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Modification of the robust chirp-rate
estimator for impulse noise
environments

Igor Djurovié, Pu Wang, Cornel Ioana

Abstract— A modification of the robust chirp-
rate estimator is proposed. The proposed
technique has large breakdown point resulting
in robustness to high amount of the impulse
noise. In this approach, robust filtering of the
polynomial-phase signals (PPS) is performed in
an initial stage followed by the standard chirp-
rate estimation for filtered signal. Numeri-
cal examples confirm accuracy of the proposed
technique with pre-filtering in the initial stage.

I. INTRODUCTION

The parameter estimation of polynomial
phase signals (PPS) is an important issue in
numerous research areas. The main research
stream are so-called phase differencing tech-
niques considered by numerous authors [1]-[6].
There are several alternatives including novel
differential-equation based approach from [7].
Recently, O’Shea has proposed an innovative
technique for chirp-rate estimation that in-
cludes non-linearity of the second-order in the
transform [8]. Several improvements and gen-
eralization of this transform are proposed in
[8]-[14]. This estimator is developed for the
Gaussian noise environment and it does not
produce accurate results for the impulse noise
environments. We have proposed a robust
form of the O’Shea estimator that can be used
for impulse and mixed Gaussian and impulse
environments [12]. In the same direction, we
develop a modification that is able to produce
accurate results for impulse noise environment
with higher percentage of impulses than in the
case of the initially proposed technique, i.e.,
the proposed chirp-rate estimator has higher
breakdown point than the previous technique.

The manuscript is organized as follows. In
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Section II, the chirp-rate estimator and the ro-
bust chirp-rate estimator are reviewed. The
proposed modification is introduced in Section
III. Numerical examples are given in Section
1v.

II. CHIRP-RATE ESTIMATOR

A. Basic form

Consider a PPS z(t) = Aexp(jo(t)). The
first derivative of the signal phase is defined
as the instantaneous frequency (IF) w(t) =
@' (t). A class of the IF estimators is based
on the time-frequency (TF) analysis [15]-[17].
Consider, for example, the Wigner distribu-
tion (WD) here given in windowed (pseudo)
discrete-time form:

oo

WD(t,w) = Z w(nT)

n=—oo

xa(t +nT)z*(t —nT)el~72nT) (1)

where T is the sampling interval and w(nT) is
the window function. The IF can be estimated
by using peaks of the WD as:

W(t) = arg max WD(t,w). (2)

Note that the phase of the local auto-
correlation z(t4+nT)x*(t—nT) using the mod-
ified Taylor’s series expansion can be written
as:

O(t,nT) =Pt +nT) — p(t —nT) =

n 3
~ 2¢/ (t)(nT)+¢" (t)%m“)(t)

(nT)?
60

+...,

(3)
where ¢(@(t) denotes the a-th derivative of the
signal phase. If higher-order phase terms are
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equal to 0 i.e., oY (t) = 0 for a > 2, the WD
is ideally concentrated on the IF. As a result,
a well-known central phase difference formula
can be approximated as:

9t +nT) - ¢(t —nT)

§(0) ~ ot @

Estimation of the higher-order phase terms
is also very important [1]-[6], [18], [19]. In gen-
eral, it is required to have higher order non-
linearity in the estimator. However, the non-
linearity causes degradation of the estimate
performance with respect to additive noise in-
fluence.

Similarly, the difference equation for estima-
tion of the chirp-rate parameter (the second-
derivative of the phase) can be written as:

ot +nT) —26(t) + ¢o(t —nT)
(nT)?

¢"(t) ~ , (5)
which corresponds to the local auto-correlation
function x(t +nT)z*2(t)x(t — nT). Tt is noted
that 2*2(t) does not depend on nT neither does
the magnitude of the local auto-correlation
function. Therefore, the chirp-rate can be es-
timated by using the nonlinear kernel z(t +
nT)x(t —nT) as [8]:

oo

Ct,) = > wnl)

n=—oo

xa(t +nT)z(t — nT)e 72T ()

where C(t,Q) is referred as the cubic phase
function (CPF), and ) denotes chirp-rate in-
dex. Estimation of the chirp-rate can then be
performed as:

Qt) = argmgX|C(t,Q)|. (7)

In this manner non-linearity for the chirp-rate
estimation is kept the same as in the case of the
WD, i.e., the second-order. It results in high
accuracy approaching toward the Cramer-Rao
lower bound (CRLB) for a wide range of the
signal-to-noise ratios (SNR) for Gaussian noise
environment (8], [9], [11]. However, this tech-
nique in the presented form cannot be used for
impulse noise environments.
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B. Robust form

The CPF (6) can be written in the alterna-
tive form:

C(t, Q) = mean{x(t + nT)z(t — nT)

xe(ZI2T) |y e [-N/2,N/2]}.  (8)

Here, we assume that the window function is
w(nT) =1/(N +1) for n € [-N/2,N/2] and
w(nT) = 0 elsewhere. This form suffers from
the same troubles as the linear moving average
filter in signal filtering. Namely, all samples
of modulated auto-correlation x(t + nT)z(t —
nT) exp(—jQ(nT)?) are taken with the same
weights. Samples corrupted with impulse noise
can significantly disturb this function and at
the same time they can worsen accuracy of the
CPF. Therefore, the robust form of the CPF
is proposed in [12] where the L-filter form of
the chirp-rate estimator is introduced:

N/2
Cr(t, Q) = Y aifrq(t, Q) +jig (t, Q)]

I=—N/2
(9)
where r(j)(t,€2) € R(t,Q) and i) (t,2) €
I(t,€2). Sets R(t,€2) and I(t, Q) are formed
as:

R(t, ) = {Re{x(t + nT)x(t — nT)

xeTIUTY |y e [-N/2,N/2)},
I(t, ) = {Im{x(t + nT)x(t — nT)
xe(ZIMT N |y e [-N/2,N/2]},  (10)

Elements rq)(t,) and ig)(t,2) from the
corresponding sets are sorted into a non-
decreasing order:

rg(t, Q) < (11)
ig(t,Q2) <

Parameters of the L-filter are selected as:
Zii/EN/Q a; = 1 (energy condition) and a; =
a—; (unbiasedness condition). We select these
parameters according to the a-trimming rule:

o= { (1)/(2Na+ 1) le[-aN,aN]

elsewhere, (12)
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where for a = 1/2 we obtain the standard
chirp-rate estimator (8) while for a € [0,1/2)
we obtain the robust form where some percent-
age of the samples with the highest values is
removed.

III. PROPOSED MODIFICATION

Consider the following signal model:

a(t) = f(t) +v(?),

where f(t) = Aexp(j¢(t)), while the noise can
be written as: v(t) = vi(t) + jra(t) where
impulses appear in both vq(t)and vo(t) with
probability p (p/2 is probability of both pos-
itive and negative impulses). Impulses have
the same magnitude. We further assume that
vi(t), i = 1,2 are mutually independent i.i.d.
processes, i.e., E{v;({t')v;(t")} = pB*3(t' —
t")6(i — j), i = 1,2, where f is amplitude of
pulses. The real part of Re{z(t + nT)z(t —

nT) exp(—jQ(nT)?)} can be calculated as:

Re{z(t + nT)z(t — nT) exp(—jQUnT)?)} =
= Re{a(t +nT)z(t — nT)} cos(QnT)?)
+Im{z(t +nT)x(t —nT)} sin(Q(nT)z) =
=[r(t +nT)r(t —nT) — it + nT)i(t — nT)]

x cos(Q(nT)?)
+r(t+nT)i(t —nT) +i(t +nT)r(t — nT)]
x cos(Q(nT)?). (13)

For n # 0 in the resulting sequence probabil-
ity of appearance of pulses is approximately 4p
(for small p where p?> < p). This fact results
in significant drawbacks in the robust estimate
(9). Therefore, high percentage of pulses de-
grades performance of the robust transforms
and, in addition, it reduces a so-called break-
down point of the algorithm [20]. On one
hand a small trimming parameter a is pre-
ferred in order to avoid impulses for high per-
centage of pulses. On the other hand, a small
value of a causes the spectral distortion ef-
fect in the estimate of the CPF [21] and, con-
sequently, it reduces estimator accuracy [22].
Specifically, for relatively modest percentage
of pulsed p > 1/8, where the resulting signal
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of (13) has probability of impulse noise appear-
ance greater than 1/2, robust estimate (9) is
unable to produce accurate results.

In this paper, the goal is to develop a
method that would reduce the influence of im-
pulses to the CPF. For this purpose a two-
step procedure is proposed. Firstly, filtering of
pulses is performed by using the robust DFT
based filter [21],[22]. In the second step, the
standard CPF evaluation of the filtered signal
is performed. This procedure can be described
as:

z(t) — (1)

= IDFT{X(w)} — CPF;(t,Q) — Q(t),

(14)
where CPF;(t, Q) is the standard CPF (8) cal-
culated for #(t), a signal obtained using the
robust DFT-based filtering. In order to re-
duce the impulses as much as possible, the
robust DFT form with high breakdown point
proposed in [22] is applied. The robust DFT
form can be calculated as:

X(w) = X1 (w) + Xa(w) + j[Xs(w) + Xy (w)],
(15)
where
N/2
= Z air i1 (w) (16)
I=—N/2

while r(;1)(w) are sorted elements from the

sets:
rin(w) € Ri(w)
— {(nT,w)ln € [-N/2, N/2]},

i=1,2,34, (17)
where r1(nT,w) = Relz(nT)]cos(w(nT)),
ro(nT,w) = Im[z(nT)] sin(w(nT)), r3(nT,w) =
—Re[z(nT)]sin(w(nT)) and ry(nT,w) =
Im[z(nT)] cos(w(nT)). In this way all four
quantities X;(w), i = .4, are calculated
by using modulated Sequences with the same
percentage of pulses. This leads to the sig-
nal filtered by using transform X (w) with
high breakdown point and with significantly
reduced influence of impulse terms. Namely,
percentage of pulses in transforms X;(w), i =
1,...,4, is equal to p, i.e., it is significantly re-
duced with respect to (9). Then, the chirp-rate
is estimated by using the CPF of filtered signal
Z(t).
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IV. NUMERICAL EXAMPLES

We consider a signal
x(n) _ Ae(ja3n3/6+ja2n2/2+ja1n+jao)' (18)

Parameters of the signal are selected as A =1,
ap = 1, a1 = ©/5, aa = 7/(5N) and a3z =
—7/(8N?). Signal is considered in the interval
n € [—(N —1)/2,(N —1)/2] where N = 513.
The chirp-rate of this signal is Q(n) = as +
asn. Estimation is performed for middle of the
interval n = 0 where the chirp-rate is (0) =
as.

Four types of noise environments are consid-
ered in our study.

Ezxample 1. The first noise environment is
a mixture of the Gaussian noise and impulsive
noise of the salt and pepper type:

v(n) = o(vi(n)+jra(n))/V2+ (19)
+6(&1(n) + j&a(n)),
where v;(n), ¢ = 1,2, are mutually non-

correlated Gaussian noises with zero-mean
and unitary variance, F{v;(n)} = 0,
E{vi(n)vj(n)} = 0(i — j), i,j = 1,2. Impul-
sive noise components are denoted as &;(n),
i = 1,2 where {;(n) = 0 and E{¢;(n)§;(n)} =
0 for ¢ # j. We assume that percentage of
pulses is p (equal probability of both positive
and negative pulses) where amplitude is set to
unity. Strength of pulses is controlled with the
parameter 5. In our experiments we set 3 = 5.

Figure 1 depicts root mean squared estima-
tion errors (MSE) for different robust DFT
forms as a function of probability of impulse
noise for fixed amount of the Gaussian noise.
The results are given for SNR=10logo(A4%/0?)
equal to -6dB, -3dB, 0dB and 3dB respec-
tively (hereafter we assume the SNR as the
ratio between signal power and variance of
Gaussian noise component). The accuracy is
compared for the standard CPF, the robust
CPF with a = 1/4, the median CPF form,
and for the proposed technique (denoted with
‘New’ with given parameter of the robust DFT
used for signal filtering). It can be seen that
the improvement achieved with the proposed
technique for large amount of the Gaussian
noise (Fig. 1a) is quite moderate and it exhibits
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about 1.1dB with respect to the standard ro-
bust CPF and about 0.9dB with respect to
the robust DFT for p = 0.2. However, this
improvement is quite large in the case of the
smaller amount of the Gaussian noise compo-
nent. For example, the improvement of the
proposed technique for p = 0.2 and SNR=-
3dB (see Fig. 1b) with respect to the stan-
dard CPF is about 12dB while with respect to
the robust CPF from [12] it is about 3dB. Im-
provement is even more emphatic for smaller
amount of the Gaussian noise.

Ezample 2. The second, more realistic,
noise model is sum of Gaussian with cube of
Gaussian noise:

v(n) = o(vi(n) + jra(n)/ V2t
a(vi(n) + jvi(n))/v2

where v;(n), i = 1,2,3,4, are mutually non-
correlated Gaussian noises with zero-mean and
unit variance, E{v;(n)} = 0, i = 1,2,3,4,
E{vi(n)vj(n)} = (¢ — j). Simulation re-
sults are given in Fig. 2 which shows the root
MSE as a function of « for a fixed amount of
Gaussian noise component. Obtained results
show that the proposed technique has signifi-
cantly improved accuracy with respect to the
robust CPF from [12] and with respect to the
standard CPF form.

Ezample 3. Recently, a very commonly used
model of the heavy tailed noise is the sym-
metric a-stable noise [23]. This noise is char-
acterized with two parameters («,~y) where

€ [0,2]. Smaller « implies more impulsive
noise. Parameter v corresponds to the noise
strength. The a-stable noise has been suc-
cessively applied for numerous phenomena ap-
pearing in practical applications, for example:
atmospheric noise, Internet traffick modeling,
noise in video-sequences, etc. Results of the
Monte-Carlo simulations for o = 0.4, a = 0.8,
a =12, and a = 1.6 as function of v € [1,10]
are depicted in Fig. 3. Again it can be seen
that the proposed modification produces sig-
nificantly better results than the robust CPF
from [12]. This improvement is more emphatic
for heavier impulsive environment (smaller «).

Ezample j. Several studies have shown the
importance of designing impulsive noise gen-

(20)
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Root-mean squared error in chirp rate estimation with different cubic phase function forms for mixed

Gaussian and impulsive noise environment as function of percentage of impulsive noise for fixed amount of

Gaussian noise component.

erator with characteristics accurately corre-
sponding to the practical noise environments
[24], [?]. In [25], an impulsive generator for
telephone networks of the British Telecom and
Deutsche Telekom with appropriate ampli-
tude, length, inter-arrival and spectral analy-
sis has been proposed. The Weibull noise with
probability density function (here considered
in the symmetric form) has been proposed as
a proper model of the amplitude of impulses:

F(Q) = gasll" e e 1)
In our experiment (Fig. 4a) the CPF forms
are tested for the Weibull noise environment
with fixed = 1 and varying 3. It can be seen
that the a proposed modification outperforms
the other related CPF techniques.

In addition, it has been shown in [25], that
the probability density function of the impulse
width is a sum of two log-normal distributions.
One of them corresponds to the impulses of

relatively narrow width while the other cor-
responds to relatively wide impulses. In or-
der to simulate similar environment we con-
sidered model from Example 1 with only im-
pulsive noise component (o = 0). The width
of impulses is set to one sample with proba-
bility 0.8p, two samples with probability 0.1p,
three samples with probability 0.05p and eight
sample with probability 0.05p. In this way
we model noise environments with narrow and
wide impulses. Obtained results as function
of the total impulse noise probability p are
depicted in Fig. 4b. Again, one can notice
improvement of the proposed techniques with
respect to previously proposed CPF forms.

V. CONCLUSION

We have demonstrated that improvement in
the chirp-rate estimation can be achieved when
the signal is pre-filtered with the robust DFT-
based filters. The accuracy improvement can
be observed with respect to both the standard
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CPF and the robust CPF where estimation
function is calculated for auto-correlation of
the signal. The proposed technique can be
used in combination with other higher-order
tools for parametric signal estimation in pres-
ence of impulsive noise.

VI. ACKNOWLEDGMENT

The work of Igor Djurovi¢ was realized at
the INP Grenoble, France, and supported by
the CNRS, under contract No. 180 089 013
00387. This work is supported in part by the
Ministry of Education of Science of Montene-
gro. The work of P. Wang was supported in
part by the National Natural Science Founda-
tion of China under Grant 60802062.

REFERENCES

[1] S.Peleg and B. Porat, “Linear FM signal parame-
ter estimation from discrete-time observations,”
IEEE Trans. Aerosp. Electron. Syst., Vol. 27, No.
4, pp. 607-614, Jul. 1991.

[2] S. Peleg and B. Friedlander, “Multicomponent
signals analysis using the polynomial-phase trans-

(4]

(5]

(7]

form,” IEEE Trans. Aerosp. Electron. Syst., Vol.
32, No. 1, pp. 378-387, Jan. 1996.

J. C. Wood and D. T. Barry, “Radon transfor-
mation of time-frequency distributions for analy-
sis of multicomponent signals,” IEFE Trans. Sig.
Proc., Vol. 42, No. 11, pp. 3166-3177, Nov. 1994.
S. Barbarossa, “Analysis of multicomponent LFM
signals by a combined Wigner-Hough transform,”
IEEFE Trans. Sig. Proc., Vol. 43, No. 6, pp. 1511—
1515, Jun, 1995.

B. Friedlander and J. M. Francos, “Estimation of
amplitude and phase parameters of multicompo-
nent signals,” IFEE Trans. Sig. Proc., Vol. 43,
No. 4, pp. 917-926, Apr. 1995.

S. Barbarossa, A. Scaglione, and G. Giannakis,
“Product high-order ambiguity function for multi-
component polynomial phase signal modeling,”
IEEE Trans. Sig. Proc., Vol. 46, No. 3, pp. 691—
708, Mar. 1998.

M. Fliess, M. Mboup, H. Mounier, and H. Sira-
Ramirez, “Questioning some paradigms of sig-
nal processing via concrete examples,” Algebraic
Methods in Flatness, Signal Processing and State
Estimation, 2003, pp. 1-21.

P. O’Shea: “A fast algorithm for estimating the
parameters of a quadratic FM signal,” IEEFE
Tran. Sig. Proc., Vol. 52, No. 2, Feb. 2004, pp.
385-393.

M. Farquharson and P. O’Shea, “Extending the
performance of the cubic phase function algo-



1146 TIME-FREQUENCY SIGNAL ANALYSIS

o 10° N 10°
‘ ‘ ‘ ‘ =16
o=1.2
25t DFT
3r — — - o=1/4
median DFT
2r New a=3/8
= = = New a=1/4
2r 15| eeeenes New a=1/8
1t
1k
0.5+
0 0

Fig. 3. Root-mean squared error in chirp rate estimation with different cubic phase function forms for a—stable
noise environment: (a) a =0.4; (b) a =0.8; (¢) « =1.2; (d) a = 1.6.

x10° x10°
4 i i i i i
DFT 3t
== asl/4
3| median DFT | | 257+
— New 0.=3/8
== == = New o=1/4 2t
eeccces New a=1/8
21 15}
1t
1 L
0.5}
0 : : : : ...:.r O - - : /-.qbi;;;°...
0.2 0.4 0.6 0.8 1 0.1 0.2 0.3 0.4 0.5
(a) B (b) P

Fig. 4. Root-mean squared error in chirp rate estimation with different cubic phase function forms for: (a)
Weibull noise environment; (b) For noise environment with varying impulse noise widths.



MODIFICATION OF THE ROBUST CHIRP-RATE ESTIMATOR...

(10]

[11]

(12]

(13]

[14]

[15]

(16]

[17]

rithm,” IEEE Tran. Sig. Proc., Vol. 55, No. 10,
Oct. 2007, pp. 4767-4774.

M. Farquharson, P. O’Shea and G. Ledwich, “A
computationally efficient technique for estimating
the parameters of polynomial phase signals from
noisy observations,” IEEE Tran. Sig. Proc., Vol.
53, No. 8, Aug. 2005, pp. 3337-3342.

P. O’Shea, “A new technique for instantaneous
frequency rate estimation,” IEEFE Sig. Proc. Let.,
Vol. 9, No. 8, Aug. 2002, pp. 251-252.

P. Wang, I. Djurovi¢ and J. Yang, “Instantaneous
frequency rate estimation based on robust cubic
phase function,” in Proc. of IEEE ICASSP’06,
Toulouse, France, Sept. 2006.

P. Wang, I. Djurovi¢ and J. Yang, “Modifications
of the cubic phase function”, Chinese Journal of
Electronics, Vol. 17, No. 1, Jan. 2008, pp. 189-194.
P. Wang, I. Djurovi¢ and J. Yang, “Generalized
high-order phase function for parameter estima-
tion of polynomial phase signal”, IEEE Trans. on
Signal Processing, Vol. 56, No. 7, July 2008, pp.
3023-3028.

B. Boashash, “Estimating and interpreting the in-
stantaneous frequency of a signal - Part I,” Proc.
IEEE, Vol. 80, No.4, Apr. 1992, pp. 521-538.

V. Katkovnik and LJ. Stankovi¢, “Instantaneous
frequency estimation using the Wigner distri-
bution with varying and data driven window
length,” IEEE Trans. Sig. Proc., Vol. 46, No.9,
Sept. 1998, pp. 2315-2325.

B. Barkat, “Instantaneous frequency estimation
of nonlinear frequency-modulated signals in the
presence of multiplicative and additive noise,”
IEEFE Trans. Sig. Proc., Vol. 49, No.10, Oct. 2001,
pp. 2214-2222.

(18]

19]

[20]

21]

22]

(23]

24]

[25]

1147

T. Abotzoglou, “Fast maximum likelihood joint
estimation of frequency and frequency rate,”
IEEE Trans. on Aerosp. Electron. Syst., Vol. 22,
pp. 708-715, Nov. 1986.

P. M. Djuri¢ and S. Kay, “Parameter estimation
of chirp signals,” IEEE Trans. Sig. Proc., Vol. 38,
No. 12, pp. 2118-2126, Dec. 1990.

D. L. Donoho and P. J. Huber, The notion of
breakdown point, in E.L. Lehmann Festschriftt,
P. J. Bickel, K. Doksum, and J. L. Hodges, Jr.,
Eds. Belmont, CA: Wadsworth.

I. Djurovi¢, and LJ. Stankovié, “Realization of
the robust filters in the frequency domain”, IEEE
Signal Processing Letters, Vol.9, No.10, Oct.2002,
pp-333-335.

I. Djurovi¢, and V. V. Lukin, “Robust DFT with
high breakdown point for complex-valued impulse
noise environment”, IEEE Signal Processing Let-
ters, Vol. 13, No.1, Jan. 2006, pp. 25-28.

C. L. Nikias and M. Shao, Signal processing with
alpha-stable distributions and applications, John
Willey & Sons, 1995.

D. Middleton, “Statistical-physical models of ur-
ban radio-noise environments - Part I: Fundamen-
tals,” IEEE Trans. on Electromagnetic Compabil-
ity, Vol. 14, No. 2, May 1972, pp. 38-56.

I. Mann, S. McLaughlin, W. Henkel, R. Kirby,
and T. Kessler, “Impulse generation with appro-
priate amplitude, length, and spectral character-
istics,” IEEE Journal on Selected Areas in Com-
munications, Vol. 20, No. 5, June 2001, pp. 901-
912.



