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Time-Frequency Rate Distributions
with Complex-lag Argument

Srdjan Stanković , Irena Orovíc

Abstract– A general form of the N th order
complex-lag time-frequency rate distribution is
proposed. A few interesting special cases are
considered and analyzed. The proposed ap-
proach can arbitrarily reduce the spread fac-
tor. Hence, it provides a high concentration
even for signals with fast varying instantaneous
frequency rate.

I. INTRODUCTION

The instantaneous frequency rate (IFR) is
defined as the second derivative of a signal
phase. It can be useful in different practi-
cal applications such as radar, communica-
tions and video surveillance [1], [2]. One of the
commonly used time-frequency rate represen-
tations is the O’Shea distribution [3]. Also, an
IFR estimator for high-order polynomial phase
signals has been proposed in [4], [5].
In this Letter we propose a general form of
complex-lag time-frequency rate distribution
for the IFR estimation. The concept of the
complex-lag argument has been introduced
to provide highly concentrated time-frequency
distributions [6]-[8]. To provide an arbitrary
high concentration along the IFR, this con-
cept is extended here to the time-frequency
rate representations. The special cases of the
proposed general form are considered, as well.
It has been shown that, owing to the reduced
spread factor, they can be efficiently used for
the IFR estimation of frequency modulated
signals with fast varying IFR.

II. T
��
�

The derivatives of a holomorphic function
f, defined on the closed disc, are obtained by
using the integration over boundary circle C
of the disc as follows:

fK(t) =
K!

2πj

∫

C

f(z)

(z − t)K+1
dz. (1)
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Furthermore, we assume that C is centered
at the instant t and z = t + τejθ, where τ
is the radius of circle and θ ∈ [0, 2π]. When
f (t)=ϕ(t) and K=2, the IFR is obtained as
[7]:

Ω(t) = ϕ(2)(t) =
2!

2πτ2

2π∫

0

ϕ(t+ τejθ)e−2jθdθ

(2)
where ϕ(t) is a phase of a signal x(t) = r·ejϕ(t).
The discretization o f (2) leads to the following
form:

ϕ(2)(t)τ2

2!
=
N−1∑

k=0

ϕ(t+
τ

N
ej2πk/N)e2(−j2πk/N)

(3)
Having in mind (3), the N th order complex-

lag signal moment can be defined by:

Rx(t,
√
τ) =

=
N−1∏

k=0

(

x

(

t+

√
2!

N
τej2πk/N

))e2(−j2πk/N)

(4)
Thus, the time-frequency rate distribution

is:

TFR(t,Ω) =

∞∫

0

Rx(t,
√
τ)e−jΩτdτ

=

∞∫

0

Rx(t, τ)e
−jΩτ2dτ. (5)
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The IFR estimation accuracy depends on
the number and the choice of points used
in discretization of (2). Thus, let us start
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with the simplest case based on two arbi-
trary points symmetrical around t : τ/(a+ jb)
andτ/(−a − jb). The corresponding form of
the second order time-frequency rate distribu-
tion can be defined as:

TFRN=2(t,Ω) =

=

∞∫

0

(
x

(
t+

τ

(a+ jb)

)

× x
(
t+

τ

(−a− jb)

))(a+jb)2
e−jΩτ

2

dτ. (6)

Owing to the symmetry of points, the phase of
the complex-lag signal moment does not con-
tain odd phase derivatives:

ϕR(t, τ) = 2(a+ jb)
2ϕ(t)+

+ϕ(2)(t)τ2 + 2ϕ(4)(t)
τ4

4!(a+ jb)2
+ ... (7)

The spread factor (terms with derivatives dif-
ferent from ϕ(2)(t)) can be reduced by appro-
priate selection of parameters a and b. Fur-
thermore, the concentration can be arbitrar-
ily improved by increasing the number of dis-
cretization points, i.e., the distribution order.
Therefore, by using N /2 pairs of symmetrical
points τ/(ai+ jbi) andτ/(−ai−jbi), a general
form of the N th order time-frequency rate dis-
tribution can be defined as:

TFRN(t,Ω) =

=

∞∫

0

N/2∏

i=1

(

x

(

t+

√
2

N

τ

(ai + jbi)

)

× x

(

t−
√
2

N

τ

(ai + jbi)

))(ai+jbi)2

e−jΩτ
2

dτ.

(8)
The signal terms with complex-lag argument
can be generally calculated as:

x(t± (u+ jv)τ) =

=
1

2π

∞∫

−∞

X(ω)e∓ωvτejω(t±uτ)dω (9)

Some special cases of (8), that could be in-
teresting for practical applications, are ana-
lyzed in the following.
Case 1: For N=2 and (a,b)=(1,0), the O’Shea
distribution is obtained:

TFRN=2(t,Ω) =

∞∫

0

x(t+ τ)x(t− τ)e−jΩt
2

dτ.

(10)
The spread factor for the O’Shea distribution
is obtained as:

Q(t, τ) = 2
ϕ(4)(t)τ4

4!
+2
ϕ(6)(t)τ6

6!
+2
ϕ(8)(t)τ8

8!
...

(11)
Thus, regarding the time-frequency rate con-
centration, this distribution form can be effi-
ciently used for signals whose phase has deriva-
tives up to the fourth order. Case 2: The con-
centration along the IFR for signals with fast
IFR variations can be significantly improved
by increasing the distribution order. Thus, for
N=4 and (a1,b1,a2,b2)=(1,0,0,1), the fourth
order time-frequency rate distribution is de-
fined [7]. The spread factor is significantly re-
duced in comparison with the previous case,
since it contains only the phase derivatives of
order 4n+2, n = 1,2,.... However, it is inter-
esting that the concentration improvement can
be achieved even without increasing the distri-
bution order. Hence, we may observe the fol-
lowing case: N=2 and (a,b)=(0,1/j

√
j). The

corresponding signal moment is:

Rx(t, τ) = Ae
jϕR(t,τ) = xj(t+

√
jτ)xj(t−

√
jτ)

(12)
The moment phase function contains the fol-
lowing derivatives:

ϕR(t, τ) = j2ϕ(t) + ϕ
(2)(t)τ2 − j2

ϕ(4)(t)τ4

4!
...

(13)
To focus on the second order derivative and
to eliminate the influence of some higher or-
der derivatives such as ϕ(4)(τ), the following
modification is introduced:

Rax(t, τ) = e
angle(xj(t+

√
jτ)xj(t−

√
jτ)). (14)

Therefore, the highly concentrated second or-
der time-frequency rate representation is ob-
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Fig. 1. Time-frequency rate representations: a) TFRN=2, b) TFRN=2a , c) TFRN=2
a,L=2

TABLE I

MSE� �� IFR ���������� #
�������

TFR TFRN=2(CP) TFRN=2a TFRN=2a,L=2

MSE 390 10 4.4

tained as:

TFRN=2a (t,Ω) =

∞∫

0

Rax(t, τ)e
−jΩτ2dτ. (15)

The spread factor contains only the deriva-
tives of order 4n+2, as in the case of the fourth
order distribution (N=4):

Q(t, τ) = −2
ϕ(6)(t)τ6

6!

+2
ϕ(10)(t)τ10

10!
− 2

ϕ(14)(t)τ14

14!
... (16)

Further concentration improvement can be
achieved by using the higher order distribu-
tions (N≥6) or by using L-form of the distri-
bution (15).
Case 3 : The L-form of time-frequency rate
distribution can be defined as:

TFRNL (t,Ω) =

=

∞∫

−∞

P (η)(TFRNL/2(t,Ω+ η)

×TFRNL/2(t,Ω− η))dη. (17)

where TFRN1 corresponds to the basic distri-
bution form.

IV. N���
���� E%��#��

A periodically frequency modulated signal
with fast varying phase function is considered:

s(t) = ej(4 cos(2πt)+1/3 cos(3πt)+2/3 cos(6πt)).

The signal is calculated for t=-1:∆t:1-∆t,
where ∆t=2/N, while N=128. The distribu-
tions: TFRN=2 (Case 1), TFRN=2a (Case 2),
TFRN=2a,L=2 (Case 3, the L-form of TFRN=2a )
are illustrated in Figs. 1.a-c, respectively.
Note that for the considered signal, the O’Shea
distribution cannot properly follow the IFR
variations and does not provide satisfactory re-
sults. Significant improvement is achieved by
using the same order distribution TFRN=2a .
Further improvement is achieved by using its
L-form TFRN=2a,L=2. Mean square errors (MSE)
of the IFR estimation are given in Table 1.

V. C���������

The general form of complex-lag time-
frequency rate distribution is proposed. As a
special case, the second order optimal distribu-
tion is presented. Future research may include
similar optimization for higher orders.
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