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TIME-FREQUENCY SIGNAL ANALYSIS

General Form of Time-Frequency
Distribution with Complex-lag
Argument

Srdjan Stankovié, Nikola Zarié, Irena Orovié, Cornel Ioana

Abstract— A general form of the time-
frequency distribution with complex-lag argu-
ment is proposed. It is based on the General-
ized complex-lag distribution, modified to pro-
vide an efficient instantaneous frequency esti-
mation in the case of multicomponent signals.
The form of proposed distribution is suitable
for numerical realization and it provides an ar-
bitrarily high distribution concentration. The
theory is illustrated by an example.

I. INTRODUCTION

The distribution concentration is very im-
portant for time-frequency signal analysis.
The commonly used Wigner distribution pro-
vides an ideal concentration along the linear
instantaneous frequency (IF). To improve dis-
tribution concentration for signals with non-
linear IF, the L-Wigner distribution and poly-
nomial Wigner distribution have been used
[1]-[3]. By introducing time-frequency distri-
bution with complex-lag argument [4], fur-
ther improvement of distribution concentra-
tion is achieved. This distribution has been
studied in [5]-[7]. Advantages of the complex
time-frequency distribution are especially em-
phasized in the case of a fast IF variations,
within several signal samples. The generalized
complex-lag distribution (GCD) has been re-
cently introduced and analyzed for the case of
monocomponent signals [8]. It has been shown
that the GCD provides an arbitrarily high con-
centration by increasing the distribution or-
der. In this letter, the time-frequency GCD
is modified to provide a general form of cross-
terms free representation for multicomponent
signals with fast varying IF. Theoretical con-
siderations are illustrated and proven by the
example.
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II. THEORY

Time-frequency representation for a signal
in the form z=Ae/?(!) can be, generally, writ-
ten as:

TFR(t,w) =

= 2mA2%5(w — @' (1)) s W (W) s FT {7}
(1)

where W (w) is the Fourier transform (FT') of
a lag-window, and Q(#,7) is the factor causing
distribution spread around the IF. An ideal
time-frequency representation would be ob-
tained for Q(t,7)=0 (the artifacts do not ex-
ist).

The time-frequency GCD has been defined
as [8]:

GC’DN(t,w) =
L N-1 w
5o P=0
where wy ,=e?™P/N are the roots on the unit

circle (* denotes complex conjugate), while N
is an even number that represents the distrib-
ution order. Note that the roots on the unit
circle appear in pairs: Wy p4N/2= -WN p-

The spread factors for some time-frequency
distributions are given in Table I.

To make it suitable for multicomponent sig-
nal analysis, we introduce a modification of

(2):

GCDx(t,w) =
T T ;
_ KRV —jwT
[ att+ Fat = et e, (3)
where,

c(t,T) =
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TABLE 1
SPREAD FACTORS IN SOME TIME-FREQUENCY DISTRIBUTIONS

Distribution

Spread factor

[lex] Wigner distribution, (GCDy,

N=2)

Qt,7) = 6O (t) sy + 6O (1) ey + ..

Polynomial Wigner distribution (IV
ord.)

Q(t,m) = —0.32767) (1) T —0.386(7 (£) T +...

[lex] GCDy, N=6

Qt,7) = 6V () + 0 () gz + -

1 s 251 PEESY
i ENp _ 20 (9 (Owry T+ 6O (O, ~Bup,ud )y + )
= I a"~0+ w]J:’/p )z N (t — w]J:’fp 7. , » v ,
" o~ 2wy (8 (Dwi, F + 6™ (1) (3wl wi, —wf) )G +.)

(4)
The quantity c(¢,7) will be referred as the
concentration function. Note that this func-
tion arbitrarily improves the concentration
of the Wigner distribution; namely, by in-
creasing distribution order N, the influence
of inner interference terms (Q(t7)) will be
significantly reduced (Table I). Also, this
form of the time-frequency GCD satisfies
the marginal properties. Observe that the
GCDy(for N=2) represents the Wigner dis-
tribution (with the auto-correlation function
R:(27/N)=z(t+7/N) =*(t-7/N) ).

To modify the concentration function c(¢,7),
the term wy p, will be written in the form:
w, =W, W, where w,., and w;, are the
real and the imaginary part of wy ,, respec-
tively. Thus, ¢(t,7) for Vp: p=1,...,N/2-1, can
be written as:

2(wy, + jw;,)

eyt ) = Ry (AU M)
—Jw; 2 7 j [
xR’ p(—(w p;Jw p)T) =
=cp, (t, 1), (t,7), (5)

where Ry (-) corresponds to the autocorrelation
function. Considering the signal of the form
t=Ael () and applying the Taylor series ex-
pansion of the phase function, we obtain:

cr, (t,7) =

— Ty (Bt (wry i) F) =t (wpy i, ) F)

(6)
Thus, ¢, (t,7) contains two terms. The first
one brings the information about the IF, while
the second represents the amplitude modula-
tion. The value of this term can be large and
it might affect the precision of the IF estima-
tion. To avoid the influence of the amplitude
term, the following modification is introduced:
2wy, 5wy

¢, (t,7) = elvrpangle(R(—=25—2m) ()

By analogy with ¢, (f,7) (when the expo-
nent —jw;, is used in (6) instead of wy, ), the
modification of ¢;, (¢, 7) can be written as:

2(wry, + 'wiE)
Ry( TPNJ T|

! —7 7 1
¢ (hr)=e Jwiy, log (8)

Replacing ¢, (t,7) and ¢;,(t,7) in (5) with
(7) and (8), respectively, and having in mind
(4) and (3), the GCD can be modified as:

MGCDy(t,w) =

N/2-1
= FTT{Rt(NT) H Cr, (t77—)cip (t77—)}
p=1

= gWD(t, gW)*wFTt {C(t7 T)} ) (9)

where c(t, 7) = H;V:/f_l C;»p (taT)C;p (t,7) (FT;

is the Fourier transform), while WD is the
Wigner distribution.
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III. A GENERAL FORM OF DISCRETE
MGCD FOR MULTICOMPONENT
SIGNALS

The distribution defined by (9) will be fur-
ther modified for the case of multicompo-
nent signals z(n) = Zqul A,e??a™ | providing
a general form of the cross-terms free time-
frequency distribution with complex-lag argu-
ment.

Similarly as in [5], the analytical extension
of z(n) for multicomponent signals can be
written as eq. 10.

where n and k are discrete time and fre-
quency variables, respectively, while k_(n) =

arg § max STFT(n, k)} is the position of the

gth signal component maximum in the short
time Fourier transform (STFT), for a given
instant n. It is assumed that the g¢th sig-
nal component is within the region [k,(n)-
Wy, ke¢(n)+Wy]. Thus, for a given instant
n, c;.p (n,m), and c;p (n,m), of the gth signal
component, are calculated according to eq. 11
and eq. 12.

In the next iteration STFT(n,k) should
be set to zero within the region [ky(n)- Wy,
kq(n)+W,]. The procedure is repeated @
times, where () is the expected number of
signal’s components. It is important to note
that this approach removes the cross-terms if
the distance between signal’s components is
d=2W,. Finally, the Fourier transforms of
c;,p (n,m)gand c;p (n,m)q are:

N/2—1
Cy(n, k) = FT,, H
p=1

Z c;.p (n,m),

q=1

Wq

B (wr, + 03, ) 50) = Y STFT (ko iy () eI o vy ),

— Wq

/
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N/2—1 Q

Ci(n, k) = FT,, H ZC;P (n,m)q

p=1 ¢g=1
(13)
By introducing the S-method instead of the
Wigner distribution in (9), and performing
the convolution around /=0, the modified gen-
eral form of cross terms free complex time-
frequency distribution is defined as:

MGCDy(n, k) =

- zL: P()SM(n,k + 1)C(n,k—1), (14)
l=—L

where the SM(n,k) is, [1]: SM(n,k) =
S P()STFT(n, k + )STFT*(n,k — 1),
and C(n, k) = Y1, P(1)Cyp(n, k+1)Ci(n, k—
[). Note that the window P(I) will remove all
cross-terms if the size of window is less than
the minimal distance between auto-terms.
Example: Consider a multicomponent signal
in the form:

Ji(t) — ej~(3‘cos(7rt)+2/3‘cos(57rt)—6.57rt)+

+ej‘(4‘cos(O.57Tt)+3/2‘cos(O.57Tt)+1/2‘cos(57rt)+8.57rt)

(15)
where t€[-1,1] and v(t) is complex Gaussian
white noise with o, = 0.175 (the SNR is 15
dB, and is lower than the SNR considered in
[15] for multicomponent signals). The signal is
sampled at A/t =1/64, and L=5 is used. For
the calculation of the concentration functions
c;,P (n,m) and c;p (n,m) the signal is oversam-
pled by a factor N /2.

The results obtained for MGCD with N=2,
4, and 6 are given in Fig 1. Note that for

(10)

¢, (nym)g = 2 R ka(n)(wry)* exp (jw,»pangle(

’

S STET (1, + kg (n))ed = (wrp i, ) R0

ZKV&/Q STFT(n,k + k‘q(n))ej(mr(wrp +J’wip)%)k)
Zﬁ/&/q STFT(TL’ k + kq (n))ej(”—(wTP +]w1p)%)k

(11)

G

L (n,m)g = 2R R )" e (jwip log

Zivﬁvq STFET(n, k + ky(n))e! " (wrp+iwi, ) {)k

) |

(12)
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A — d‘} i1mé 4

Fig. 1. a) MGCD, N=2 (Wigner distribution), b)
MGCD, N=4, ¢) MGCD, N=6, d) exact IF (blue
line) and estimated IF (red line) from MGCD with
N=6

the considered signal, the MGCD with N=6
(Fig 1.c) produces significantly higher auto-
terms concentration than the MGCD with
N=4, while the Wigner distribution (Fig 1.a)
is useless for the IF estimation. The exact IF
and IF estimated from the MGCD with N=6
are given in Fig 1.d.

IV. CONCLUSION

The time-frequency generalized complex-lag
distribution is modified. The introduced mod-
ifications lead to the general form of cross-
terms free highly concentrated distribution
that can be successfully used for estimation of
the fast varying IF of multicomponent signals.
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(5]

(8]

REFERENCES

Stankovi¢ , LJ. “Multitime Definition of the
Wigner Higher Order Distribution: L-Wigner
Distribution,” IEEE Signal Processing Letters,
1994, 1, (7), pp.106-109

Boashash, B., and Ristic, B. “Polynomial time-
frequency distributions and time-varying higher
order spectra: Application to the analysis of mul-
ticomponent FM signals and to the treatment of
multiplicative noise,” Signal Processing, 1998, 67,
(1), pp.1-23

Barkat, B., and Boashash, B. “Design of higher-
order polynomial Wigner-Ville distributions”,
IEEE Trans. on Signal Process, 47, (9), pp.2608-
2611

Stankovi¢ , S., and Stankovi¢ , LJ. “Introducing
Time-Frequency Distribution with a “Complex-
Time” Agrument,” FElectronics Letters, 1996, 32,
(14), pp.1265-1267

Stankovi¢ , LJ. “Time-Frequency distributions
with complex argument,” IEEE Trans. on Signal
Processing, 2002, 50, (3), pp.475-486

Morelande, M., Senadji, B., and Boashash, B.
“Complex-lag polynomial Wigner-Ville distribu-
tion,” Proc. of IEEE Speech and Image Tech-
nologies for Computing and Telecom., Dec. 1997.
Vol.1, pp.43-46,

Viswanath, G., and Sreenivas, T.V. “IF estima-
tion using higher order TFRs,” Signal Processing,
2002, 82, (2), pp.127-132

Cornu, C., Stankovi¢ , S., Ioana, C., Quinquis,
A., Stankovi¢ , LJ. “Generalized Representation
Derivatives for Regular Signals,” IEEE Trans. on
Signal Processing, 2007, 55, (10), pp.4831-4838



