
neous frequency rate, since the spread factor
@ is more influential for this distribution. Fig.
8.b shows some artefact in the representation
due to the analytical continuatiog_&\mg)roxima—

tions. In Fig. 8.c, we represent GC'D3.

Note that the third phase derivative cannot
be calculated with IV = 2. We have to use at
least N = 3, with GCM3. We will compare it

to the GOM} and GCM§. The distributions
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Time-frequency representations of a noisy signal, SNR=10dB: (a) WVD, (b) CTD, (c) 6!* GCD.

Time-frequency representations of a signal with fast varying instantaneous frequency: (a) WVD, (b)

are applied on s1(¢) as well. The first distrib-
ution, Fig. 10.a, shows better results than the
second one, Fig. 10.b. Based on the order of
the distribution, the opposite was expected. In
fact, the analytical continuation of the second
distribution is more difficult to compute due to
the fourth unity roots location, implying some
artifacts in the representation. The last figure,
with sixth order representation, shows the best
results.

Moreover, the position of the sixth unity
roots in the complex plane is an asset com-
pared with those of fourth order distribution,
for example. Indeed, we will stay closer to the
real axis when computing signal with complex
argument, Fig. 9. As a consequence, the com-
putation will be less sensitive to noise.

D. Ezxample of instantaneous frequency rate
estimation

Estimating the instantaneous frequency rate
of a signal is also one of the topics. Some



time

TIME-FREQUENCY SIGNAL ANALYSIS

Fig. 8. Time-"frequency rate” representations: (a) 2”¢ GCD, (b) 4" GCD, (c) 6t* GCD.

time

Fig. 10. Time-"third phase derivative” representations: (a) 3"¢ GCD, (b) 4t* GCD, (c) 6t* GCD.
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Fig. 9. Second order (e), fourth order (m) and sixth

order (A) unity roots divided by N

methods use directly the representation to ex-
tract the parameter. With the moments in-
troduced in this paper, we can obtain rep-
resentations concentrated along the instanta-
neous phase derivative. In other words, for
any time value, the 7 variable dependent signal

GCM¥E[s|(t,7) is almost monochromatic. As
a consequence, it is possible to use a paramet-
ric method like MUSIC algorithm to estimate
its frequency. We applied MUSIC algorithm

for the three moments dedicated to frequency
rate estimation. These moments were applied
to s1(t). The results are depicted in Fig. 11.
A signal without noise is used to show the ac-
curacy of estimation for a highly non linear
phase. The estimation related to sixth order
moment is almost identical to the theoretical
law in the figure. For the second order mo-
ment, results are not so good. This was ex-
pected since, in Fig. 8.a, the representation is
not correctly focused on the frequency rate.

VI. CONCLUSION

In this paper, a class of generalized complex
lag distributions is proposed. These distribu-
tions are parameterized by two integers K and
N. One important property is that they pro-
vide high concentration along the K*" deriva-
tive of the phase. A special case of this class
of distributions, for K = 1, provides distri-
butions for time-frequency analysis. Among
them, the Wigner-Ville distribution is one of
the special cases. The most interesting dis-
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tributions for K = 2 (time-"frequency rate”
analysis) and for K = 3 are analyzed. The
theory is illustrated and justified by numer-
ical examples. Future work could be focused
on detailed noise analysis and multicomponent
signals.
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