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Robust DFT-based filtering of pulse-like
FM signals corrupted by impulsive noise

Igor Djurovíc and Vladimir V. Lukin

Abstract– Filtering of pulse-like FM signals

with varying amplitude corrupted by impulse

noise is considered. The robust DFT calcu-

lated for overlapped intervals is used for this

aim. This technique is proposed in order to

decrease amplitude distortion of output signals

that can be introduced by the robust DFT cal-

culated within a wide interval including pos-

sible zero-output. The proposed algorithm is

realized through the following steps. In the

first stage, the robust DFT is calculated for

the intervals. Filtered signals from the inter-

vals are obtained by applying the standard in-

verse DFT for the robust DFTs applied to in-

put data. In the second stage, results for dif-

ferent overlapped intervals are combined using

the appropriate order statistics. In addition,

an algorithm inspired by the intersection of the

confidence intervals rule is used for adaptive se-

lection of the interval width in the robust DFT.

Algorithm accuracy is tested on numerical ex-

amples. Computational complexity analysis is

also provided.

I. I������	�
��

Problem of filtering of pulse-like frequency
modulated (FM) signals, corrupted by im-
pulsive noise, is considered in this paper.
These signals can be expressed by x(n) =
A(n) exp(jφ(n)), where A(n) and φ(n) are sig-
nal amplitude and phase, respectively. Partic-
ularly important classes of signals that could
have such properties are: speech and old au-
dio recordings [1], radar signals [2], and sig-
nals from computer networks [3], etc. Stan-
dard robust filters, such as the median filter
and its variants [3]- [6], are lowpass and they
can remove high frequency content from sig-
nals. The robust DFT filters proposed in [7]
are designed for signals with a constant ampli-
tude A(n) = A and they can introduce distor-
tion of amplitude in the case of signals with
relatively fast variations of the signal ampli-
tude.
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Two strategies for filtering FM signals cor-
rupted by an impulse noise are proposed re-
cently:
• filtering in time domain using the weighted
myriad/median filters admitting negative
weights [8]- [11];
• filtering in spectral domain using the robust
DFT forms [12], [13].

Both groups are developed according to the
fundamental concepts of robust statistics in-
troduced by Huber [14], [15]. It has been
shown in [7] that these two groups of tech-
niques produce results of the same order of
accuracy in signal filtering. The weighted me-
dian/myriad filters admitting negative weights
require iterative or learning procedures for de-
termination of weights that could be relatively
complex. Also, these techniques require some
kind of knowledge about a signal shape and
characteristics of noise environment. However,
application of the robust DFT is straightfor-
ward, since determination of the filter parame-
ters does not require a complicated procedure.

For pulse-like FM signals, the robust DFT
applied to entire observation, as it is done con-
ventionally [7], could treat some signal sam-
ples as outliers and produce distorted ampli-
tude or even zero-output. Here we propose
segmentation of a signal into overlapped or
non-overlapped intervals (segments) and ap-
plication of the robust DFT filtering technique
on intervals. In the case of non-overlapped in-
tervals, output of the resulting filter is equal
to outputs of filters calculated for the corre-
sponding intervals. Since the main problem
in the case of shorter intervals could be resid-
ual noise, we propose that in the case of over-
lapped intervals the output of the filter can be
obtained on the basis of order statistics (me-
dian or L-filter form) [16].

A particular by interesting issue is adaptive
determination of interval length in the robust
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DFT for the considered class of signals. Our
goal is to design a robust filter in such a man-
ner that for an interval where there is no sig-
nal, or signal has a constant or almost constant
amplitude, the interval is selected as wide as
possible in order to reduce the noise influence.
However, for rapidly varying signal amplitude
region we would like to select a relatively small
interval in order to preserve signal amplitude
and other details. In this technique we filter
signals with the robust DFT applied to non-
overlapped intervals (extension to the over-
lapped intervals is straightforward). The in-
tersection of the confidence interval (ICI) rule,
recently proposed by Katkovnik and his co-
workers, is used here for this application [17]-
[19]. The ICI algorithm produces a trade-off
between noise influence and distortion of sig-
nal amplitude.

The paper is organized as follows. Review
of the robust DFT is given in Section II with
a highlighted problem that appears in the case
of signals with relatively short duration. The
proposed technique for filtering based on the
robust DFT applied on intervals is presented in
Section III. Computational complexity study
with a brief analysis of the achieved accuracy
is also given in this section. Examples and
simulation results with both overlapped and
non-overlapped intervals are given in Section
IV. An adaptive algorithm that selects interval
width according to the ICI rule is proposed
in Section V, with examples demonstrating its
accuracy.

II. R���
� DFT - A� �����
��

A. Common robust DFT forms

The standard DFT is defined as:

X(k) =
1

N

N−1∑

n=0

x(n)W kn
N

= mean{x(n)W kn
N |n ∈ [0, N)} (1)

where WN = exp(−j2π/N). This and other
linear techniques are sensitive to the impulse
noise influence [4]. In order to handle an in-
fluence of impulse noise, several robust DFT
forms have been proposed [12], [20] - [22].
Here, we will consider the marginal-median

DFT presented in [21]. It belongs to a wider
class of the L-DFT forms defined as [22]:

Xα(k) =
N−1∑

i=0

ai[rk(i) + jik(i)], (2)

rk(i) ≤ rk(i+ 1) ik(i) ≤ ik(i+ 1)

where rk(i) and ik(i) are sorted elements from
the sets:

rk(i) ∈ {Re{x(n)W kn
N |}|n ∈ [0, N)}

ik(i) ∈ {Im{x(n)W
kn
N |}|n ∈ [0, N)}. (3)

The weighting coefficients can be selected as:

ai =

{
1/N(1− 2a) i ∈ [aN,N − aN)

0 elsewhere
(4)

where a ∈ [0, 0.5]. The L-DFT with coef-
ficients (4) is commonly referred to as the
α−trimmed DFT. For a = 0 the standard
DFT follows, with exact spectral estimation
for noiseless signal and ML estimate for signals
corrupted by Gaussian noise. The marginal-
median DFT form follows for a = 0.5 − 1/N .
It is robust to the impulse noise influence but
it is calculated by using just two modulated
signal samples causing the spectral distortion
effect. Then we can expect that there is the
L-DFT (or α−trimmed mean DFT) form that
produces a trade-off between the noise influ-
ence and spectral distortion effects. Several
procedures for designing adaptive L-DFT (and
adaptive myriad DFT) forms are proposed in
[22], [23]. Since design of the optimal L-DFT
is not the main goal of this paper, we will con-
sider the marginal-median DFT form but we
note that the procedures similar to the ones
from these papers could be applied to any
adaptive or non-adaptive robust DFT forms
(both L-filter and myriad). Signal denoising
based on the robust DFT can be performed as
[7]:

f̂(n) =
N−1∑

k=0

Xα(k)W
−kn
N . (5)

B. Drawback of the L-DFT forms

In order to describe the drawback of the
considered robust techniques (in particular L-
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DFT forms) we consider the following signal:

x(n) =

{
e(jω0n) n ∈ [N2 −

K
2 ,

N
2 + K

2 ]
0 elsewhere

(6)
where K < N/2 and N is the number of
samples used to evaluate of the DFT. A set
of real values of the modulated signal sam-
ples {Re{x(n)W kn

N |}|n ∈ [0,N)} (similar sit-
uation holds for imaginary parts) has at most
(2K + 1) < N nonzero samples. The remain-
ing N − (2K + 1) samples would be equal to
zero and these samples are positioned between
positive and negative elements in the sorted
sequence with significant probability that the
median and other close samples in the sorted
sequence (which is assumed to be noise-free)
be equal or close to zero and producing zero-
output almost everywhere, i.e., output with
distorted amplitude. A situation becomes even
worse in the case of signals with a smaller
number of non-zero samples. Then, instead
of significant benefit (removing impulse noise),
we get a zero output, i.e., filter performs ab-
solutely incorrectly. This kind of problem is
very important since some of the most impor-
tant potential applications of the robust DFTs
are filtering of old audio records [1] and radar
signal processing [2], where signal components
that may have abrupt appearance and/or dis-
appearance can take place.

Example. In order to demonstrate de-
scribed filtering problem we considered two
signals:

fi(t) = exp(j32πt− bit
2), (7)

where i = 1, 2 and b1 = 6 and b2 = 24. Our
signal is considered within t ∈ [−1, 1) and sam-
pled with the rate of ∆t = 1/512 (1024 sam-
ples in total). Output of the robust DFT-
based filters for noiseless signals is given in
Figs. 1 and 2. For the first signal with b1 = 6,
it can be seen that the marginal-median form
produces distorted signal amplitude. By de-
creasing a we are achieving a gradual im-
provement in representing signal amplitude.
However, results that have distorted samples
around the maximum of magnitude, t = 0,
are obtained even for a = 1/8. Situation is
worsened in the case of a signal with narrower

component having high amplitude (b1 = 24),
where all L-DFT forms produce significantly
distorted outputs (see Fig. 2). It is worth to
note that the decrease of a increases the noise
influence and that the reducing of a would not
improve results for noise environment. There-
fore, reducing a in order to remove spectral
distortion effect is not a reasonable solution
for signals corrupted by an impulse noise. A
technique for handling this issue based on the
segmentation of the signal in non-overlapped
or overlapped regions will be described in the
next section.

III. P����
�� �
����
�� ��	��
���

A. Intervals

In order to overcome problems arising in the
case of signals with fast variations in the signal
amplitude, consider a signal x(n) segmented
into intervals. Non-overlapped intervals can
be written as:

xi(n) = x(n+ iN/Q), (8)

i ∈ [0, Q), n ∈ [0, N/Q)

where Q is a number of intervals, and N/Q is
assumed to be an integer. Alternatively, over-
lapped intervals can be written as:

xi(n) = x(n+ iδN/Q), (9)

i ∈ [0, Q/δ), n ∈ [0, N/Q)

where δ ∈ (0, 1] is a measure of intervals’ over-
lap. For δ = 1 intervals are non-overlapping,
while with δ < 1 the intervals overlap. Over-
lapping intervals with two different values of δ
are shown in Fig. 3. Note that dividing sig-
nals into intervals and obtaining spectral esti-
mation from these intervals is a common tech-
nique in spectral analysis [24], [25], DCT based
denoising [26], etc.

Our idea is to perform filtering in narrow in-
tervals by the robust DFT. For narrow inter-
vals it can be expected that the amplitude dis-
tortion will be small since, as predicted, within
such intervals the observed variations in the
amplitude are smaller than in the wider inter-
val.

The proposed algorithm can be described as
follows.
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Fig. 1. Denoising of the signal exp(j32πt) exp(−6t2) by using: (a) marginal-median DFT; (b) α-trimmed mean
DFT with a = 3/8; (c) α-trimmed mean DFT with a = 1/4; (d) α-trimmed mean DFT with a = 1/8.
Dashed line - original signal; Solid line - filtered signal.

Step 1. Segmentation into intervals (8) or
(9).

Step 2. Calculation of the robust DFT for
intervals (any robust DFT form could be used;
here the marginal-median DFT will be ap-
plied) Xi(k), i ∈ [0, Q/δ).

Step 3. Calculation of the signal estimation
(filtered signal) for intervals by using the stan-
dard inverse DFT:

fi(n) = IDFT{Xi(k)}. (10)

Step 4. For non-overlapped intervals output
of the proposed filter can be calculated as:

f̂(n+iN/Q) = fi(n) i ∈ [0,Q), n ∈ [0, N/Q),
(11)

while for the overlapped intervals filtered sig-
nals fi(n) should be combined in some appro-
priate manner.

B. Combining the results from subintervals

We can establish the following relation be-
tween filtered signals from intervals fi(n) and

filtered signal f̂(n) for entire interval

f̂(n+ iδN/Q) = fi(n), (12)

i ∈ [0, Q/δ), n ∈ [0, N/Q).

However, for δ < 1 we can obtain several esti-
mates produced by various intervals for a sin-
gle instant. There are numerous schemes that
can be employed for this purpose. Since in our
application the main problem could be the re-
maining residual impulse noise, we decided to
apply the median estimate to produce the out-
put signal for a given instant. This can be done
for δ < 1/2 when we have more than two esti-
mates for each instant.

Three characteristic cases are depicted in
Fig. 3. In the first case (Fig. 3a) we have
Q = 4 non-overlapped intervals. In the sec-
ond one (Fig. 3b) we have Q = 4 and interval
overlapping with δ = 1/2, i.e., for each instant
we have two estimates produced by two differ-
ent intervals (for one particular instant these
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Fig. 2. Denoising of the signal exp(j32πt) exp(−24t2) by using: (a) marginal-median DFT; (b) α-trimmed
mean DFT with a = 3/8; (c) α-trimmed mean DFT with a = 1/4; (d) α-trimmed mean DFT with a = 1/8.
Dashed line - original signal; Solid line - filtered signal.

estimates are depicted with small circles). Fi-
nally, in Fig. 3c, one can see overlapping with
δ = 1/8 where for each instant we can have up
to 8 different estimates produced with differ-
ent intervals (again marked with small circles
for the considered instant).

C. Computational complexity

The proposed technique that improves fil-
tering of FM signals with short components
embedded in an impulse noise decreases com-
putational complexity with respect to the ro-
bust DFT calculated over entire interval. We
can have Q non-overlapped or Q/δ overlapped
intervals of the width N/Q.

The following main operations are per-
formed within the algorithm:

• N/δ complex multiplications x(n)W kn
N ;

• 2N
2

δQ log2N − 2N
2

δQ log2Q comparisons for
sorting of real and imaginary parts of mod-
ulated signal sequences;
• N/δ real multiplications of sorted elements

from sequences with ai (4);
•
N
δ log2N−

N
δ log2Q complex multiplications

and complex additions for implementation of
the inverse FFT, (5);
• 2(N/δ) log2(1/δ) comparisons for median fil-
tering in the case of the overlapped intervals.

Note that it is assumed that some fast sort-
ing procedure, such as the quicksort, is em-
ployed and that it can, under some condi-
tions, require (N/Q) log2(N/Q) comparisons
for sorting a sequence of (N/Q) samples. It
can be seen that sorting of real and imagi-
nary parts of modulated signal sequences is
a dominant operation in the algorithm (func-
tion of (N2/δQ) log2N) and we can conclude
that number of operations is decreased approx-
imately Qδ times with respect to the evalua-
tion in the case of the robust DFT evaluated
over the entire interval (Q = 1 and δ = 1).
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Fig. 3. Illustration of segmentation of signals into subintervals: (a) Nonoverlapped intervals Q = 4; (b)
Overlapped intervals with δ = 1/2 - up to 2 estimates for instant; (c) Overlapped intervals with δ = 1/8 -
up to 8 estimates for each instant.

D. Noise influence

As was already mentioned, one drawback of
the proposed technique with reducing inter-
val width is increasing the estimator variance.
Namely, it has been shown that variance of the
robust DFT is approximately [13]:

σ2 ≈
1

N

∫∞
−∞

(F ′(ζ))2pν(ζ)dζ
[∫∞
−∞

F ′′(ζ)pν(ζ)dζ
]2 (13)

where pν(ζ) is the probability density function
(pdf) of the considered additive noise. Func-
tion F (ζ) is commonly referred to as the loss-
function (F ′(ζ) and F ′′(ζ) are its first and sec-
ond derivatives) and it determines the used
DFT form. For example, F (ζ) = |ζ|2 corre-
sponds to the standard DFT while F (ζ) = |ζ|
determines the median DFT form. For details
we refer readers to [13]. The resulting variance
of the marginal-median DFT is:

σ2 ≈
1

N

1

4p2ν(0)
. (14)

It can be seen that the variance increases with
a decrease of the interval width. Then, it can
be expected that there is a trade-off between
distortion effects introduced by a wide interval

and noise influence (more emphatic for nar-
row intervals). A technique for achieving this
trade-off (or results close to the trade-off) will
be studied in Section V.

IV. S
��� �
�� 
���!

We perform calculation study for three sig-
nals:

f1,i(t) = e(j32πt)e(−βi(t−t0)
2),

f2,i(t) = e(j212πt)e(−βi(t−t1)
2),

f3(t) = e(j32πt)e(−32(t−t0)
2)

+e(j212πt)e(−128(t−t1)
2). (15)

where f1,i(t) and f2,i(t) are low frequency sig-
nal and high frequency signal, respectively,
while f2(t) is sum of two signals.

For the signals f1,i(t) and f2,i(t) we per-
formed tests with various values βi = 3 · 2i

for i = 1, 2, ..., 6. These values of βi corre-
spond to relatively wide (small βi) and rela-
tively narrow (large βi) pulse-like signals. In
total, we have 13 signals in our study. In all ex-
periments, signals have been considered within
t ∈ [−1, 1), sampled with ∆t = 1/512 (the
number of samples was N = 1024). Instants
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t0 and t1 in the Monte Carlo simulation are se-
lected randomly according to an uniform prob-
ability law within the interval [−1, 1].

Signals are embedded in the symmetric
α−stable noise environment. This class of
noises is assumed to accurately model numer-
ous practically observed noise environments.
Detailed analysis of this noise can be found
in [27], [28]. It has two parameters (α, γ),
where α ∈ [0, 2] and it controls impulsiveness
of the noise, while γ is the dispersion factor
that corresponds to the noise strength. Impul-
siveness of the noise increases with a decrease
of α. Two particular members of the α−stable
class are the Gaussian noise with α = 2 (vari-
ance of this noise is 2γ) and the Cauchy noise
with α = 1. We have performed an analy-
sis for α = 0.1i where i = 1, 2, ..., 20 and for
γ = 10−l/10 for l = 0, 1, ..., 20. However, due
to the brevity reasons, the results obtained
only with γ = 0.1 and α = 1 (Cauchy noise)
will be demonstrated here for some of the sig-
nals from (15).

First, we demonstrate results of the applied
algorithm with various parameters for the test
signal f1,6(t) (narrow signal with β6 = 192)
(see Fig. 4), and for the test signal f2,3(t) (rel-
atively wide signal with β3 = 24), Fig. 5. Both
signals are centered around t0 = t1 = 0. Fig.
4a represents the useful signal (thick line) and
the signal corrupted by noise (dashed line). In
all other subplots in Fig. 4, the original sig-
nal is represented with dashed line, while the
filtered signals are given with thick lines. The
parameters of the algorithm are given in the
top right corner of subplots where ‘ov’ denotes
overlapped intervals with δ = 2/Q and ‘no’ de-
notes non-overlapped intervals. It may be ob-
served that the wider non-overlapped intervals
introduce a significant distortion of the signal
amplitude. However, narrower intervals have
emphatic noise influence with accurate track-
ing of the signal amplitude. From all illustra-
tions, an improvement that can be achieved by
overlapped intervals is obvious.

The second demonstration is with the wider
signal (β3 = 24) of higher frequency. Here,
we give only noiseless signal in Fig. 5a,
while in other subplots the filtered signals
are given. Since this signal is wider, rela-

tively small amount of the spectral distortion
is achieved even with the relatively wide inter-
val of N/Q = 64. Other conclusions that can
be drawn from this illustration are similar to
the case of the signal f1,6(t) (Fig. 4). Both
illustrations (Figs. 4 and 5) confirm that it
would be very desirable to have an algorithm
that could select the wide window in the region
of signal without variations in the amplitude
(both without signal and with almost constant
amplitude) and a rather narrow interval for the
region of varying amplitude.

Tables I-VII represent results of the Monte
Carlo simulations for R = 1000 trials for the
signals: f1,1(t), f1,3(t), f1,6(t), f2,1(t), f2,3(t),
f2,6(t), and f3(t), respectively. The considered
noise was Cauchy noise (α = 1) with γ = 0.1.
Signals are filtered with various parameters of
the filters. The accuracy is measured in terms
of the mean absolute error (MAE) and the
root mean squared error (RMSE):

MAE =
1

R

1

N

R∑

r=1

N∑

n=1

|f̂r(n)− f(n)| (16)

RMSE =

√√√√ 1

R

1

N

R∑

r=1

N∑

n=1

[f̂r(n)− f(n)]2,

(17)
where f(n) is the original non-noisy signal,

while f̂r(n) is the output of the correspond-
ing filter in the r-th trial.

In addition, since the main interest is in
quality of filtering in the region with the signal
with significant magnitude, we have consid-
ered the following local measures given by eq.
(18) and eq. (19) at the top of the next page,
where Nl is the number of samples in which the
signal amplitude is relatively large, i.e., above
some specific threshold. We adopted that such
samples are selected as |f(n)| > εmax |f(n)|,
where max |f(n)| is the maximal value of signal
magnitude and ε is a threshold in our research
set to ε = 0.1.

Results in Table I-VII are given in terms
of the number of intervals Q. The best re-
sults are highlighted. It can be seen that, in
almost all experiments presented in these ta-
bles, the best results are achieved with Q = 16
(N/Q = 64) and overlapped intervals when the
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MAEl =
1

R

1

Nl

R∑

r=1

N∑

n=1,|f(n)|>εmax |f(n)|

|f̂r(n)− f(n)| (18)

RMSEl =

√√√√ 1

R

1

Nl

R∑

r=1

N∑

n=1,|f(n)|>εmax |f(n)|

[f̂r(n)− f(n)]2, (19)
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Fig. 4. Filtering of the signal f1,6(t) embedded in the α-stable noise with γ = 0.1 and α = 1: (a) Noisy
signal - dashed line; original signal - thick line; (b) The signal filtered with N/Q = 128 with non-overlapped
intervals; (c) The signal filtered with N/Q = 64 with non-overlapped intervals; (d) The signal filtered with
N/Q = 64 with overlapped intervals; (e) The signal filtered with N/Q = 32 with non-overlapped intervals;
(f) The signal filtered with N/Q = 32 with overlapped intervals; (g) The signal filtered with N/Q = 16
with non-overlapped intervals; (h) The signal filtered with N/Q = 16 with overlapped intervals. In subplots
(b)-(h) thin dotted lines represent original non-noisy signal.
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Fig. 5. Filtering of signal f2,3(t) embedded in the α-stable noise with γ = 0.1 and α = 1: (a) The original signal
- thick line; (b) The signal filtered with N/Q = 128 with non-overlapped intervals; (c) The signal filtered
with N/Q = 64 with non-overlapped intervals; (d) The signal filtered with N/Q = 64 with overlapped
intervals; (e) The signal filtered with N/Q = 32 with non-overlapped intervals; (f) The signal filtered with
N/Q = 32 with overlapped intervals; (g) The signal filtered with N/Q = 16 with non-overlapped intervals;
(h) The signal filtered with N/Q = 16 with overlapped intervals.

signal is considered in entire intervals. The
reason is the fact that the measures (MAE
and RMSE) take both samples belonging to
signal and to noise-only region with the same
weight and, on average, the best results are
obtained by this filter. As one can see from
Figs. 4 and 5, this is true for noise only region
but it is not absolutely true for the signal re-

gion. Then, better results for this region can
be achieved for narrower intervals (larger num-
ber of intervals). From the tables one can no-
tice a significant improvement achieved when
overlapped intervals are used. Also, it can be
seen that for some signals the best results in
terms of the RMSE are achieved with Q = 1
(very short signals f1,6(t) and f2,6(t)), i.e., for



ROBUST DFT-BASED FILTERING OF PULSE-LIKE FM SIGNALS... 1025

evaluation of the algorithm in the entire in-
terval. It is the case for very narrow signal,
where noise-only region gives the biggest con-
tribution to the accuracy measure. However,
in numerous applications we are more inter-
ested in filtered output in signal regions rather
than in the noise only regions. Then this kind
of accuracy measure could lead to a wrong con-
clusion. It is the reason to consider alternative
measures (18) and (19), where the criteria are
evaluated just for intervals of significant signal
magnitude. Here, we can see that for the sig-
nals f1,1(t), f1,3(t), f2,1(t), f2,3(t), and f3(t),
the best results are achieved with Q = 16 (the
width of the interval is 64 samples), see Ta-
bles I, II, IV, V and VII. However, for the sig-
nals f1,6(t) and f2,6(t) with a short non-zero
interval, the best results are achieved for the
narrower intervals N/Q = 32, i.e., Q = 32.

V. A� ��
�� 
������ �
��

From the previous analysis it is obvious that
a desired filtering technique would be able to
select wide intervals for noise only regions and
regions with a constant signal amplitude, and
to select narrower intervals for regions with
fast variations in the signal amplitude. At the
same time, we should take care of the noise
influence that is more emphatic for narrower
intervals. One of potential solutions for sim-
ilar problems with a trade-off between accu-
racy of technique for regions with variations in
the model and noise influence, are the intersec-
tion of the confidence intervals (ICI) rule algo-
rithms. These algorithms were initially pro-
posed in [29], and further developed and ap-
plied to numerous signal processing problems
[18], [30].

Here we give a brief description of the ICI al-
gorithm and later we describe the technique for
its application to the considered problem. The
algorithm considers estimates achieved with
various parameters ξi from the set Ξ. These
estimates are denoted as p(n; ξi), where n is
a considered time instant. Parameters ξi are
sorted in such a manner that the influence of
inaccuracy of the model is the smallest for
ξ1 and larger for any subsequent parameter
from the set Ξ. Let a standard deviation of
the estimator with parameter ξi be denoted as

σ(n; ξi). Then, the ICI algorithm in the basic
form can be summarized as:

Step 1. Set that an initial estimate is ob-
tained with parameter ξ1 that introduces the
smallest inaccuracy for abrupt changes in the
signal model pe(n) = p(n; ξ1). Set i = 1.

Step 2. If the condition:

|p(n, ξi+1)−p(n; ξi)| ≤ κ[σ(n; ξi+1)+σ(n; ξi)],
(20)

is satisfied, set i = i+ 1 and repeat this step;
otherwise proceed to step 3.

Step 3. Take that an estimate for a given n is
pe(n) = p(n; ξi) with the adaptive parameter
given as ξe(n) = ξi(n).

This procedure is very fast since it includes
only comparisons. However, it requires that
we have estimates obtained with different pa-
rameters ξi. Parameter κ determines a width
of the confidence interval and its appropriate
selection is crucial for the algorithm accuracy
[30].

For filtering of FM signals with varying am-
plitude corrupted by impulse noise, we will ap-
ply this algorithm in the following form. The
set of segments widths Ξ = {ξi, i = 1, ...,Π}
is considered, with ξi = (N/Qi). The width
of intervals is increasing, ξi < ξi+1, since nar-
rower intervals produce smaller errors for sig-
nals with fast amplitude variations. The main
problem in our algorithm is the fact that we
do not know σ(n; ξi) since the parameters of
the noise are unknown. However, we know
that the output variance of our filter is in-
versely proportional to the width of the inter-
val σ2(n; ξi) ≡ ρ2/ξi, (13). The constant ρ2

is unknown for unknown pdf of noise. Then,
condition (20) can be written as:

|f̂ξi+1(n)− f̂ξi(n)| ≤ κρ

[
1

√
ξi+1

+
1
√
ξi

]

.

(21)

where f̂ξi(n) is the signal filtered with seg-
ments of the width ξi, while ρ represents a mul-
tiplicative constant for the standard deviation
of the estimator σ(n; ξi) = ρ/

√
ξi. The re-

maining problem is a determination or estima-
tion of ρ. However, here we have two unknown
constants, ρ and κ. We propose to apply the
cross-validation (CV) algorithm for determi-
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TABLE I

I����� �  �� ��	 � MAE  �� RMSE 
� �
����
�� �� f1,1(t) 	�������� �
�� C �	�! ��

� �
��

γ = 0.1. I���% l 
� ��

  �� 
��
������ � ���
 ������
 
� �

�
	
 �� �� ��� ��	 ��! 
� ��� ���
�� ��



�� � �
�� ��� �
���! �
��  ���
����.

Q = 1,no Q = 2,no Q = 4,no Q = 8,no Q = 16,no
RMSE 0.3744 0.3844 0.3399 0.3393 0.3500
MAE 0.2931 0.3031 0.2578 0.2461 0.2565
RMSEl 0.4748 0.4839 0.4392 0.4378 0.4500
MAEl 0.4036 0.4092 0.3801 0.3580 0.3679

Q = 16,ov Q = 32,no Q = 32,ov Q = 64,no Q = 64,ov Q = 128,no
0.2459 0.3516 0.2623 0.3548 0.2735 0.3652
0.1776 0.2614 0.1976 0.2719 0.2134 0.2818
0.3137 0.4494 0.3319 0.4487 0.3421 0.4486
0.2490 0.3693 0.2705 0.3744 0.2871 0.3671

TABLE II

I����� �  �� ��	 � MAE  �� RMSE 
� �
����
�� �� f1,3(t) 	�������� �
�� C �	�! ��

� �
�� γ = 0.1

Q = 1,no Q = 2,no Q = 4,no Q = 8,no Q = 16,no
RMSE 0.3062 0.3204 0.2740 0.2405 0.2526
MAE 0.1731 0.1914 0.1810 0.1679 0.1725
RMSEl 0.5653 0.5866 0.4793 0.4206 0.4351
MAEl 0.4932 0.5093 0.4078 0.3674 0.3679

Q = 16,ov Q = 32,no Q = 32,ov Q = 64,no Q = 64,ov Q = 128,no
0.1857 0.2635 0.2037 0.2730 0.2215 0.2974
0.1306 0.1881 0.1492 0.2041 0.1691 0.2254
0.3127 0.4419 0.3357 0.4385 03530 0.4524
0.2471 0.3571 0.2678 0.3560 0.2868 0.3638

TABLE III

I����� �  �� ��	 � MAE  �� RMSE 
� �
����
�� �� f1,6(t) 	�������� �
�� C �	�! ��

� �
�� γ = 0.1.

Q = 1,no Q = 2,no Q = 4,no Q = 8,no Q = 16,no
RMSE 0.2116 0.2102 0.2004 0.2020 0.1893
MAE 0.0996 0.1056 0.1218 0.1278 0.1445
RMSEl 0.6513 0.6407 0.5845 0.5584 0.4679
MAEl 0.5839 0.5738 0.5135 0.4819 0.4105

Q = 16,ov Q = 32,no Q = 32,ov Q = 64,no Q = 64,ov Q = 128,no
0.1461 0.1852 0.1478 0.1990 0.1646 0.2347
0.1151 0.1508 0.1260 0.1698 0.1429 0.1942
0.3674 0.4166 0.3272 0.4108 0.3388 0.4377
0.3060 0.3387 0.2617 0.3455 0.2724 0.3497
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TABLE IV

I����� �  �� ��	 � MAE  �� RMSE 
� �
����
�� �� f2,1(t) 	�������� �
�� C �	�! ��

� �
�� γ = 0.1.

Q = 1,no Q = 2,no Q = 4,no Q = 8,no Q = 16,no
RMSE 0.3784 0.3969 0.3407 0.3308 0.3545
MAE 0.3016 0.3166 0.2616 0.2517 0.2640
RMSEl 0.4788 0.4998 0.4384 0.4242 0.4545
MAEl 0.4130 0.4279 0.3799 0.3628 0.3774

Q = 16,ov Q = 32,no Q = 32,ov Q = 64,no Q = 64,ov Q = 128,no
0.2486 0.3891 0.2767 0.4250 0.3185 0.5052
0.1736 0.2809 0.1994 0.3162 0.2420 0.3707
0.3169 0.4980 0.3515 0.5425 0.4152 0.6410
0.2420 0.3978 0.2747 0.4474 0.3347 0.5174

TABLE V

I����� �  �� ��	 � MAE  �� RMSE 
� �
����
�� �� f2,3(t) 	�������� �
�� C �	�! ��

� �
�� γ = 0.1.

Q = 1,no Q = 2,no Q = 4,no Q = 8,no Q = 16,no
RMSE 0.3011 0.3200 0.2773 0.2410 0.2462
MAE 0.1727 0.1946 0.1841 0.1665 0.1739
RMSEl 0.5548 0.5837 0.4832 0.4238 0.4231
MAEl 0.4837 0.5079 0.4130 0.3689 0.3553

Q = 16,ov Q = 32,no Q = 32,ov Q = 64,no Q = 64,ov Q = 128,no
0.1728 0.2697 0.1948 0.3051 0.2348 0.2773
0.1235 0.1908 0.1439 0.2204 0.1751 0.1841
0.2882 0.4555 0.3202 0.5104 0.3837 0.6139
0.2283 0.3691 0.2575 0.4196 0.3122 0.4989

TABLE VI

I����� �  �� ��	 � MAE  �� RMSE 
� �
����
�� �� f2,6(t) 	�������� �
�� C �	�! ��

� �
�� γ = 0.1.

Q = 1,no Q = 2,no Q = 4,no Q = 8,no Q = 16,no
RMSE 0.2079 0.2121 0.2039 0.2011 0.1913
MAE 0.0897 0.0970 0.1145 0.1283 0.1356
RMSEl 0.6389 0.6466 0.5925 0.5528 0.4676
MAEl 0.5708 0.5756 0.5193 0.4785 0.4040

Q = 16,ov Q = 32,no Q = 32,ov Q = 64,no Q = 64,ov Q = 128,no
0.1376 0.1943 0.1464 0.2223 0.1684 0.2645
0.1033 0.1468 0.1172 0.1722 0.1380 0.1983
0.3278 0.4481 0.3241 0.5117 0.3679 0.5757
0.2755 0.3769 0.2585 0.4230 0.3098 0.4788
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TABLE VII

I����� �  �� ��	 � MAE  �� RMSE 
� �
����
�� �� f3(t) 	�������� �
�� C �	�! ��

� �
�� γ = 0.1.

Q = 1,no Q = 2,no Q = 4,no Q = 8,no Q = 16,no
RMSE 0.3535 0.3313 0.3502 0.2993 0.2813
MAE 0.2257 0.2236 0.2470 0.2176 0.2020
RMSEl 0.5715 0.5287 0.5504 0.4641 0.4348
MAEl 0.4995 0.4570 0.4638 0.4094 0.3672

Q = 16,ov Q = 32,no Q = 32,ov Q = 64,no Q = 64,ov Q = 128,no
0.2050 0.3031 0.2317 0.3305 0.2549 0.3549
0.1450 0.2202 0.1657 0.2366 0.1854 0.2582
0.3115 0.4595 0.3476 0.5018 0.3798 0.5195
0.2467 0.3806 0.2703 0.4067 0.2986 0.4112

nation of optimal parameter κ used in the ICI
algorithm in [30], [31] for determination of the
multiplicative parameter κρ. This technique
will be realized in the following manner. A set
of Γl ∈ Γ values is considered, where Γl repre-
sents different possible values of κρ. For each
Γl ∈ Γ, the ICI algorithm is applied to the
signal obtained for different widths of inter-
vals f̂ξi(n). Let the obtained estimates be de-

noted by f̂Γl(n), and adaptive intervals width
by ξΓl(n), where index denotes the used para-
meter Γl. According to the CV criterion, the
optimal value of Γl can be determined based
on the following minimization problem:

Γopt = arg min
Γl∈Γ

∑

n

[x(n)− f̂Γl(n)]
2

1− 1/ξΓl(n)
. (22)

Then, we adopt f̂Γopt(n) as an output of the
adaptive filter while ξΓopt(n) is the optimal
width of adaptive intervals.

In addition, we should note that the ob-
tained estimate could have errors in estima-
tion of the adaptive intervals width. Sources
of these errors are in probabilistic nature of
the ICI rule. These errors are studied in de-
tails in [18], [30]. A common technique to solve
this problem is a median filtering of adaptive
parameter (interval width) and selecting out-
put estimate according to the obtained filtered
adaptive interval width.

Note that the main difference between the
proposed algorithm and the original ICI algo-
rithm is in the technique used in filtering stage
to obtain estimates f̂ξi(n). In the ICI algo-

rithm this filtering is performed in the time-
domain by using the convolution. This is suit-
able for signals that are relatively low-pass,
but the proposed technique, where filtering
is performed in the frequency domain using
the robust DFT, is suitable for signals with
relatively high frequency content. Note that
this opens possibilities to combine the origi-
nal algorithm for intervals of relatively low fre-
quency content (with possible abrupts in the
signal) with the proposed robust DFT-based
algorithm applied for signals of high frequency
content.

Example. The signal f1,6(t) has been con-
sidered with the parameters as in the previous
section. It is corrupted with the Cauchy noise
α = 1 and γ = 0.1. Signal is filtered with non-
overlapped intervals of the width ξi ∈ Ξ = {8,
16, 32, 64, 128, 256}. The same procedure
could be done with the overlapped segments.
Fig. 6a represents the original and noisy sig-
nal, while Figs. 6b-d show signal filtered with
ξ6 = 256, ξ4 = 64 and ξ2 = 16. For the CV
algorithm we have considered Γl ∈ Γ where
Γl = 10−1+0.1l, with l ∈ [0, 40]. The obtained
adaptive estimate is given in Fig. 6e, with the
corresponding adaptive window width given in
Fig. 6g. It can be seen that the obtained inter-
vals are wider in the noise only region, while
in the region of signal variations intervals are
going to be smaller. However, the adaptive in-
terval width is the subject to considerable er-
rors and we have applied the median filtering
of the window size 5 to the adaptive interval
widths. The obtained adaptive interval width
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Fig. 6. Adaptive filtering of signal f1,6(t) embedded in the α-stable noise with α = 1 (Cauchy noise) with
dispersion γ = 0.1: (a) Original signal - thick line; noisy signal dashed line; (b) The signal filtered with
nonoverlapped intervals of constant width ξ = 8; (c) The signal filtered with nonoverlapped intervals of
constant width ξ = 32; (d) The signal filtered with nonoverlapped intervals of constant width ξ = 256;
(e) The signal filtered with adaptive algorithm; (f) The signal filtered with adaptive algorithm and median
filtering applied to the adaptive interval width; (g) Adaptive interval width (given in number of samples);
(h) Adaptive interval width filtered with median filter (given in number of samples).

is given in Fig. 6h, and it can be seen that
the behavior of this parameter is as expected.
The corresponding adaptive estimate is given
in Fig. 6f. Here, we can see that the resulting
estimate produces accurate results for signal
region, and, at the same time, relatively small
amount of residual noise remains in the noise
only region.

Finally, we considered the Monte Carlo sim-

ulation for this signal and for the Cauchy noise
but for dispersion factor γ ∈ [0, 0.3]. For each
considered value γ we repeated the simula-
tions 100 times. The obtained MAE is pre-
sented in Fig. 7. It can be seen that the
proposed algorithm with applied median filter-
ing outperforms the constant interval length
algorithms for relatively wide range of γ val-
ues (γ ∈ [0, 0.25]) and, more importantly, the
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Fig. 7. MAE for signal f1,6(t) embedded in the α-stable noise with α = 1 (Cauchy noise) with respect to
γ ∈ [0, 0.3] for interval widths ξ = 8, ξ = 32 and ξ = 128 (intervals are non-overlapped) and with applying
adaptive algorithm (Adap) and adaptive algorithm with median filtering of the adaptive intervals width
(Adap+Med).

proposed algorithm introduces small ampli-
tude distortions in the region of relatively high
signal amplitude. For example, for γ = 0.1
the proposed algorithm produces the MAE of
0.1052, that is better than for all other algo-
rithms considered in Table III, except for the
widest intervals case when we have significant
distortion of signal with a high magnitude.

VI. C��	��

��

The new technique for filtering signals with
varying amplitude based on the robust DFT of
the signal intervals has been proposed. Both
the non-overlapped and overlapped intervals
are considered. Use of the latter approach
shows significant improvement over the for-
mer for all widths of intervals. It has been
shown that the proposed improvement of the
algorithm is not paid by increasing calculation
complexity with respect to the robust DFT
calculated over entire interval. The shorter
intervals cause increasing of the noise influ-
ence. Then, the adaptive algorithm inspired
by the ICI rule is proposed to produce a trade-
off between noise influence and errors caused
by variations in the signal amplitude. This al-

gorithm has shown excellent accuracy and it
provides the adaptive interval width.

There are numerous potential further steps
in this research, including: analysis of real-
valued signals embedded in real-valued noise;
applications in radar signal and speech pre-
cessing; employing optimal or adaptive robust
DFT forms; extension toward 2D and multidi-
mensional signals with application in filtering
of optical interferograms. Also, we are plan-
ning to consider several refinement strategies
for the algorithm. These strategies include
better selection of the start and end points
of the intervals; filtering of adaptive intervals
width for each obtained Γl from the consid-
ered set; etc. In any case, the results for the
proposed approach are encouraging and they
can be used in several important applications
in the presented or in refined form.
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