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An Overview of the Adaptive Robust
DFT

Alexey A. Roenko, Vladimir V. Lukin, Igor Djurović

Abstract– This paper overviews basic prin-
ciples and applications of the robust-DFT
(RDFT) approach, which is used for robust
processing of frequency-modulated (FM) sig-
nals embedded in non-Gaussian heavy-tailed
noise. In particular, we concentrate on the
spectral analysis and filtering of signals cor-
rupted by impulsive distortions using adap-
tive and non-adaptive robust estimators. Sev-
eral adaptive estimators of location parame-
ter are considered and it is shown that their
application is preferable with respect to non-
adaptive counterparts. This fact is demon-
strated by efficiency comparison of adaptive
and non-adaptive RDFT-methods for different
noise environments.

I. I������	�
��

Using Gaussian distributions, noise and
other phenomena have been described over
time in various applications such as com-
munications, radars, sonars, acoustics, etc.
[1]. However, recent studies have shown
that heavier-tailed probability density func-
tions (PDFs) provide a more adequate descrip-
tion of noise in many practical environments
[2]-[4]. In particular, Spaulding and Middleton
[2] initiated this development of various com-
plex noise models. For example, variants of
contaminated [5], generalized Gaussian distri-
butions [6] and a family of symmetric α-stable
(SαS) PDFs [3], [6] are models widely used
to describe non-Gaussian noise environments.
These realistic noise models have stimulated
the development of robust estimators for non-
linear signal and image filtering [3], [5]-[7].

Theoretical developments behind linear fil-
ters have been concurrently performed in both
temporal and spectral (Fourier transform) do-
mains over the years [8]. Meanwhile, the the-
ory of nonlinear filtering mainly focused on sig-
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nal processing in the temporal domain. Typ-
ical robust filters include median, L-filters, α-
trimmed mean filters [7], while recent contri-
butions include more sophisticated filters such
as FIR-hybrid median, weighted median and
some other nonlinear filters [7]. Although clas-
sification and terminology used for linear fil-
ters can be hardly applied to nonlinear filters
[9], they are generally regarded as low-pass fil-
ters and cannot be used as pass-band, stop-
band and/or high-pass filters. Arce and his co-
workers recently introduced a class of weighted
median and myriad filters admitting negative
weights [9]-[11]. These filters can be used to
design nonlinear filters of all types (low-pass,
high-pass, stop-band, and band-pass), while si-
multaneously removing impulsive noise. This
development has renewed interests for the de-
sign and analysis of robust filters [12].
Practically at the same time, an alternative

way to cope with non-Gaussian noise has been
proposed by Katkovnik [13]. His contribution
was followed by several other papers [14]-[17]
where various robust periodogram and DFT
forms were proposed. In particular, these
so-called robust DFT (RDFT) methods esti-
mate real (RE) and imaginary (IM) compo-
nents of signal Fourier spectrum in a robust
manner. The standard set of the robust es-
timators can be used for this task including
M, L, and R-estimators [5]. In addition, the
adaptive RDFT-forms have been proposed as
well [14]-[20]. These transform are further gen-
eralized in various application including the
time-frequency analysis [21], [22], radars [23],
[24], filtering of frequency-modulated (FM)
and pulse-like signals [20], [25] and the esti-
mation of signal parameters [21], [26].
The goal of this paper is to analyze and

recommend proper RDFT forms for various
signal-noise scenarios. Therefore, the paper is
organized as follows: we discuss design chal-
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Fig. 1. Block diagram for signal processing approach
based on RDFT

lenges in Section 2, while various adaptive
and non-adaptive robust estimators are de-
scribed in Section 3. The results of a numerical
analysis of non-adaptive and adaptive RDFT-
methods are covered in Section 4.

II. RDFT ��������� ���
����
������� �� ������ ���
������

Consider a one-dimensional (1D) discrete
signal s(n) corrupted by non-Gaussian noise
ν(n)

x(n) = s(n) + ν(n) (1)

where n∈[1,N ]. To filter x(n) using the RDFT-
based approach we implement the following
steps [13], [14], [16]-[20]:
1. Calculate the RDFT for the analyzed sig-
nal;
2. Multiply the obtained spectrum estimate,
Ẋrob(p) (p∈[0,N -1] is the frequency index),
with specified frequency characteristic ;
3. Calculate the standard inverse DFT.
The block diagram of the RDFT-based sig-

nal processing approach is shown in Fig. 1.
The RDFT can be used in all applications
where the standard DFT is commonly applied.
For example, the RDFT is used for the time-
frequency analysis in [27].
The complex-valued spectrum obtained by

RDFT-method can be written as

Ẋrob(p) = Rrob(p) + jIrob(p) (2)

where Rrob(p) and Irob(p) are the robust es-
timates of RE and IM components of the
DFT. The index p corresponds to frequencies
fp as fp=p∆f, ∆f =1/NTS; Rrob(p)=Rrob(fp),
Irob(p)=Irob(fp), where TS represents the sam-
pling period.

The optimal DFT method for Gaussian
noise averages x (n)exp(-j2πfpnTS)=x (n)exp(-
j2πpn/N ) for each frequency (i.e., the stan-
dard DFT):

ẊS(p) = ẊS(fp) =

=
1

N

N∑

n=1

x(n) exp (−j2πpn/N)

= mean {x(n) exp (−j2πpn/N)} =

= mean {Re [x(n) exp (−j2πpn/N)]}

+jmean {Im [x(n) exp (−j2πpn/N)]} (3)

where Re and Im denote real and imaginary
parts of a complex-valued number. Generally,
the RDFT can be described as:

Rrob(p) = T {Re [x(n) exp (−j2πpn/N)]} ,

Irob(p) = T {Im [x(n) exp (−j2πpn/N)]} (4)

where T{·} denotes applied robust estimator.
It should be mentioned that there are many
different robust estimators. Hence, such an es-
timator, T{·}, should be carefully chosen since
the resulting properties of the corresponding
RDFT-methods depend on T{·}.
The RDFT-based signal processing methods

should provide accurate results in the following
cases:
1. A signal, s(n), can be either “smooth” or
“high-frequency” (note that in the latter case
the standard low-pass nonlinear filters cause
signal degradation [9]).
2. Noise can resemble the Gaussian case or it
might have heavy-tailed PDF [28]. Further-
more, limited a priori information about noise
statistics may exist, but not necessarily.
By applying the robust operators in (4),

we obtain significant improvements in com-
parison to the mean-operators for heavy-tailed
noise environments [13], [14]. The presence
of only one or a few samples corrupted by
impulse(s) can lead to considerable deterio-
ration of ẊS(p). The RDFT methods sup-
press these outliers and achieve more accu-
rate estimates of the non-noisy signal spec-
trum. Therefore, the major task is to obtain
Ẋrob(p)=Rrob(p)+jIrob(p) as close to

Ṡ(p) = mean {Re [s(n) exp (−j2πpn/N)]}
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+jmean {Im [s(n) exp (−j2πpn/N)]} =

= RS(p) + jIS(p) (5)

as possible for each fp.
However, it is not an easy task. To

illustrate this problem consider a sim-
ple case of a real-valued harmonic signal
s1(n)=s1(nTS)=Asin(2πFnTS) where F=50
Hz, A=5, corrupted by zero-mean Gaussian
noise ν(n). Fig. 2 represents the am-
plitude spectrum obtained by the standard

DFT and its estimates
∣∣∣ṠMED(p)

∣∣∣, RMED(p)

and IMED(p) evaluated by the RDFT-
method, where T{...} is the sample median
(MED). It can be clearly seen that the esti-

mate
∣∣∣ṠMED(p)

∣∣∣ differs from the conventional

spectrum due to distortions introduced in
IMED(p) (for a test signal Acos(2πFnTS) dis-
tortions appear in RMED(p)). To further un-
derstand the appearance of these undesirable
disturbances, we consider the histograms of
the samples R(p,n)={x(n)cos(2πpn/N )} and
I (p,n)={-x (n)sin(2πpn/N )} for two frequen-
cies: fp=F where there are no distortions in-
troduced by RDFT-method, and fp=3F=150
Hz where is considerably distorted (see Fig.
2b). Values of the corresponding estimators
RS(p), IS(p), RMED(p) and IMED(p) are
marked at histograms by solid and dashed
lines, respectively. For each histogram we have
determined the percentile coefficient of kur-
tosis (PCK) [29] (for mathematical definition
see Appendix 1). This parameter characterizes
the distribution tail heaviness. For Gaussian
PDF it is equal to 0.26 while for distributions
with heavier tails PCK is smaller. For SαS
processes, the PCK value decreases when α
value becomes smaller.
In parallel, the median of absolute devia-

tions (MAD) from the sample median has been
calculated to characterize the data scale (see
Appendix 1). MAD is used instead of the stan-
dard deviation since considered distributions
might have heavy tails. This will be demon-
strated later.
Let us analyze the histograms for fp=F

shown in Fig. 3a, b. Both repre-
sented histograms are symmetric with re-
spect to their location parameter (LP). Then,

RMED(p)=RS(p) and IMED(p)=IS(p). Con-
sider the second case with fp=3F. The cor-
responding histograms represented in Figs.
3c and d show that the R(p,n) distribution
is again symmetric with respect to its LP,
whereas the histogram of I (p,n) is asymmet-
ric. Then IS(p) and IMED(p) differ as in the
cases of other asymmetric PDFs like Rayleigh
distribution [30]. Contrary to the previous
case, the values of PCK and MAD are also
different for PDFs of RE and IM components.

The fact that IMED(p)?IS(p) for some fre-
quencies introduces distortions in a signal
spectrum estimate. Then, the spectrum es-
timate distortions lead to the distortions of
the filtered signal in temporal domain. Recall
that the filtered signal is obtained by using the
inverse standard DFT of the robust estimate
Ṡrob(p).

Aforementioned problem is common for
some other robust estimators. For example, if
one uses α-trimmed mean estimator (ATM),
distortions in the output (filtered) signal are
observed as well. They are clearly demon-
strated in Fig. 4. This spectral distortion ef-
fect is undesirable and the main goal is its min-
imization in the RDFT-based signal processing
methods.

Now consider the case of a signal corrupted
by Gaussian noise for two different values of
the standard deviation, σG=1 and σG=10.
The histograms for two frequencies fp=F and
fp=3F for σG=1 are presented in Figs. 5a-
d. As it can be seen the distributions in
Figs. 5a, b are light-tailed but not symmetric;
RMED(p)?RS(p), IMED(p)?IS(p). The PDFs
depicted in Fig. 5c, d, are also asymmetric but
with heavier tails. Distribution scales are in
both cases approximately the same.

The histograms for fp=F and fp=3F for
σG=10 are presented in Figs. 5e-h, re-
spectively. MAD values have considerably
increased in comparison to previous cases
(σG=1). All distributions are almost symmet-
ric and they have heavy tails. Thus, the pres-
ence of input noise has considerably changed
PDF properties of the considered data samples
in comparison to the earlier considered case
of noise absence. Since the distributions are
heavy-tailed, the use of robust estimators can
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Fig. 2. Amplitude spectrum estimates of noise-free signal s1(n ) obtained by standard DFT (a) and RDFT-
method based on MED (b); RMED(p) (c) and IMED(p) (d)

Fig. 3. Histograms of R(p,n) (left column) and I (p,n) (right column) for fp=F (a and b)
PCKRE=PCKIM=0.37, MADRE=MADIM=1.77 (a and b); for fp=3F (c and d) PCKRE=0.19,
MADRE=1.47 (c), PCKIM=0.28, MADIM=1.71 (d)

Fig. 4. Example of distortions introduced by ATM-method of RDFT: the noise-free harmonic signal (F=10

Hz) (a) and its estimate obtained using inverse DFT of ṠATM(p) (b)
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Fig. 5. Histograms of R(p,n ) (left column) and I (p,n ) (right column) for:
- fp=F, σG=1; PCKRE=0.330, MADRE=1.65, PCKIM=0.341, MADIM=1.73 (a and b)
- fp=3F, σG=1; PCKRE=0.243, MADRE=1.67, PCKIM=0.252, MADIM=1.68 (c and d)
- fp=F, σG=10; PCKRE=0.209, MADRE=3.77, PCKIM=0.231, MADIM=3.94 (e and f)
- fp=3F, σG=10; PCKRE=0.186, MADRE=3.46, PCKIM=0.237, MADIM=3.92 (g and h)

give us some benefits.
Now, we analyze the accuracy of the RDFT-

methods and compare with the standard DFT.
The MSE of the spectrum estimate is calcu-
lated as:

MSEi =
1

M

M∑

m=1

MSEi(m), (6)

MSEi (m) =
1

N

N−1∑

p=0

∣∣∣Ẋmi (p)− Ṡ(p)
∣∣∣
2

, (7)

where Ẋm
i (p) is the estimate of the spec-

trum obtained by the i-th method for the

m-th signal realization; i denotes the inves-
tigated method where the standard DFT and
the RDFT-method based on MED are consid-
ered; M=100 is the number of realizations.

The results are presented in Table 1. As
expected, the MSE for the standard DFT
(MSEST ) increases proportionally to σ2G. For
RDFT-method based on MED, MSEMED is
not equal to zero even for σG=0. This is due to
the previously described distortions. However,
for large σG (see, for instance, σG=4), the
value of MSEMED is considerably smaller than
MSEST , i.e., the median RDFT-form gives
better estimation of the DFT. Thus, advan-
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tages of the RDFT based processing become
apparent for rather important practical case
of low input SNR even for the Gaussian input
noise.

Next, consider another marginal case where
the input sample is equal to noise without sig-
nal. This scenario is particularly important
when dealing with signal detection where it is
desirable to decrease noise level at the output.

Fig. 6 represents a realization of heavy-
tailed noise (modeled as a product of two
independent zero-mean white Gaussian vari-
ables with σG=1) and its estimate obtained
as the inverse DFT of ẊMED(p). Clearly, im-
pulses have been removed and noise has be-
come less intensive. Here, we would like to
emphasize that the distribution of modulated
noise ν(n)sin(2πfpTSn/N ) is not equal to the
distribution of ν(n) [31].

Consider now a more complicated case of
a FM-signal. As a case study, let us an-
alyze signal s2(n)=Asin(2πF (n)nTS) where
A=5, F (n)=anTS, for n=0 F=0, for nTS=1
sec., F=50 Hz (a=50). Figs. 7a-c represent
, RS(p) and IS(p) for the considered noise-
free signal. There is a range of frequencies
(over 100 Hz) for which , RS(p) and IS(p)
are practically equal to zero. The estimates∣∣∣ṠMED(p)

∣∣∣, RMED (p) and IMED (p), eval-

uated by RDFT-method based on the MED,
are demonstrated in Figs. 7d-f. Again, the
RDFT-method introduces distortions.

Consider the histograms of R(p,n) and
I (p,n) for two frequencies. Let us first ana-
lyze the histograms for the frequency fp=32
Hz which is inside the signal spectrum band.
Just for this frequency the spectrum distor-
tions are quite large. As demonstrated in Figs.
8a-b, we obtain asymmetric distributions, in-
ducing a lack of overlap between the mean and
MED values. Note that these distributions for
the FM signal s2(n) considerably differ from
those ones for the harmonic signal s1(n) shown
in Fig. 3.

Next, let us analyze the case when Gaussian
noise is present. Histograms for fp=32 Hz are
shown in Figs. 8c,d (σG =10). The distribu-
tions have become heavy-tailed with wider lim-
its in comparison to the distributions shown

in Figs. 8a,b. The obtained MSEs of spec-
trum estimates for noise-free and noisy signal
s2(n) are presented in Table 2. For the stan-
dard DFT, the MSE increases proportionally
to σG as in the previous case. For the MED-
method of RDFT, MSEMED is not equal to
zero even for σG=0 due to introduced distor-
tions. For large σG (for example, σG =10), the
MSEMED value is almost four times smaller
than the MSEST value, i.e., the RDFT ap-
proach achieves a more accurate estimate of
the spectrum for low values of the input SNR.
Concluding the analysis, we can state the

following: first, there are practical cases when
even the simplest RDFT|method yields more
accurate results than the standard DFT. How-
ever, there are also cases when RDFT in-
troduces considerable distortions. Taking
into account the abovementioned properties,
the spectrum estimate obtained by RDFT-
methods can be represented as

̂̇X(p) = R̂(p) + jÎ(p)

= [Rs(p)+ � R(p)] + j [Is(p)+ � I(p)] (8)

where the requirement for estimators is to pro-
vide

| � R(p)| → min, | � I(p)| → min (9)

for each p. Note that if (9) is satisfied, noise is
suppressed in the temporal domain after the
inverse DFT. Therefore, we analyze the esti-
mators meeting these criteria in Section 3.

III. A����
�� ������ ���
������ ���
���
� �������
��

There is a profound theory of LP estima-
tion for data samples with symmetric distri-
butions [5], [29]. It allows obtaining optimal
maximum-likelihood (ML) and L-estimators
for data realizations with a priori known
PDFs. However, distributions of modulated
signal samples for each considered frequency in
RDFT data processing approach are unknown
in advance.
There are also methods for robust mode

finding based on adaptive myriad or inter-
quantile estimators [31], [32]. However, RS(p)
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TABLE I

MSE ��� �
��� s1(n) ���	���� ���
����� ����
��� �# �������� DFT ��� RDFT-������ ����� ��

MED ��� ��� 	��� �� G����
�� ��
�� �
�� �
������� �� ��� �� σG

σG
0 0.5 1 2 4 8 10

MSEST 0 0.0005 0.0020 0.0078 0.0313 0.1240 0.1949
MSEMED0.0055 0.0052 0.0052 0.0061 0.0123 0.0350 0.0547

Fig. 6. The realization of the original heavy-tailed noise (σG=1) and its estimate obtained after inverse DFT

of ẊMED(p)

Fig. 7. Amplitude spectrum of noise-free FM signal s2(n) (left column), and its RE (central column) and IM
(right column) components obtained by standard DFT (a-c) and MED-form of RDFT (d-f)
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Fig. 8. Histograms of R(p,n) (left column) and I (p,n) (right column) for noise-free (a and b) and noisy (c and d)
FM-signal s2(n) for fp=32 Hz; PCKRE=0.250, MADRE=1.838, PCKIM=0.261, MADIM=1.84 (noise-free
case)
PCKRE=0.219, MADRE=3.75, PCKIM=0.211, MADIM=3.74 (noisy case)

TABLE II

MSE ��� �
��� s2(n) ���	���� ���
����� ����
��� �# �������� DFT ��� RDFT-������ ����� ��

MED ��� ��� 	��� �� G����
�� ��
�� �
�� �
������� �� ��� �� σG

σG
0 0.5 1 2 4 8 10

MSEST 0 0.00039 0.00163 0.00671 0.0270 0.1077 0.1725
MSEMED0.00543 0.00555 0.00610 0.00845 0.0154 0.0317 0.0459

and IS(p) can be considerably different from
modes of the corresponding distributions (see
examples in Fig. 5). There are also other
adaptive estimators, e.g., [33], that are mainly
intended on processing data samples with
heavy-tailed PDFs.

In Section 2, we analyzed histograms R(p,n)
and I (p,n) for particular frequencies. To gain
further understanding of the desirable proper-
ties of the RDFT estimators we analyze scale
and tail heaviness for these data samples for
all spectral frequencies of FM signal s2(n)
corrupted by non-Gaussian noise (Fig. 9).
As a practical example, consider noise mod-
eled as the SαS process with α=1.5 and γ=1.
Note that such a value of α is typical for at-
mospheric noise [33]. As it is seen in Fig. 9b,
the signal is corrupted with several impulses.

The plots of MADRE(p), MADIM(p),
PCKRE(p) and PCKIM(p) for α=1.5 and

γ=1 are given in Fig. 10. Each value of
PCK and MAD obtained for each p-th fre-
quency is averaged over 10 realizations to get
more consistent values. Practically for all fre-
quencies (except the 256-th), MADRE(p) and
MADIM(p) are approximately equal. The
values of PCKRE(p) and PCKIM(p) (except
p=N /2=256) are approximately equal as well.
They do not significantly differ from value
0.267 typical for a Gaussian PDF. This in-
dicates that the distribution for all these fre-
quencies is approximately equal to Gaussian.

A special case is the distributions for the
p=N /4 which equals to fp=128 Hz for the
considered example. Both MAD and PCK
are close to zero in this case. The reason is
that for this frequency there are many values
of x(n)cos(2πpn/N ) and x(n)sin(2πpn/N )
that are equal to zero. If p=N /4 then
2πNn/4N=πn/2 and for each odd n the val-
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Fig. 9. The test noise-free FM signal s2(n ) (a) and its realization corrupted by SαS noise with α=1.5 and γ=1
(b)

ues of cos(2πpn/N ) are equal to 0. The same
holds for all even n for sin(2πpn/N ).

Now consider the case when α=1.5 and
γ=4, i.e., stronger intensity noise. The plots
of MADRE(p), MADIM(p), PCKRE(p) and
PCKIM(p) are given in Fig. 11. For all
frequencies (except the 256-th), MADRE(p),
MADIM(p) are approximately equal, but they
have slightly increased in comparison to those
presented in Fig. 10. The values PCKRE(p)
and PCKIM(p) (except p=N /2=256) are ap-
proximately equal, but have decreased com-
pared to Fig. 10. They are now approximately
equal to 0.2, i.e. the PDF sufficiently differs
from the Gaussian distribution and has heavy
tails. This implies that even when noise tail
heaviness is known in advance, the characteris-
tics of noise in R(p,n) and I (p,n) described by
PCKRE(p) and PCKIM(p) can vary depend-
ing upon SNR. Then, one has to adapt to dis-
tribution characteristics of R(p,n) and I (p,n)
in order to provide accurate spectral estima-
tion and denoising.

As it follows from the analysis, the estimator
should be robust to outliers but also close to
the sample mean for PDFs without heavy tails
(see Fig. 3 and 5).

Two examples of such estimators are
Wilcoxon (WE) and Hodges-Lehmann (HL)
estimators [34], [35] (for details see Appen-
dix 1). Their statistical properties are quite
similar, but the latter one requires less com-
putations especially for a large sample size N.
Therefore, we consider the HL estimator be-
low. Note that these robust estimators pro-
duce the LP estimates close to the sample
mean [36] for the Gaussian PDF.

Another estimator obeying the desired prop-

erty is the ATM [5], [7], [29] with the trim-
ming parameter β=Nβ/N where Nβ defines
the number of outer trimmed elements for a
data sample of size N (see Appendix 1). A
well-known property of ATM is to be equal to
the MED if β?0.5 and to the sample mean if
β?0 [7].

A third estimator capable of producing an
estimate close to the mean for non-noisy sig-
nals is the sample myriad (MYR) under the
condition that its tunable parameter K is con-
siderably larger than the standard deviation
of the data sample [37]. In practice, it is suf-
ficient to set K greater than the data sample
standard deviation multiplied by 3 [38], [39].
The definition of the MYR is represented in
Appendix 1. Main properties of the MYR esti-
mator can significantly vary depending on the
value of K. In particular, for a relatively small
K, MYR is able to perform as an efficient mode
finder for both symmetric and asymmetric dis-
tributions [6], [30].

Therefore, we conclude that there are sev-
eral robust estimators which under certain
conditions are capable of producing a desired
behavior for data samples. However, for mod-
ulated signal samples we have different statis-
tics for R(p,n) and I (p,n) for each frequency
(see Figs. 5 and 8). Then, a question is how an
estimator can adapt to such situations of a pri-
ori unknown or changing properties of under-
lying distributions? Obviously, we need some
sort of adaptive RDFT estimators.

One of these solutions is the Taguchi’s adap-
tive alpha-trimmed mean estimator (AATME)
[40]. A second solution [17] is the adaptive es-
timator that presumes simple hard switching
(AD HS) between the MED (applied if an esti-
mated PCK for a data sample is smaller than
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Fig. 10. The plots of PCKRE(p) (a) and PCKIM (p) (c), MADRE(p) (b) and MADIM (p) (d) for FM signal
s2(n ) corrupted by SαS noise with α=1.5 and γ=1

Fig. 11. The plots of PCKRE(p), MADRE(p) (left column) and PCKIM (p), MADIM (p) (right column) for
FM signal s2(n) corrupted by SαS noise with α=1.5 (upper string) and α=1 (bottom string) (γ=4)

a preset threshold ψ) and HL estimator (used
otherwise). The recommended value of ψ is
about 0.2 (for details see Appendix 1).

The PCK is used also in the censored mean
adaptive estimator (CENS) [20]. However,
it also exploits a robust estimate of data
scale, namely, MAD for a considered data
sample. The estimator CENS exploits the
facts that the PCK for Gaussian distribu-
tion is approximately equal to 0.26 and the
standard deviation equals to σG=1.483MAD.
Then, the formed neighborhood D in case of
Gaussian noise approximately corresponds to
3σG-neigborhood of the mean (for details see
Appendix 1).

In order to understand how distortions
are reduced or removed in the CENS-based

RDFT-method, let us consider the following
example. According to the plots in Fig. 10,
the values of MAD are approximately equal
to 2, PCK is about 0.25, and than one ob-
tains D≈9 (see expression for D in Appendix
1). Taking into account that med{R(p,n)}
and med{I (p,n)} are about 0 (see Fig. 8),
the neighborhood limits are from about -9 till
about +9. The values belonging to this neigh-
borhood are averaged. Thus, the estimator
performs similarly to the sample mean with
respect to the values that approximately fit to
reasonably narrow limits (see Fig. 8). It can
be shown that all values R(p,n) and I (p,n)
participate in averaging for the histograms
presented in Figs. 3, 5a-d and 8a,b. At the
same time, there are outer trimmed values for
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the histograms in Figs. 5, 8, i.e., for situations
when noise is non-Gaussian and/or intensive.
This is desired for a robust estimator to be
used in the RDFT framework.

There are also two adaptive myriad estima-
tors (AM1 and AM2) that have been devel-
oped recently [38], [39]. The first one estimates
γ and α supposing that an underlying distrib-
ution is SαS. Estimations of γ and α are based
on calculations of MAD and PCK. Then the
optimal K is calculated for given estimates α̂
and γ̂ using established dependences [38], [39].
The second adaptive myriad estimator AM2
directly calculates the optimal K using eval-
uated values of MAD and PCK for the data
sample at hand (for details concerning AM1
and AM2 see Appendix 1).

Next, we determine the performance of these
estimators. To partly address this problem,
consider SαS distributions. There is an ap-
proach that allows determining an asymptotic
variance of the optimal M-estimator of LP for
each distribution from SαS family [41]. Vari-
ance of the myriad estimator with optimally
set K can be analytically determined as well.

Moreover, it is possible to determine opti-
mal weights for the L-estimator. They are
presented in Fig. 12a for data sample of
size N=64. For α=2 that corresponds to
Gaussian PDF, the sample mean is the optimal
L-estimator (all order statistics have the same
weights equal to 1/N ). For small α, order sta-
tistics with n≈N /2 have considerably larger
weights than others, i.e. MED is the quasi-
optimal L-estimator. These results serve as
good explanations of operation principles for
the AATME and CENS estimators.

Now, we analyze the variances of the consid-
ered estimators for the LP estimation. They
are presented as dependences on α for γ=1 and
N=512 in Fig. 12,b. As it can be seen, all
adaptive estimators perform well. In the worst
cases, variances for them are only 30% larger
than for the optimal M-estimator. Adaptive
myriad estimators provide the best perfor-
mance for small α. If the data sample size N

decreases, relative performance of all adaptive
estimators becomes poorer. The reason is due
to the fact that obtained values of the MAD
and PCK are less accurate for smaller N.

The main conclusion that follows from this
analysis is that the adaptive robust estimators
seem to be able to provide improvement if they
are used in RDFT framework instead of non-
adaptive estimators such as the MED or ATM.

IV. U�� �� ��� �������� ���
������ 
�
RDFT ����� �
��� ���	���
��

Let us consider the efficiency of the proposed
adaptive robust estimators within the RDFT
framework of signal processing. Consider MSE
of spectral estimates for test signals (TS) s1(n)
and s2(n) determined by equations (6) and
(7).
The following RDFT-methods have been an-

alyzed:
1. Method based on MED estimator (ẊMED);
2. Method based on ATM estimator with fixed
β=0.25 (ẊATM);
3. Method based on WE estimator (ẊWE);
4. Method based on HL estimator (ẊHL);
5. Method based on AATME estimator
(ẊAATME);
6. Method based on AD HS estimator
(ẊADHS);
7. Method based on CENS estimator (ẊCENS);
8. Method based on adaptive myriad estima-
tor (ẊAM).
The estimators 1-4 are non-adaptive and the

estimators 5-8 are adaptive. The estimators 5
and 7 are, in fact, special kinds of adaptive
alpha-trimmed mean estimators.
The results of the numerical analysis of

the considered methods for harmonic TS
s1(n) corrupted by zero-mean white additive
Gaussian noise are summarized in Table 3.
Let us start with the analysis of the noise-
free case. All non-adaptive estimators intro-
duce certain distortions. However, for the WE
and HL estimators these distortions are con-
siderably smaller than for the standard MED.
Adaptive estimators except the CENS also in-
troduce distortions. The performance of other
adaptive estimators deteriorate, however, they
still achieve more accurate results than the
MED.
If the input SNR is large enough (consider

σG=1), the results for the standard DFT and
RDFT methods based on the WE and the
proposed adaptive estimators are comparable.
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Fig. 12. Optimal weights for L-estimator (N=64) (a) and variance values of LP estimation for the considered
adaptive and optimal estimators (N=512) (b) for the SαS processes (γ=1)

For other estimators, the negative effect of in-
troduced distortions is larger than the positive
effect of noise suppression.

If the input SNR is small (see data for
σG=10), MSE values for all robust forms of
DFT (except Taguchi’s estimator) are smaller
than for the standard DFT. The best results
are provided by the MED-method; among
adaptive estimators the AD HS produces the
smallest MSE. Thus, there is no estimator that
allows obtaining a minimal MSE for all con-
sidered situations. The main advantage of the
adaptive robust estimators is that they pro-
duce MSE close to minimally reachable for
wide ranges of input SNR.

Another set of experiments has been car-
ried out for the FM signal s2(n) corrupted by
heavy-tailed noise. Noise has been simulated
as a process with SαS PDF with α from 0.5
till 2 and fixed γ=1. The simulation data are
collected in Table 4.

Let us start analysis from Gaussian noise
case (α=2). A MED form of DFT produces
considerable distortions that result in MSE
almost three times larger than for standard
DFT. Other RDFT methods provide a smaller
MSE, especially the methods based on W, HL
and AD HS estimators.

For α=1.5 the influence of heavy-tailed noise
on the standard DFT becomes significant.
All RDFT forms estimate the signal spec-
trum more accurately than the standard DFT.

Again, the RDFT-methods based on the WE,
HL and AD HS estimators provide the best
results. Other adaptive estimators have a
slightly worse accuracy. The standard DFT
fails for noise with Cauchy PDF (α=1). All
adaptive methods are almost as accurate as
the non-adaptive methods.

Finally, if α=0.5 the standard DFT fails and
the MED-method of RDFT achieves the best
performance among non-adaptive forms. The
best adaptive methods are based on Taguchi’s
adaptive estimator or CENS in this case.
Other adaptive methods perform reasonably
well.

Thus, when statistical properties of noise are
unknown the main advantage of adaptive esti-
mators used in RDFT framework is that they
produce accuracy close to reachable best val-
ues.

To demonstrate this advantage, consider
two examples. Fig. 13a shows the amplitude
spectrum estimate obtained by the standard
DFT. As depicted, noise masks the spectrum
of the signal and this estimate resembles an es-
timate of the white noise spectrum. The spec-
trum estimate obtained by the MED-method
of RDFT is demonstrated in Fig. 13b. Here
the signal spectrum in the frequency band
F=50 Hz is clearly seen but it is distorted
(the thin line shows the RDFT spectrum es-
timate and the thick solid line relates to the
true spectrum of FM signal s2(n)). Ampli-



AN OVERVIEW OF THE ADAPTIVE ROBUST DFT 1135

TABLE III

MSE �� ��� �� ���	���� ���
���
�� ��� TS s1(n)	�������� �# ���
�
�� G����
�� ��
��

σG 0 0.5 1 2 4 8 10

ẊST 0 0.00049 0.00192 0.00782 0.0309 0.249 0.194

ẊMED 0.00545 0.00537 0.00545 0.00613 0.0115 0.0370 0.058

ẊATM 0.00362 0.00390 0.00478 0.00896 0.0250 0.0862 0.133

ẊWE 0.00058 0.00090 0.00197 0.00626 0.0218 0.0844 0.132

ẊHL 0.00199 0.00211 0.00284 0.00690 0.0237 0.0913 0.142

ẊAATME 0.00498 0.00559 0.00610 0.00864 0.0309 0.1250 0.194

ẊADHS 0.00199 0.00212 0.00285 0.00685 0.0174 0.0592 0.097

ẊCENS 0 0.00051 0.00199 0.00913 0.0301 0.1033 0.156

ẊAM 8.81·10−70.00048 0.00207 0.00809 0.0239 0.0829 0.127

TABLE IV

MSE �� ��� �� ���	���� ���
���
�� ��� FM �
��� s2(n) 	�������� �# ��
�� (γ=1)

α 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

ẊST ∞ ∞ ∞ ∞ ∞ ∞ ∞ 1.11

ẊMED 0.0177 0.0152 0.0133 0.0117 0.0112 0.0102 0.0095 0.0090

ẊATM 0.0352 0.0270 0.0207 0.0168 0.0143 0.0117 0.0102 0.0088

ẊWE 0.0452 0.0325 0.0236 0.0181 0.0147 0.0114 0.0095 0.0077

ẊHL 0.0504 0.0366 0.0264 0.0204 0.0165 0.0127 0.0105 0.0084

ẊAATME 0.0133 0.0116 0.0111 0.0101 0.0094 0.0089 0.0085 0.0133

ẊADHS 0.0230 0.0197 0.0162 0.0127 0.0104 0.0084 0.0071 0.0230

ẊCENS 0.0179 0.0151 0.0131 0.0111 0.0096 0.0082 0.0073 0.0179

ẊAM 0.0211 0.0182 0.0161 0.0149 0.0121 0.0092 0.0081 0.0211

TABLE V

(T�� � 4 	���
����). MSE �� ��� �� ���	���� ���
���
�� ��� FM �
��� s2(n) 	�������� �# SαS

PDF (γ=1)

α 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

ẊST 0.2929 0.0978 0.36609 0.03078 0.00927 0.00822 0.00797 0.00249

ẊMED 0.0087 0.0080 0.00773 0.00752 0.00726 0.00714 0.00557 0.00653

ẊATM 0.0077 0.0067 0.00597 0.00550 0.00498 0.00447 0.00660 0.00367

ẊWE 0.0066 0.0053 0.00443 0.00396 0.00338 0.00285 0.00393 0.00209

ẊHL 0.0071 0.0057 0.00472 0.00418 0.00359 0.00300 0.00462 0.00215

ẊAATME 0.0116 0.0077 0.00714 0.00667 0.00616 0.00561 0.00726 0.00481

ẊADHS 0.0197 0.0057 0.00474 0.00420 0.00360 0.00300 0.00462 0.00216

ẊCENS 0.0151 0.0062 0.00535 0.00480 0.00419 0.00361 0.00497 0.00274

ẊAM 0.0182 0.0072 0.00585 0.00502 0.00425 0.00373 0.00493 0.00277
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tudes of spectrum estimates for F>50 Hz have
sufficiently decreased due to applying the ro-
bust estimator. Finally, the adaptive CENS
estimator estimates more accurately the sig-
nal component spectrum for F=50 Hz (see
the plot in Fig. 13c). This simple exam-
ple demonstrates two advantages of the RDFT
methods. First, these methods achieve higher
noise suppression in the frequency range where
noise-free signal spectrum is practically equal
to zero. Second, they also achieve more ac-
curate estimates in the frequency range where
the noise-free signal spectrum essentially dif-
fers from zero.
Then, if a signal spectrum is estimated

based on the RDFT, it becomes possible to
carry out denoising with using ideal low-pass
filter in spectral domain that has K (p)=1 if
fp=fupper and 0 otherwise. Let us set the up-
per frequency fupper equals to 100 Hz for the
considered TS s2(n). The input signal cor-
rupted by noise with Cauchy PDF and γ=1 is
presented in Fig. 14a. The output signal is
obtained by the application of RDFT-method
based on CENS estimator, ideal low-pass filter
and standard inverse DFT. It is shown in Fig.
14b. Obviously, excellent denoising is pro-
vided. The impulse noise is removed but also
we achieved the suppression of non-impulsive
noise components. This can be confirmed by
MAE values

MAE =
1

N

N∑

n=1

|x̂(n)− x(n)| (10)

where x̂(n) denotes the reconstructed sig-
nal obtained by RDFT filtering approach.
MAE=5.505 for the noisy signal shown in Fig.
14a, while for the denoised signal MAE=2.147
without low-pass filtering and MAE=1.417
with low-pass filtering.

V. C��	 ��
���, ����� �� ���� ����
��� ������	�
���

The general overview of the RDFT-based
signal processing approach is presented and
the requirements for robust estimators are for-
mulated. Several non-adaptive and adaptive
estimators are considered. It has been shown
that the main advantage of adaptive estima-
tors is the robustness in wide sense. They

also provide a possibility to improve efficiency
of signal processing (spectrum estimation, de-
noising) methods to potentially reachable lim-
its for wide range of noise parameters. In par-
ticular, the RDFT based on adaptive estima-
tors can be useful for low input SNRs even if
noise is Gaussian. Their application becomes
even more practical if noise is non-Gaussian
and heavy-tailed. Adaptive estimators CENS
and AD HS seem to be the best practical
choice. All presented analysis was done for
harmonic and FM real-valued signals. How-
ever, the same steps are also valid for complex-
valued input data.
In this overview, we have concentrated on

RDFT applications for spectral analysis and
filtering. However, it is worth stressing that
the RDFT methods can also be applied in
other spectral analysis tasks such as the time-
frequency analysis for deriving Wigner-Ville or
other distributions [21], [42], estimation of sig-
nal parameters [26], etc.
Also note that robust estimators can be use-

ful for data processing based on other than
DFT orthogonal transforms as, e.g., discrete
cosine transform or Hadamard transforms [27,
43]. Furthermore, the RDFT can be applied to
signal subintervals that can be overlapping or
not [25]. In this case, data processing becomes
similar to the methods used in discrete cosine
transform-based denoising [44]. Our future
work will concentrate on applying the adap-
tive robust estimators for processing signals
embedded in non-Gaussian noise using other
than DFT orthogonal transforms.
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Appendix1
Estimator Expression

x (n) is the input sample, n∈[1,N ]; X (q) denotes the q -th order statistic for data sample x (n )

Sample mean X̂MEAN =
∑N
n=1 x(n)

Sample median X̂MED = median {x(n)} =

{
X([N+1]/2), if N is odd

(X(N/2) +X(N/2+1))/2, if N is even

Alpha-trimmed
mean

X̂ATM = 1
N−Nβ1−Nβ2

∑N−Nβ2
i=Nβ1+1X

(i), Nβ1=Nβ2=βN, 0=β=1

Wilcoxon estimator
X̂WE = median

{
x(1)+x(1)

2
;
x(1)+x(2)

2
; ...;

x(1)+x(N)
2

;
x(2)+x(2)

2
;

x(2)+x(2)
2

; ...; x(N−1)+x(N)
2

; x(N)+x(N)
2

}

median value of the enlarged sample of size N (N +1)/2

Hodges-Lehmann
estimator

X̂HL = median
{
x(1); x(2); ...; x(N); x(1)+x(N)

2
; x(2)+x(N−1)

2
;

...;
x(N/2)+x([N+2]/2)

2

}

median value of the enlarged sample of size N+N /2

Myriad estimator X̂MYR = myriad {K; x(1), ...,x(N)} = argmin
θ∈Θ

∑N
n=1 ln

{
K2 + [x(n)− θ]2

}

where K>0 denotes the linearization (tuning) parameter
Adaptive Alpha-
Trimmed Mean
Estimator
proposed by A.
Taguchi

Alpha-trimmed mean estimator with Nβ = [|1− β| (N − 1) /2]
where [. . . ] denotes the rounding to the nearest integer value; β is evaluated
for each data sample according to the expressions

β = σ2/
(
σ2 + σ2D

)
, σ2 =

{
σ2X − σ2D , if σ

2
X ≥ σ

2
D

0, otherwise
,

σ2X is the variance of the processing data sample, σ2D denotes the variance of
the main distribution (is set a priori)

Adaptive Hard-
Switching Estima-
tor

X̂AD HS =

{
X̂MED,

X̂HL,

KP ∈ (0;ψ0)
KP ∈ [ψ0;+∞)

,

where Kp is an adaptation parameter which uniquely depends on tail heaviness;
ψ0 denotes the threshold value

Adaptive Censor-
ing Estimator

X̂CENS =
1
N

∑N
n=1 x(n)δ(n) where

δ(n) =

{
1, if x(n) ∈ [X̂MED −D; X̂MED +D]

0, otherwise
, N =

∑N
n=1 δ(n)

D = 4.5 ·MAD · PCK/0.26

Adaptive Myriad
Estimator 1

K̂1 =

{ (
−0.66 + 0.44e1,28α̂+ 7.62 · 10−34e39.24α̂

)
γ1/α, α̂ ≥ 0.3

0, otherwise

α̂ = 1.035 · 103 ·K4
P − 419.8 ·K

3
P + 55.17 ·K

2
P + 2.051 ·KP + 0.286

γ1/α = MAD/C(α̂)
C(α) = 1.84α6 − 14.18α5 + 44.36α4 − 72.02α3 + 64.3α2 − 30.3α+ 7.02

Adaptive Myriad
Estimator 2

K̂2 = MAD · f2 (KP)
f (KP ) = 3.029 · 10

5 ·K6
P − 2.011 · 10

5 ·K5
P + 4.95 · 10

4 ·K4
P − 5434 ·K

3
P+

265.8 ·K2
P + 2.36 ·KP + 0.032, for KP ∈ (0; 0.25];

f (KP ) = 2.53 · 10
5 ·K2

P − 1.301 · 10
5 ·KP + 1.673 · 10

4, for KP ∈ (0.25;+∞]

Percentile Coeffi-
cient of Kurtosis

PCK = KP =
1
2

Q3−Q1

P90−P10
where Q 1 and Q 3 denote the 1st and the 3rd quartiles, P90 and P10 are the
90th and 10th percentiles of the processing data sample.

Median Absolute
Deviation from
Median

MAD = median
{∣∣∣x(n)− X̂MED

∣∣∣
}
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Fig. 13. Amplitude spectrum estimates for FM signal s2(n ) corrupted by noise with Cauchy PDF (γ=1)
obtained by the standard DFT (a), MED-method of RDFT (b) and RDFT-method based on CENS (c)

Fig. 14. The TS s2(n) corrupted by noise with Cauchy PDF (γ=1) (a) and its estimate obtained by RDFT
filtering approach based on CENS-method (b)
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