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A Class of Highly Concentrated
Time—Frequency Distributions Based on
the Ambiguity Domain Representation

and Complex-lag Moment
Irena Orovíc, Srdjan Stanković

Abstract– A class of time-frequency distrib-

utions with complex-lag argument is proposed.

It is based on the ambiguity domain represen-

tations of real and complex lag moment, com-

bined to provide a cross-terms free representa-

tion for multicomponent signals. Furthermore,

the distributions from the proposed class pro-

vide a more effective instantaneous frequency

estimation for signals with fast varying phase

function than the existing approach. The the-

ory is illustrated by the examples.

I. I������	�
��

In order to provide an efficient instanta-
neous frequency estimation for nonstationary
signals, the time-frequency analysis has at-
tracted the attention of many researchers. De-
pending on the applications, various time-
frequency distributions have been proposed.
Among them, commonly used are quadratic
distributions from the Cohen class [1], [2]. It
is well-known that the Wigner distribution, for
example, provides an ideal concentration along
the linear instantaneous frequency. However,
it suffers from cross-terms in the case of mul-
ticomponent signals. Also, for nonlinear in-
stantaneous frequency, the inner interferences
appear. Thus, for the analysis of signals with
varying instantaneous frequency, higher order
distributions are used [3]-[7]. Also, some inter-
esting methods based on neural networks [8],
[9], sparsity constraint of energy distribution
[10] and autoregressive moving-average models
[11] have been recently introduced to improve
the resolution in the time-frequency domain.

In order to provide an accurate instanta-
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neous frequency estimation even when the sig-
nal phase varies significantly within a few sig-
nal samples, the distributions with complex-
lag argument have been introduced [12]-[15].
However, it is still difficult to deal with cross-
terms in the case of multicomponent signals.
The problem may also appear in the numeri-
cal calculation of the analytic extension that
is used to obtain signal with complex-valued
argument. It might affect the precision of in-
stantaneous frequency estimation. A solution
for multicomponent signals has been proposed
in [16]. Namely, the N th order complex-lag
distribution is obtained by convolving the S-
method with the concentration function (of or-
der N -2) in the time-frequency plane. This ap-
proach introduces significant approximations
that cause additional complexity in the numer-
ical realization.

In this paper we propose a new class of
time-frequency distributions whose members
can provide an efficient estimation of fast vary-
ing instantaneous frequency for multicompo-
nent signals. This concept is established in
the ambiguity domain and it can be seen as
a more effective counterpart of the method in
[16]. Starting from the definition of the gener-
alized complex-lag time-frequency distribution
[15], two ambiguity domain representations are
defined. The first one is related to the signal
with real-valued argument and corresponds to
the standard ambiguity function. The sec-
ond one is related to the signal terms with
complex-valued argument. In order to obtain
a highly concentrated representation, free of
cross-terms, inner-interferences and other dis-
turbances, the two ambiguity domain repre-
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sentations are filtered by using the suitable
kernel function. Afterwards, the resulting gen-
eralized ambiguity domain representation is
obtained by performing 2D convolution within
the ambiguity domain. A new form of the N th
order complex-lag time-frequency distribution
follows as a two-dimensional inverse Fourier
transform of the proposed ambiguity domain
representation. More generally, by consider-
ing various existing kernels, the entire class of
complex-lag distributions is defined. Thus, in-
stead of using the S-method as in [16], vari-
ous distributions from the Cohen class can be
used. The theoretical considerations are illus-
trated by the examples.
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The distribution with complex-lag argument
has been introduced to provide a highly con-
centrated representation along the instanta-
neous frequency for signals with fast varying
phase function. The complex time-frequency
distribution has been defined in the form [12]:

CTD(t, ω) =

=

∞∫

−∞

x(t+
τ

4
)x∗(t−

τ

4
)x−j(t+

τ

4
)xj(t−

τ

4
)e−jωτdτ.

(1)

This distribution satisfies a number of im-
portant properties [12], [13]: it is real-valued
(for x(t) = rejφ(t)), time-shift and frequency
shift covariant, satisfies marginal properties,
time-frequency scaling property, and so forth.
Also, it significantly reduces the spread factor
comparing to the quadratic distributions [12]
(meaning the concentration improvement):

Q(t, τ) = φ(5)(t)τ5/(445!) + φ(9)(t)τ9/(489!) +
.... Note that the dominant term within spread
factor Q(t, τ) is of the fifth order, while in the
case of Wigner distribution this term is of the
third order.

The values of signal with complex-lag argu-
ment x(t+ jτ) are calculated by using the an-

alytic extension of x(t) as follows:

x(t+ jτ) =

∞∫

−∞

X(ω)e−τωejωtdω, (2)

where X(ω) is the spectrum of x(t).
Further improvement of the concentration

in the time-frequency domain is obtained by
increasing the distribution order. Therefore,
the generalization of complex-lag distribution
for signals with fast varying instantaneous fre-
quency has been introduced [15], [16]:

GCD(t, ω) =

=

∞∫

−∞

x(t+
τ

N
)x∗(t−

τ

N
)Mc(t, τ)e

−jωτdτ, (3)

The complex—lag signal momentMc(t, τ) is de-
fined as [16]:

Mc(t, τ) =

=

N/2−1∏

k=1

xw
∗

N,k(t+
wN,k
N

τ)x−w
∗

N,k(t−
wN,k
N

τ),

(4)
where wN,k = ej2πk/N defines the roots on
the unit circle, while N is an even number
representing the distribution order. Observe
that the real-lag signal moment Mr(t, τ) =
x(t + τ/N)x∗(t − τ/N) leads to the Wigner
distribution (special case for N=2), while the
complex-lag moment represents the concen-
tration function whose number of terms de-
pends on the distribution order. Unlike the
Wigner distribution, the generalized complex-
lag time-frequency distribution of order N ≥ 4
provides an arbitrary high concentration even
when the variations of instantaneous frequency
are within a few samples. The spread factor is
given by:

Q(t, τ) = φ(N+1)(t)τN+1/(NN(N + 1)!)

+φ(2N+1)(t)τ2N+1/(N2N(2N + 1)!) + ... (5)

Thus, the distribution spread factor can be ar-
bitrarily reduced by the appropriate choice of
N.

Note that the generalized complex-lag time-
frequency distribution preserves the properties
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of the distribution defined by (1), which is a
special case for N=4. In the case N=6, the
complex roots wN,k on the unit circle are de-

fined as: w6,1 =
√
3
2 + 1

2 , w6,2 =
√
3
2 − 1

2 , and
the following form is obtained:

GCD(t, ω) =

∞∫

−∞

x(t+
τ

6
)x∗(t−

τ

6
)×

×xw
∗

6,1(t+w6,1
τ

6
)x−w

∗

1 (t−w6,1
τ

6
)×

×xw
∗

6,2(t+w6,2
τ
6 )x

−w∗
6,2(t−w6,2

τ
6 )e

−jωτdτ.
(6)

Although the generalized complex-lag time-
frequency distribution represents an efficient
tool for the instantaneous frequency analy-
sis, the presence of cross-terms in the case of
multicomponent signals is still a challenging
problem. In this case, the significant approx-
imations are needed [16], which consequently
affect the properties of the distribution (e.g.
marginal properties are satisfied only when a
single component is observed). An additional
problem appears in the numerical realization,
which is again especially emphasized for mul-
ticomponent signals. Namely, in the calcula-
tion of signal with complex-lag argument, the
real exponential function e−τω assumes large
values as τ increases, leading to the serious
miscalculations due to the software precision
range. These calculation errors affect the ac-
curacy of the instantaneous frequency estima-
tion, especially in the case of rapid phase vari-
ations when larger N is preferred.
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A. Ambiguity domain representations of real

and complex-lag moment

In order to overcome the difficulties in the
case of multicomponent signals, the idea is
to use the advantages of the ambiguity do-
main, not only to provide cross-terms free
time-frequency representation, but also to effi-
ciently remove disturbances caused by the mis-
calculation of analytic extension. Moreover,

the complex-lag distribution in [16] will be ex-
tended to a class of complex-lag distributions.
In this sense, the proposed approach aims to
keep good properties of Cohen class distrib-
utions within a class of complex-lag distribu-
tions.

The ambiguity function related to the real-
lag moment can be written as:

AFrt(θ, τ) =

∞∫

−∞

Mr(t, τ)e
−jθtdt =

=

∞∫

−∞

x(t+
τ

N
)x∗(t−

τ

N
)e−jθtdt. (7)

It corresponds to the standard ambiguity
function: AFrt(θ, τ) = AF (θ, 2τ/N), with the
auto-terms located around the origin, while
the cross-terms, in the case of multicomponent
signals, are dislocated from the auto-terms.

In analogy with (7), we can also define
the ambiguity domain representation of the
complex-lag moment Mc(t, τ) as follows:

AFct(θ, τ) =

∞∫

−∞

Mc(t, τ)e
−jθtdt =

=

∞∫

−∞

N/2−1∏

k=1

xw
∗

N,k(t+
wN,k
N

τ)

×x−w
∗

N,k(t−
wN,k
N

τ)e−jθtdt. (8)

The signal’s terms in (8) are obtained by us-
ing the analytic extension of x (t). In the case
of multicomponent signals it can be calculated
as follows:

x(t±
wN,k
N

τ) =
M∑

m=1

xm(t±
wN,k
N

τ) =

=
M∑

m=1

Wm∫

−Wm

STFT (t, ω + ωm(t))

×ej(ω+ωm(t))(t±wN,k
τ
N
)dω, (9)

where M is the number of signal components,
2Wm is the width of signal component, while

ωm(t) = arg
{
max
ω

STFT (t, ω)
}
. Note that



994 TIME-FREQUENCY SIGNAL ANALYSIS

during the computation of the analytic exten-
sion, the miscalculations may appear for large
values of ωτ , that should be filtered within the
AFct(θ, τ).

In order to remove cross-terms and mis-
calculation disturbances from the two pro-
posed ambiguity domain representations, a
kernel function C(θ, τ) is considered. The fil-
tered ambiguity domain representations are
obtained as:

AF c
rt
(θ, τ) = C(θ, τ)AF

rt
(θ, τ),

AF c
ct
(θ, τ) = C(θ, τ)AF

ct
(θ, τ).

(10)

Since AFrt(θ, τ) contains all information
about signal’s component, the kernel could be
adjusted to the auto-terms of AFrt(θ, τ), as in
the case of Cohen class derivation [17], [18].
Some of the signal independent kernels are
given in Table I. The commonly used fixed-
kernels have a number of desirable properties.
For example, time-shift and frequency shift
properties are satisfied, the realness is satisfied
if C (θ,τ)=C ∗(-θ,-τ), while the marginal prop-
erties: signal instantaneous power and power
density spectrum, are satisified if C (θ,0)=1
and C (0,τ)=1, respectively. One might ob-
serve, for instance, that the Choi-Williams,
Born-Jordan and Sinc kernel satisfy both mar-
ginal properties, unlike the Cone-kernel that
satisfies only the signal instantaneous power.
Generally, the properties of the distributions
from the proposed class will depend on the ker-
nel, as in the case of Cohen class distribution.

In many cases, the kernels show a pre-
ferred behavior in the time and/or the fre-
quency direction. The degree of cross-term
reduction depends on the way in which the
Wigner distribution is oriented in the time-
frequency plane. Usually, there is a trade-
off between cross-terms suppression and auto-
terms concentration [19], [20]. The cross-terms
attenuation in the case of multicomponent sig-
nals is highly sensitive to the relative time-
frequency location of interfering signal com-
ponents [21]. Namely, if signal components
occur either around the same time or around
the same frequency, the interference terms are
located around τ or θ axis. In this case, the
shape of fixed-kernels from Table I cannot pro-
vide removal of cross-terms without affecting

TABLE I

S��
 �� ��
 	������� ��
� �
��
��

Choi-

Williams

kernel

C(θ, τ) = e−θ
2τ2/σ, σ > 0

Born-

Jordan

kernel

C(θ, τ) = sin(θτ/2)
θτ/2

Cone-

kernel

C(θ, τ) = e−ατ
2 sin(θτ/2)

θτ/2

Sinc kernel C(θ, τ) = rect(θτ , α)

the auto-terms.
In the examples, we have also consid-

ered the fixed Gaussian kernel: C(θ, τ) =

e−(θ
2+τ2)/2σ2 . It satisfies marginal properties

only when a single component is observed.
However, the shape of this kernel provides the
efficient removal of interference terms, with-
out disturbing auto-terms in the ambiguity do-
main, as it will be shown later. Also, the dis-
turbances caused by the miscalculations of the
analytic extension in AFct(θ, τ) are eliminated
by using this kernel.

Note that various adaptive and signal de-
pendent kernels could also be successfully used
[20], [22]-[26], such as Radially Gaussian ker-
nel [22]. However, it is outside the scope of
this paper and could be a topic of the future
work.

B. Generalized ambiguity domain representa-

tion and the corresponding class of time-

frequency distributions

As it was discussed in the previous sec-
tion, in the case of highly nonstationary sig-
nals, the concentration of the Wigner distrib-
ution is improved by the concentration func-
tion within the complex-lag distribution. Sim-
ilarly, in the ambiguity domain, the AF c

ct(θ, τ)
(based on the complex-lag moment) acts as a
correction term that improves the concentra-
tion of auto-terms in AF c

rt(θ, τ). Thus, the
resulting ambiguity domain representation for
highly nonstationary signals can be obtained
as a two-dimensional convolution of ambiguity
functions AF c

rt(θ, τ) and AF c
ct(θ, τ). However,

when dealing with multicomponent signals, it
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is necessary to introduce an additional window
function to avoid new cross-terms that will
appear due to convolution. Thus, following
the analogy from the time-frequency domain,
where the concept of windowing the product in
convolution has been introduced to define the
S-method, that is, cross-terms free WD [27]:

SM(t, ω) =

=
1

π

∞∫

−∞

P (λ)STFT (t, w+λ)STFT (t, w−λ)dλ,

(11)
P (λ) is a frequency domain window, the re-
sulting cross terms free ambiguity domain rep-
resentation can be defined as:

AFCTD(θ, τ) =

=

∞∫

−∞

∞∫

−∞

∞∫

−∞

P (ξ)e−jξτ1ejξ(τ−τ1)×

×AF c
rt(θ1, τ1)AF

c
ct(θ − θ1, τ − τ1)dτ1dθ1dξ.

(12)
The cross terms will be completely avoided

if the size of the window P(ξ) is less than
the minimal distance between the auto-terms.
The exponential functions in (12) correspond
to the frequency shift in time-frequency do-
main. Based on the ambiguity domain repre-
sentation, the new class of complex-lag time-
frequency distributions is defined as follows:

GCDAF (t, ω) =

=
1

2π

∞∫

−∞

∞∫

−∞

AFCTD(θ, τ)e
jθt−jωτdτdθ.

(13)
Calculation complexity :

Observe that the proposed distribution for
N=2 corresponds to quadratic distributions
from the Cohen class. For higher order
N=4, 6, ..., the calculation complexity in-
creases due to the computation of complex-
lag ambiguity function AFct(θ, τ) (of order
N -2). Comparing with the Cohen class
distributions (e.g. Choi-Williams distribu-
tion), additional computations are related to
AFct(θ, τ) and resulting ambiguity function

(12). The calculation of AFct(θ, τ) involves:
calculation of signal with complex-lag argu-
ment (N -2 FFT routines (O(Ns(N -2)log2Ns)
operations for Ns samples within the win-
dow), M (N -2) IFFT routines by using 2Wm

samples (O(M (N -2)Wmlog22Wm) operations)
and Ns complex multiplications with exponen-
tial terms); calculation of complex-lag signal
moment ((N -3)Ns complex multiplications),
and FFT routine to obtain ambiguity func-
tion (O(Nslog2Ns)). Hence, the calculation of
AFct(θ, τ) function is O((N -2)Nslog2Ns).
Filtering with kernel function: AF c

ct
(θ, τ) =

C(θ, τ)AF
ct
(θ, τ) requires the same number

of arithmetic operations as AF c
rt
(θ, τ) =

C(θ, τ)AF
rt
(θ, τ), that is also used in the Co-

hen class distributions (e.g. Choi-Williams
distribution). The resulting ambiguity func-
tion is obtained as a correlation within the
window of length 2L+1 (Ns(2L+2) complex
multiplications and L·Ns complex additions
(O(Ns)). Assuming that the same circuit
could be used for filtering of real and complex-
lag ambiguity function, the proposed distrib-
ution for N ≥ 4 results in O((N -2)Nslog2Ns)
additional arithmetic operations compared to
the Choi-Williams distribution.

C. Group Delay

For the purpose of group delay analysis, the
frequency domain form of time-frequency dis-
tributions is used. Thus, in the sequel, the pro-
posed class of time-frequency distributions will
be considered in frequency domain, as well.

For a signal X(ω) = A(ω)ejϕ(ω), that rep-
resents the Fourier transform of x(t), the real
and complex-argument moments are defined as
follows:

Mr(ω, θ) = X(ω +
θ

N
)X∗(ω −

θ

N
),

Mc(ω, θ) =

N/2−1∏

k=1

Xw∗N,k(ω +
wN,k
N

θ)

×X−w∗

N,k(ω −
wN,k
N θ). (14)

Note that the signal with complex argument is
obtained as:

X(ω ±
wN,k
N

θ) =
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=
1

2π

∞∫

−∞

x(t)e∓jwN,kt/Ne−jωtdt =

= 1
2π

∞∫

−∞
x(t)e±bt/Ne−j(ω±a)tdt. (15)

wherewN,k = a+ jb

The corresponding ambiguity functions re-
lated to the real and complex-argument mo-
ment are given by:

AFrt(θ, τ) =
1
2π

∞∫

−∞
Mr(ω, θ)e

jωτdω

AFct(θ, τ) =
1
2π

∞∫

−∞
Mc(ω, θ)ejωτdω

. (16)

The resulting ambiguity function AFCTD(θ, τ)
and the corresponding class of complex-
argument time-frequency distributions are of
the same form given by (12) and (13), respec-
tively.

IV. E�����
�

Depending on the rate of the instanta-
neous frequency variations within the win-
dow, distributions of various orders should be
used. Namely, the spectrogram suffices for
a constant instantaneous frequency, while for
a linear instantaneous frequency one should
use quadratic distributions. However, for
faster variations of the instantaneous fre-
quency within the window such that the pres-
ence of its second derivative, (i.e. third phase
derivative) is significant, one should use the
complex-lag distribution with N=4. Further,
if the presence of the fifth phase derivative is
also significant, the order N=6 should be used,
etc. Having in mind physical properties of an
observed signal generating process, one may
have a rough idea about the rate of the IF
variations, which may be used for the choice
of an appropriate distribution order.

In the following examples, we deal with
highly nonstationary multicomponent signals
whose instantaneous frequency varies signifi-
cantly within a few samples. They are period-
ically modulated and, in real cases, correspond
to the radar signals generated by nonuniform
rotation of reflecting point.

Example1 : Consider the multicomponent sig-
nal in the form given at the bottom of the page.

x(t) = exp(j · (cos(4 · π · t) + 2/3 cos(6 · π · t)

+1/2 · cos(π · t) + 7.5 · π · t))+

+exp(j · 2 · (cos(π · t) + 1/2 · cos(4 · π · t)

+1/4 · cos(2 · π · t)− 9.5 · π · t)). (17)

The time interval t ∈ [−1, 1], with the sam-
pling rate ∆t = 2/128 is used. Since the
instantaneous frequency variations are very
fast, the quadratic distributions (N=2) are
useless for its estimation. As an illustration,
the Wigner distribution is given in Figure 1.a,
while its smoothed and filtered version is given
in Figure 1.b. Thus, in order to improve the
results, the fourth order distributions from
the proposed class (GCDAF (t, ω)for N=4) are
considered. The results obtained by using the
Choi-Williams kernel, the Born-Jordan kernel,
Sinc kernel and Gaussian kernel (σ = 10) are
shown in Figure 1.c - Figure 1.f, respectively.
Observe that the Gaussian kernel provides the
efficient preservation of auto-terms concentra-
tion, in addition to cross-terms suppression,
and thus, provides slightly better results com-
pared to other cases.

Additionally, the mean square errors (MSE)
are calculated as a quantitative measure for
comparison, as follows:

MSE =
1

N

N−1∑

n=0

{[
f(n)− f(n)

]2}
, (18)

where f(n) represents the true instantaneous
frequency while f(n) is the estimated instan-
taneous frequency by using the time-frequency
distributions (TFD):

f(n) = max
m

TFD(n,m). (19)

The MSE of IF estimations are shown in Ta-
ble II for the following distributions: the Choi-
Williams distribution, the smoothed pseudo
Wigner distribution (these are special cases
of GCDAF for N=2), and GCDAF (N=4)
with: Choi-Williams kernel, Sinc kernel, Born-
Jordan kernel, and Gaussian kernel. Note that
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TABLE II

MSE �� ��
 
� 
��
���
��

DISTRIBUTION MSE

Choi-Williams distribution 47
GCDAF for N=2, i.e. Wigner distr. smoothed with Gaussian kernel 24

GCDAF for N=4, Choi-Williams kernel 11.9
GCDAF for N=4, Sinc kernel 12.3

GCDAF for N=4, Born-Jordan kernel 13.16
GCDAF for N=4, Gaussian kernel 9.5

Fig. 1. a) Wigner distribution, b) Wigner distrib-
ution with Gaussian kernel, c) GCDAF (N=4)
with Choi-Williams kernel, d) GCDAF (N=4)
with Born-Jordan kernel, e) GCDAF (N=4) with
Sinc kernel, f) GCDAF (N=4) with Gaussian ker-
nel

the GCDAF (N=4) with Gaussian kernel pro-
vides the lowest MSE.

Furthermore, the considered signal x (t) is
corrupted by the white Gaussian noise and the
MSE of IF estimation is calculated in the pres-
ence of noise, as well. Several signal to noise
ratios (SNR) are considered: SNR=30dB,
SNR=20dB, SNR=10dB and SNR=5dB. The
results are given in Table III, forGCDAF

with N=4 (Gaussian kernel), compared with
the results for Choi-Williams distribution.
Observe that for SNR<10dB, the MSE for
GCDAF (t, ω) becomes significant.

Example2 : In order to illustrate the improve-
ment of the distribution concentration by in-
creasing distribution order N, we consider a
multicomponent signal given by eq. 20.

The instantaneous frequency nonstationarity
is enhanced in comparison with the previous
example. The quadratic distribution (GCDAF

for N=2), obtained by using Gaussian kernel
is shown in Figure 2.a. The fourth (N=4) and
sixth (N=6) order distributions from the pro-
posed class are shown in Figure 2.b and Figure
2.c, respectively (the same Gaussian kernel is
used). It is obvious that the quadratic dis-
tribution does not follow the variations of in-
stantaneous frequency. The results are quite
improved for N=4. Further improvement is
achieved by using the sixth order distribution
(GCDAF for N=6), that provides a very good
representation of signal, producing higher con-
centration compared to the case N=4. Also,
the inner interferences disappear. The exact

y(t) = exp(j · (3 cos(π · t) + 2/3 cos(7 · π · t) + 11.5 · π · t))+
+exp(2 · j · (cos(π · t) + 1/4 cos(2 · π · t) + 1/2 · cos(6 · π · t)− 8.5 · π · t));

(20)
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TABLE III

MSE �� ��
 
� 
��
���
�� 
� ��
 ��
�
��
 �� ��
�


Distribution SNR=30dB SNR=20dB SNR=10dB SNR=5dB
GCDAF (t, ω), N=4 10.49 13.01 18.15 29.75
Choi-Williams distr. 48.4 73.85 81.54 123.14

Fig. 2. The complex time-frequency distributions
from the proposed class for: a) N=2; b) N=4; c)
N=6; d) the exact instantaneous frequency (blue
line) and estimated instantaneous frequency from
GCDAF , N=6

and estimated instantaneous frequency (from
GCDAF for N=6) are given in Figure 2.d.
Example 3 : In the previous examples, we

have considered signals whose components in-
tersect in time domain. The analysis within
the time-frequency plane becomes more com-
plicated if signal components intersect in both
time and frequency directions. Let us consider
one such signal given by eq. 21.

The Choi-Williams and Wigner distribu-
tion smoothed by using Gaussian kernel are
shown in Figure 3.a. and Figure 3.b, re-
spectively. The fourth (GCDAF for N=4) or-
der distributions from the proposed class are
calculated by using the Choi-Williams ker-
nel (Figure 3.c) and the Gaussian kernel (Fig
3.d), respectively. Note that GCDAF for N=4
with Gaussian kernel performs better than the

Fig. 3. a) Choi-Williams distribution; b) GCDAF ,
N=2 (smoothed pseudo Wigner distribution); c)
GCDAF , N=4 with Choi-Williams kernel; d)
GCDAF , N=4 with Gaussian kernel

other considered distributions. The only prob-
lem in the IF estimation may appear at the
cross-point of signal components.

Example 4 : An additional test case is con-
sidered with a real multicomponent flute signal
composed of several components, with nonlin-
ear variations of the instantaneous frequency
within the window. The results for Wigner
distribution (N=2) smoothed with Gaussian
kernel and GCDAF for N=4 are presented in
Figure 4.a and Figure 4.b, respectively. Note
that the GCDAF with N=4, provides signifi-
cant improvements in the analysis of fast vary-
ing signal harmonics. Note that for quasi-
stationary signals (such as speech), with mi-

z(t) = cos(j · (9 cos(π · t) + 2/3 cos(3 · π · t) + 5/7 cos(5 · π · t))); (21)
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Fig. 4. a) Wigner distribution with Gaussian kernel
and its zoomed region; b) GCDAF , N=4, for real
flute signal and its zoomed region

nor variations of the instantaneous frequency
within the window, the quadratic distributions
provide sufficiently good results [28].

V. C��	���
��

A class of time-frequency distributions with
complex-lag argument, that provides arbitrary
high concentration for multicomponent sig-
nals with fast varying instantaneous frequency,
is proposed. It is based on new general
form of ambiguity domain representation with
complex-lag argument. Some of the existing
fixed kernels are considered in the examples. It
has been shown that the Gaussian smoothing
kernel with low-pass characteristics provides
very successful results. Future work could in-
clude the use of adaptable and signal depen-
dent kernels.
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