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Abstract– This paper deals with theoretical
and numerical simulation based analysis of sam-
ple myriad properties for a family of symmet-
ric α-stable (SαS) distributions often used for
modeling noise in natural environments. The
theoretically optimal values of a sample myriad
tunable parameter k in the sense of minimal
asymptotic variance are obtained. Two practi-
cal approaches are proposed to adapt the para-
meter k to SαS distribution characteristics for
data samples of a limited size. Statistical prop-
erties of the developed approaches are studied
for cases of a priori unknown parameters of SαS
distribution. A practical application where the
proposed approaches can be useful is consid-
ered.

I. I������	�
��

For many decades, noise and other adverse
phenomena in radars, acoustics, communica-
tions, and other fields have been described us-
ing Gaussian distribution [1]. However, re-
cent studies have clearly demonstrated that
processes with heavier tail probability density
functions (PDFs) produce more adequate de-
scription of noise characteristics [2-6]. The
family of SαS distributions is one type of PDFs
widely used to model non-Gaussian environ-
ments [2-4, 6].
A SαS distribution with zero location pa-

rameter is characterized by two parameters,
namely, parameter α (0 < α ≤ 2) that de-
scribes the heaviness of the PDF tail and pa-
rameter γ that describes a distribution scale.
A PDF scale is determined by both aforemen-
tioned parameters as γ1/α [7, 8]. The fam-
ily of SαS distributions includes a Gaussian
PDF as a marginal case for α=2 with variance
σ2G = 2γ. Another known distribution that
belongs to the SαS family is a Cauchy PDF
observed for α=1, with a scale given by the
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parameter γ. For other α, there are no explicit
expressions to describe SαS distribution. Such
PDFs are commonly expressed by characteris-
tic functions as ϕ(α, γ;ω) = −γ |ω|α where ω
is an argument in the characteristic function
domain.

For signals embedded in non-Gaussian
noise, different robust estimation methods [9]
are widely used [2, 10]. Standard median and
α-trimmed mean filters [10] are, probably, the
most known examples. Recently, various adap-
tive nonlinear filters and robust DFT (RDFT)
based methods have been designed to deal
with non-Gaussian and impulsive noise [11-14]
where robust estimators are used.

A desirable feature of a robust estimator
for signal and image processing applications
is its ability to adapt to noise statistics (ran-
dom data) since statistical characteristics are
often not known in advance and can vary [15,
16]. In this case, the sample myriad estimator
introduced by G. Arce and J. Gonzalez [3, 17]
is quite attractive due to availability of freely
tunable parameter k. In general, this estima-
tor has several useful properties. The sample
myriad estimator belongs to the class of M-
estimators. It is maximum likelihood estima-
tor for Cauchy distribution under the condi-
tion k=γ. Recently, it has been also demon-
strated [18] that the sample myriad estimator
with optimally set k is the quasi-optimal es-
timator for the entire family of SαS distribu-
tions. Main properties of the sample myriad
estimator can vary in wide range by selecting
different k values. For relatively small value of
k parameter, myriad is able to perform as an
efficient mode finder not only for symmetric
but also for asymmetric distributions [19, 20].
On the contrary, for relatively large k the sam-
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ple myriad estimator approaches to the sample
mean one.
However, the “relatively small” and “rel-

atively large” values are not known exactly.
There is only an assumption that k should de-
pend upon the distribution scale. To select k
correctly, we should, at least, have a priori in-
formation about underlying noise PDF [3, 7, 8,
18, 21, 22]. However, in many practical situa-
tions such information is not available. Then
the important task is to design practical algo-
rithms for myriad adaptation to noise charac-
teristics.
Firstly the optimal α-k characteristic that

establishes connection between optimal value
kopt (that provides minimal variance) for dif-
ferent α and fixed γ, was given in [3], later it
was presented in journal papers [7, 22]. It was
proven that for α → 0 the value kopt should
tend to 0; for α =1, i.e., for Cauchy distribu-
tion, kopt has to be equal to γ, and, finally, for
Gaussian PDF (α =2) the optimal k should
tend to infinity. Meanwhile, the approxima-
tion of α-k characteristic as koptA(α, γ) =√

α/(2− α) · γ1/α put forward in [3] occurred
to be incorrect. This has been independently
shown recently in papers [18] and [8, 21]. Even
for γ=1 the approximation koptA(α, γ) is not
accurate. For γ>1 and small α (<1) this ap-
proximation produces koptA(α, γ) which con-
siderably differ from the correct dependence
kopt(α, γ). In particular, it has been analyti-
cally shown in [8] that for γ>1 and α→ 0 the
values of koptA(α, γ) tend to infinity. Thus,
one of the tasks is to provide correct theoreti-
cal dependence koptA(α, γ) valid for any α and
γ.
Note that the parameters α and γ are of-

ten a priori unknown in practice. There is
a method for estimating them [23] but it is
quite complicated. There are also other meth-
ods [4], [24-27] that have been mainly tested
for rather large sample sizes. Thus, there is
a need in simple and accurate algorithms for
determining k̂opt for a given data sample of
a limited size that is suitable for signal and
image processing applications (several tens or
hundreds). Initial steps in this direction have
been made in [8] where three approaches to
adaptation of sample myriad tunable parame-

ter to characteristics of SαS distribution have
been briefly considered and tested. Therefore,
the goal of this paper is to carry out a more de-
tailed theoretical analysis of the sample myr-
iad estimator and to verify applicability of the
corresponding practical algorithms.
The paper is organized as follows. In Sec-

tion metricconverterProductID2, a2, a more
detailed description of the myriad estimator is
given. Maximum likelihood estimator for lo-
cation of SαS distribution with given α and γ
is presented and basic accuracy characteristics
of such estimates are considered. The opti-
mal values of kopt for γ �= 1 are found. Based
on them a more accurate approximating ex-
pression for optimal k derivation is presented.
Section 3 describes the developed adaptive ap-
proaches to determination of k for data sam-
ples of limited size. Special attention is paid to
the accuracy of α and γ parameter estimation.
The accuracy of adaptive myriad estimators is
studied in Section 4 by analyzing the variance
of obtained location estimates for SαS distrib-
uted data. Comparison of accuracy of pro-
posed and optimal estimators for different α
and γ are carried out under the condition of
using proper k. In Section 5, we consider the
application of the proposed adaptive estima-
tion to robust filtering of signals embedded in
non-Gaussian noise. Finally, the conclusions
and possible directions of future research are
presented.

II. D����

���
�� �� ���

�� k

A. Theoretical background

For providing theoretical background for ap-
plying myriad estimator, consider the follow-
ing model of an observed process

yn = θ + ξn, n = 1, N, (1)

where ξn is the n-th sample of noise that
obeys SαS PDF fα(γ;x) with zero location
and aforementioned parameters α and γ; θ de-
notes unknown parameter.
Ì-estimator of θ for an observation corrupted

by noise ξn with PDF fα is defined as

θ̂ML = argmin
θ∈Θ

[

−
N∑

n=1

log fα(yn − θ)

]

. (2)
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For Gaussian distribution of ξn (α =2) the
solution of (2) leads to the sample mean
estimator. For Cauchy PDF (α=1) the Ì-
estimator is a log-Cauchy filter expressed as

θ̂ML = argmin
θ∈Θ

N∑

n=1

log
{
γ2 + (yn − θ)2

}
. (3)

In [3], this filter has been generalized by us-
ing tunable parameter k instead of γ. Thus,
the myriad estimator can be described as

θ̂Myr = argmin
θ∈Θ

N∑

n=1

log
{
k2 + (yn − θ)2

}
.

(4)
The task (4) can be also expressed using cost

function

N∑

n=1

ψMyr(yn − θ̂Myr) = 0, (5)

where ψMyr(x) = dρ(x)/dx, ρ(x) = log(k2 +

x2) denotes the myriad cost function.
As it is known [9], the location estimates

for distribution function F =
∫∞
−∞ fα(γ;x)dx

obtained by the M-estimator are consistent
and asymptotically normal. Thus, the as-
ymptotical variance of the sample myriad
σ2Myr

(
ψMyr;F

)
can be defined as

σ2Myr

(
ψMyr;F

)
=

∫
ψ2MyrdF

(∫
ψ′MyrdF

)2 , (6)

ψ′Myr(x) = dψMyr(x)/dx.

Substituting into (6), we obtain

σ2Myr (k; fα(γ;x)) =

∫
x2

(k2+x2)2 fα(γ;x)dx
(∫

k2−x2
(k2+x2)2 fα(γ;x)dx

)2 .

(7)
Variance of Ì-estimator for the PDF fα(γ;x)

is determined by the following expression [9]:

σ2ML

∣∣
(α,γ) =

[∫
f
′

α(γ;x)
2

fα(γ;x)
dx

]−1
. (8)

For Gaussian and Cauchy distributions, the
values σ2Myr and σ2ML can be derived analyti-
cally. In the former case, minimal asymptotic

variance of the myriad estimator is reached if
k →∞. Then

lim
k→∞

σ2Myr (k; f2(γ;x)) = 2γ, (9)

and asymptotic variance of Ì-estimator for
α=2 is

σ2ML

∣∣
(α=2,γ) =

[∫
f
′

2(γ;x)
2

f2(γ;x)
dx

]−1
= 2γ,

(10)

where f2(γ;x) =
1

2
√
πγ exp

(
−x2
4γ

)
is Gaussian

PDF which takes into account σ2G = 2γ.
Now consider the case when α=1, i.e., the

Cauchy distribution is described as

f1(γ;x) =
γ

π(γ2 + x2)
. (11)

Then, as it has already been mentioned, the
myriad estimator with k=γ is the Ì-estimator
and its asymptotic variance is

σ2ML

∣∣
(α=1,γ) = σ2Myr (γ; f1(γ;x)) =

=

[∫
f
′

1(γ;x)
2

f1(γ;x)
dx

]−1
= 2γ2. (12)

For any other α value there are no explicit
expressions of the integral

fα(γ;x) =
1

2π

∫ ∞

−∞
ϕ(α, γ;ω)e−jωxdω. (13)

Derivation of σ2Myr and σ2ML for α �= 1 and
α �= 2 for SαS PDF has been performed nu-
merically by using MatLab. The obtained de-
pendence fα(γ;x) then has been approximated
by a polynomial and then a derivative has
been calculated. RMSE between approximat-
ing polynomial and fα(γ;x) (13) was about
10−7. Numerical integration in (7) and (8) has
been done by the method of trapezoids [28].

B. Analysis of theoretically obtained values
σ2Myr and σ2ML

The derived values of σ2Myr and σ2ML for
γ=1 coincide with data in [18]. This confirms
the conclusion that the myriad estimator with
optimal k is quasi-optimal estimator for the
entire family of SαS PDF.
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Fig. 1. Asymptotic variance of the myriad estimator
for γ=2 and three fixed α

The values kopt have been obtained by ana-
lyzing 1996 values of k for each pair of α and γ.
Fig. 1 shows the plots of the myriad asymp-
totic variance dependences upon k for fixed
γ=2 and three different values of α, namely
0.6, 1.2, and 1.8.
The values kopt obtained for γ equal to 0.3,

1 and 10 are also presented in Table 1. Be-
sides, we determined the interval boundaries
[kmin; kmax] for which the variance of myriad
estimator does not exceed minimally reachable
σ2Myr by more than 3%. Such analysis has
been done to demonstrate that the neighbor-
hood of the dependence minimum is rather flat
and there is always a range of k ∈ [kmin; kmax]
for which a loss of estimator accuracy can be
considered as negligible.
Analysis of data presented in Table 1 shows

that the interval [kmin; kmax] becomes wider
for greater α. Only a lower bound exists for
Gaussian noise (α=2) - kmin ≈ 3σG.
Simultaneously, the obtained data indicate

errors in koptA(α, γ) approximation for the
cases when γ �= 1. For comparison purpose,
the curves koptA(α, γ) and kopt(α, γ) are rep-
resented for γ=10 in Fig. 2. As it is seen,
for α<1 the values koptA start to increase
and for α<0.8 they become out of the inter-
val [kmin; kmax]. This is due to the first factor√

α/(2− α) in the expression for koptA(α, γ)
which is incorrect. Thus, it is desirable to have
an expression to correctly describe kopt(α, γ)
for any γ.
The paper [18] gives an approximation of

Fig. 2. koptA(α, γ) and kopt(α, γ) for γ=10

kopt(α, γ) that is better than koptA(α, γ)
for γ=1. Thus, by using an approximation
kopt(α, γ) [18] as a basis and taking into ac-
count correct description of SαS data scale by
γ1/α we propose the following approximation
for any γ:

kappropt (α, γ) =
(
−0.66 + 0.44e1.28α+

+ 7.62 · 10−34e39.24α
)
γ1/α, α ≥ 0.3

and kappropt (α, γ) = k0, if α < 0.3, (14)

where k0 is a reasonably small value, for ex-
ample, 10−20. To our best knowledge, there
are no reported results concerning the noise
and natural phenomena modeling using SαS
distributions with α < 0.3.
Fig. 3 gives examples of approximation

curves kappropt (α, γ) calculated according to (14)
and empirically obtained kopt(α, γ) for γ=0.3
and γ=8. The boundary curves kmin(α, γ) and
kmax(α, γ) are also presented. As one can see,
practically for all values of α there is a good
coincidence of kappropt (α, γ) and kopt(α, γ). The
only exception is the case of Gaussian noise
when α=2. But even in this case kappropt (α, γ)
belongs to the interval [kmin; kmax].
Hence, the myriad estimator with kappropt (α, γ)

is quasi-optimal for SαS distributions. Then,
if α and γ are known a priori the tunable pa-
rameter value can be easily calculated from
(14) where any α and γ can be used includ-
ing γ considerably different from 1. Besides,
analysis of the obtained values kmin and kmax
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TABLE I

T�� ������ kopt, kmin ��� kmax ��� ����� �
������� γ ��� α ∈ [0.6; 2]

γ A
0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

0.3 kopt 0.08 0.08 0.13 0.21 0.30 0.41 0.54 0.69
kmin 0.08 0.08 0.09 0.15 0.22 0.30 0.39 0.49
kmax 0.08 0.09 0.18 0.29 0.42 0.58 0.77 0.98

1 kopt 0.20 0.35 0.60 0.80 1.00 1.25 1.45 1.70
kmin 0.18 0.25 0.45 0.60 0.75 0.90 1.05 1.25
kmax 0.25 0.55 0.80 1.10 1.40 1.70 2.05 2.45

10 kopt 10.6 10.5 10.3 10.1 10 9.95 10 10.10
kmin 7.40 7.35 7.30 7.20 7.10 7.05 7.05 7.15
kmax 15.3 14.9 14.6 14.3 14.1 14.1 14.2 14.45

γ A
1.4 1.5 1.6 1.7 1.8 1.9 2

0.3 kopt 0.85 1.05 1.29 1.62 2.15 3.59 ∞
kmin 0.60 0.73 0.87 1.05 1.30 1.70 2.48
kmax 1.24 1.57 2.00 2.75 4.98 10 ∞

1 kopt 2.00 2.30 2.65 3.15 3.85 5.50 ∞
kmin 1.40 1.60 1.85 2.10 2.45 3 4.40
kmax 2.85 3.35 4.00 5.00 7.00 100 ∞

10 kopt 10.35 10.70 11.25 12.15 13.85 18.50 ∞
kmin 7.25 7.40 7.65 8.05 8.75 10.10 13.85
kmax 14.95 15.75 17.00 19.40 25.25 100 ∞

shows that the selection of k within the in-
terval [kmin;kmax] (i.e., small errors in deter-
mination of k) does not result in considerable
reduction of the myriad estimator accuracy.

III. M��
�� ���

���� �������
�� ��

SαS PDF ������� ����
�����

In practice, the information concerning pa-
rameters of noise distribution is quite limited.
Then the task is to adapt a processing method
to a particular situation. If a sample myriad is
used for non-Gaussian and, in particular, SαS
PDF noise, such adaptation implies adaptive
setting the tunable parameter [12, 14]. There
are several approaches to solving this task [8],
namely:

1. Estimation of α and γ with subsequent sub-
stitution of the obtained estimates in (14) (ap-
proach 1);
2. Determination of kopt using some para-
meters that uniquely define statistics of the
processes with SαS PDF (approach 2);

3. Application of alternative methods, for ex-
ample, bootstrap [29, 30] (approach 3).
Below we consider the first two approaches

keeping in mind that there are different meth-
ods for estimating α and γ. The third one re-
quires considerably more computations [8, 30].

A. Calculation of kopt (approach 1)

Note that parameter α characterizes the
heaviness of SαS distribution tails. Indepen-
dently from the distribution scale, the smaller
α values correspond to heavier tails. Then the
task is to find a statistical parameter for data
sample able to uniquely characterize α. One
such parameter is the percentile coefficient of
kurtosis (PCK) [31] calculated as

P =
Y75 − Y25
2 (Y90 − Y10)

, (15)

where Ym denotes them-th percentile of a data
sample under consideration.
An advantage of PCK (15) for SαS distrib-

utions is that it is a monotonously increasing
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Fig. 3. Dependences kappropt (α, γ) and kopt(α, γ) for γ=0.3 (a) and γ=8 (b)

Fig. 4. Dependencies PCK(α) for three different val-
ues of γ and approximation (16) of the inverse
function f 1(P )

function of α. Besides, for fixed α but differ-
ent γ, ensemble averaged values of PCK are re-
main the same. This is clearly seen from plots
presented in Fig. 4. Thus, for estimating α it
is possible to use inverse function α̂ = f1(P ).
For approximating f 1(P), we propose to use
the following 4-th order polynomial

α̂ =1.035 · 103P 4 − 419.8P 3

+ 55.17P 2 + 2.051P + 0.286. (16)

The approximating polynomial (16) is
shown in Fig. 4. As it is seen, it describes
the true function f 1(P) well.

Table 2 presents true values of the parame-
ter α for simulated data samples and the corre-
sponding statistical characteristics (the mean
〈α̂〉 and standard deviation σα̂) for the es-
timates obtained by the considered method.
Simulations have been performed for data
samples of size 256 elements and for 1000 re-
alizations for each α (γ=1). The results ob-
tained show that the proposed method pro-
vides rather accurate estimates of α. The
worst accuracy (the largest values of σα̂) is
observed for large α. Certainly, accuracy is
getting worse if a sample size is smaller and
vice versa.
For estimating the scale of SαS distribution

we propose to use the median of absolute de-
viations (MAD) [9, 31]:

MAD = med{|yn −med(yn)|}, (17)

where med{. . . } denotes a sample median.
Behavior of the mean values of this para-

meter for different α and γ is shown in Fig. 5
(in logarithmic scale). Our investigations have
demonstrated [8] that MAD (17) can be ap-
proximated as

MAD = C(α) · γ1/α, (18)

where C(α) is the correcting factor that de-
pends upon α and can be defined as:

C(α) =1.84α6 − 14.18α5 + 44.36α4

− 72.02α3 + 64.3α2 − 30.3α+ 7.02.
(19)
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Fig. 5. Dependence log(MAD) on α and γ of SαS
PDF

Then, as it follows from (18), after estimat-
ing α̂, γ1/α can be calculated as

γ1/α = MAD/C(α̂). (20)

Then the first approach (k̂opt1) for k derivation
is to substitute the obtained (16) and (20) val-
ues into expression (14). The accuracy of this
approach will be analyzed in the next Section.

B. Other methods of α and γ estimation

It can be predicted that the performance of
the adaptive myriad estimator described above
depends upon accuracy of the estimates α̂ and
γ̂. Meanwhile, there are several algorithms
for SαS parameters estimation from data sam-
ple. The method most similar to our technique
described above was developed by McCulloch
[24]. It is also based on percentiles. However,
other percentiles (and, respectively, quantiles)
are used in [24] than in (15). More exactly, the
95-th and 5-th percentiles are applied instead
of the 90-th and 10-th. Several other meth-
ods were proposed by Ma and Nikias [25], Ko-
gon and Williams [26], Tsihrintzis and Nikias
[27]. These methods are based on different ap-
proaches and principles. In [25], the authors
use the theory of fractional lower order mo-
ments. The method [26] is based on using the
empirical characteristic function. The basic
idea of the method [27] is to apply the the-
ory of asymptotic extreme values and order
statistics.
To compare the accuracy of the proposed

method for α and γ estimation to the afore-

mentioned methods, computer simulation us-
ing Monte-Carlo method has been carried out.
In all cases, SαS distributions with location
equal to zero were considered. M=1000 data
samples have been generated for each sample
size (N=100, 200, 500, 1000, 2000, and 5000)
and for each pair of α and γ.
Note that for all of the considered estima-

tion techniques we restricted the obtained α
estimates. If they were greater than 2 we set
α̂ = 2. This peculiarity influences the method
[27] for which the obtained standard deviation
σα̂ is equal to 0 and 〈α̂〉M = 2 for α=1.9 and
2 (see data in Figs. 6a and b for N=200 and
1000). Also note that the estimation method
[24] can not be applied for estimation of α<0.5.
Thus, the values 〈α̂〉M = 0.5 and σα̂=0 for
α<0.5 are explained by the fact that the es-
timated value ν̂α was less than the smallest
value tabulated in [24]. Due to this, we set
in such situations. The obtained dependencies
of 〈α̂〉 and σα̂ on α for γ=1 are presented for
our method described in subsection 3.1 and the
methods [24-27] in Figs. 6 and 7.
In general, all of the considered meth-

ods produce rather good and similar re-
sults. The method of McCulloch [24] provides
slightly better accuracy than other methods
for 1<α<1.7 whilst the method by Ma and
Nikias [25] produces the smallest σα̂ for α<1.
Our method is usually more accurate than the
methods [26, 27] but less accurate than the
methods [24, 25].
Since the estimates of α and γ are mutually

dependent, less accurate estimation of α usu-
ally leads to a worse estimation of γ. This
assumption has been verified for all consid-
ered methods for several fixed γ, different α
and sample sizes. The main results show that
our estimation method defined by expressions
(17) and (20) as well as the methods [24] and
[25] produce practically unbiased estimation of
γ. γ̂ obtained by the method [26] can be suf-
ficiently biased if γ considerably differs from
unity. Variances of the obtained estimates
were the smallest for our method defined by
(17) and (20) and the method [24].
These results are in agreement with conclu-

sions drawn in the paper [32]. Thus, it is worth
paying more attention to the latter two meth-
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TABLE II

S���
��
	�� 	����	���
��
	� �� ���

���� α̂ ��� ��� �
��� ������	�

α 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
〈α̂〉 0.317 0.384 0.487 0.602 0.710 0.813 0.905 0.999 1.094
σα̂ 0.017 0.041 0.062 0.077 0.082 0.081 0.084 0.095 0.111
α 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
〈α̂〉 1.199 1.311 1.423 1.555 1.655 1.766 1.858 1.950 1.999
σα̂ 0.142 0.166 0.190 0.244 0.268 0.293 0.326 0.342 0.356

Fig. 6. Dependences of 〈α̂〉M upon true α for the considered methods for γ=1, N=200 (a) and 1000 (b)

Fig. 7. Dependences of σα̂ upon true α for the considered methods for γ=1, N=200 (a) and 1000 (b)
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ods in further analysis (see Section 4).

C. Estimation of kopt using parameters that
uniquely describe processes with SαS PDF
(approach 2)

Now consider the approach 2 that presumes
that can be obtained without using (14). Since
PCK and MAD together correctly describe
processes with SαS PDF, we propose to de-
termine k̂opt2 as

k̂opt2 = MAD · f (P ) , (21)

where the function f (P) can be determined
from kopt obtained earlier (see Section 2) and
〈MAD〉M (see subsection 3.1) as

f (P ) = kopt/ 〈MAD〉M . (22)

The values of the function f (P) have been
determined for a wide range of α and γ. To
make the expression (21) practically applica-
ble to all possible situations it was necessary
to find a good approximation of f (P). The fol-
lowing approximation has been proposed:

f (P ) = 3.029 · 105P 6 − 2.011 · 105P 5

+4.95·104P 4−5434P 3+265.8P 2+2.36P+0.032

,
for P ∈ (0; 0.25]

f (P ) = 2.53 ·105P 2−1.301 ·105P +1.673 ·104

,
for P ∈ (0.25;+∞] (23)

.
Two polynomials for describing f (P) are used
due to the fact that one polynomial was un-
able to produce appropriate accuracy. Note
that PCK is larger than 0.25 only for distrib-
utions close to Gaussian. The analysis of the
approach 2 accuracy will be carried out in the
next Section.

IV. A		���	� ������
� ��� ���

�������� �����
�� 
��
��

���

�����

Obviously, one can analyze both the accu-
racy of adaptive estimation of k̂opt and ac-
curacy of location parameter estimation by
means of the adaptive myriad. In this Sec-
tion we follow the latter way. The variances of

location estimates VMyr

(
k̂opt1

)
(for the ap-

proach 1) and VMyr

(
k̂opt2

)
(for the approach

2) obtained for the myriad estimators that use
k̂opt1 and k̂opt2, respectively, have been calcu-
lated by numerical simulations. Several pairs
of the parameters α and γ for the large num-
ber of realizations Ì=2000 and the sample size
N=256 have been investigated. These results
are presented in Table 3 for three values of γ
equal to 0.3, 1 and 10. Besides, the variance
values for the myriad estimator with prop-
erly set k (VMyr (kopt)) have been calculated
as well as the theoretically reachable variance
(V theor
Myr = σ2Myr(α, γ)/N).

Analysis of data in Table 3 shows that al-
most always V theor

Myr is slightly smaller than
VMyr (kopt). For α ≤ 1.3 the values

VMyr

(
k̂opt1

)
and VMyr

(
k̂opt2

)
are slightly

larger than V theor
Myr , the difference is few per-

cent. For α ∈ [1.4; 2] the difference is larger,
up to 50% (consider the case α=1.7). Such a
situation deals with not very accurate estima-
tion of α̂ for such α (see data in Table 2) due to
small slope of the characteristic in Fig. 4, i.e.,
small variations in estimated PCK can lead to
considerable variations of the estimates α̂.

Comparison of both proposed approaches
for adaptive selection of kopt shows that vari-

ances VMyr

(
k̂opt1

)
and VMyr

(
k̂opt2

)
do not

differ a lot. Thus, in general, both methods
can be used in practice. Computation ex-
penses for them are practically the same since
most computations are due to data sorting.

We have also tested the method of Mc-
Culloch [24] for estimating α and γ at
the first stage of the approach 1. This
modification has produced slightly smaller
variance VMyr

(
k̂opt3

)
in comparison to

VMyr

(
k̂opt1

)
and VMyr

(
k̂opt2

)
for α about

1.6. For other α, the values VMyr

(
k̂opt3

)
,

VMyr

(
k̂opt1

)
and VMyr

(
k̂opt2

)
are almost the

same. Therefore, it is reasonable to apply the
approach 1 equipped with McCulloch’s estima-
tion methods [24] used at the first stage. One
motivation in favor of this recommendation is



TWO APPROACHES TO ADAPTATION OF SAMPLE MYRIAD TO CHARACTERISTICS... 1157

TABLE III

V��
��	�� �� ��� 
��
�� ���

����� �
�� kopt, k̂opt1, k̂opt2 ��� k̂opt3 ��� γ � ��� �� 0.3, 1 ��� 10

that the values α ≈ 1.6 are more often met
in practical situations than others especially
smaller ones [5].

It can be also interesting to compare the ac-
curacy of the proposed adaptive myriad es-
timators to the accuracy provided by some
non-adaptive estimator. For this purpose, we
have obtained the values of variance VMed for
the standard median estimator and presented
them in Table 3 for all considered pairs of γ
and α. As one can see, the proposed adap-
tive estimators almost always provide better
accuracy than the standard median estimator
(except cases α=1.6 and α=1.7 for the k̂opt1
and k̂opt2 algorithms). The smallest difference
(few percent) is observed for α about 1.5, but
the difference is considerable for small α.

Then, the following question arises: un-
der what conditions (for what minimal value

N ) is it reasonable to use adaptive myr-
iad estimator instead of some simpler esti-
mator, e.g., the sample median that does
not require any adaptation? To answer
this question, we have to carry out simu-
lations for N smaller than that one used
for obtaining data in Table 3 (N=256).
As expected, the tendency to increase the
variances VMyr

(
k̂opt1

)
, VMyr

(
k̂opt2

)
and

VMyr

(
k̂opt3

)
was observed. Moreover, ratios

VMyr

(
k̂opt1

)
/VMed, VMyr

(
k̂opt2

)
/VMed and

VMyr

(
k̂opt3

)
/VMed increase if sample size N

becomes smaller. Numerical simulation re-
sults obtained for N=64 are presented as plots
of VMyr

(
k̂opt1

)
, VMyr

(
k̂opt2

)
, VMyr

(
k̂opt3

)

and VMed versus α for fixed γ=1 in Fig. 8.

As one can see, for a wide range of α the dif-
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ference between VMyr

(
k̂opt1

)
, VMyr

(
k̂opt2

)

and VMed is practically insufficient. Only for
α>1.8 and α<1.1 it occurs reasonable to apply
adaptive robust estimator. Therefore, from
practical viewpoint, there is no reason to ap-
ply the proposed adaptive myriad estimators
with k̂opt1 and k̂opt2 instead of simpler sam-
ple median for data samples with N smaller
than 70. Meanwhile the adaptive myriad with
k̂opt3 produces the best results among consid-
ered estimators. The benefit in comparison to
the sample median is not less than 10%.

V. A���
	��
�� �� �����
�� 
��
��

���

����� 
� RDFT %���� �
&���

���	���
�&

RDFT is a tool that can be effectively used
for analyzing and filtering 1D signals embed-
ded in non-Gaussian noise [13, 14]. A basic

idea is that in standard DFT

XS(i) = (1/N)
N∑

n=1

y(n) exp (−j2πin/N) =

= mean {Re (y(n) exp (−j2πin/N))}+

+jmean {Im (y(n) exp (−j2πin/N))} ,
(24)

i = 0,N − 1,

the operation of mean calculation is replaced
by some robust estimation T {...}. Then one
obtains

XR(i) = T {Re (y(n) exp (−j2πin/N))}

+jT {Im (y(n) exp (−j2πin/N))} (25)

or, if an input process is real-valued,

XR(i) = T {y(n) cos (2πin/N)}

−jT {y(n) sin (2πin/N)} . (26)
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Fig. 8. Variance dependencies of the proposed esti-
mators and sample median for SaS noise with γ=1
and different α (“Myriad Adapt metricconverter-
ProductID1”1” — adaptive k evaluation by means
of approach 1; “Myriad Adapt metricconverter-
ProductID2”2” - adaptive k calculation by ap-
proach 2; “Myriad Adapt metricconverterProduc-
tID3”3” - adaptive k evaluation by means of ap-
proach 1 using McCulloch estimators)

RDFT can be used for estimation of signal
spectrum as Xp

R(i) = |XR(i)|
2 or and its fur-

ther analysis. In the latter case, XR(i) is
multiplied by a desired spectral characteris-
tic K̇(jω) represented in discrete form as K̇(i)
and then standard inverse DFT is applied [13,
14].
Several different RDFT forms that employ

different estimators, both non-adaptive [13]
and adaptive [14], have been proposed and an-
alyzed. Our goal below is to provide brief per-
formance analysis for the proposed adaptive
myriad estimators used in RDFT framework.
Consider a case of filtering a frequency

modulated (FM) signal embedded into non-
Gaussian (impulsive) noise with the primary
purpose to remove impulses. As it is known,
the standard DFT is sensitive to spikes and
RDFT denoising is able to carry out the con-
sidered task better [13]. Thus, we have simu-
lated a test FM signal as

s(n) = A cos (2πn [an+ b]) , (27)

where A=5 is the amplitude value, a and b
are equal to 17.5 and 5 that corresponds to

the LFM-signal with initial frequency F 1=5
Hz and final frequency F 2=40 Hz.
Then the SαS noise with several different

pairs of α and γ has been added and spike
removal by applying different robust estima-
tors T {...} according to (25), using K̇(i) = 1
and performing inverse DFT [13] has been car-
ried out. Efficiency of such denoising can be
characterized by output MSE (MSEout) val-
ues for different robust estimators compared
between each other and with respect to input
MSE (MSEinp). The obtained results are pre-
sented in Tables 4 and 5 for two different γ
and three different α. AM1 means adaptive
myriad for the approach 1 that uses the ex-
pressions (16) and (20). AM2 refers to the ap-
proach 2 described in subsection 3.3. AM3 is
the adaptive myriad for the approach 1 based
on McCulloch estimators.
As one can see, if α=1.2 or α=1.5 MSEout

is considerably decreased in comparison to
MSEinp due to applying RDFT based filter-
ing for all four robust estimators, namely, stan-
dard median and three proposed adaptive myr-
iad estimators. For the myriad form of RDFT
denosing, there is an improvement in compar-
ison to the median form RDFT or all consid-
ered RDFT based denoising techniques pro-
vide approximately the same MSEout. Com-
paring four adaptive myriad estimators, our
recommendation is to use RDFT based on
AM2. The median based RDFT does not per-
form well for α=1.8.
Note that α from 1.2 to 1.8 may corre-

spond to atmospheric noise that influences in-
put blocks of radar and communication sys-
tems [33].

VI. C��	���
���

This paper presents theoretically optimal
values of the myriad estimator tunable para-
meter for γ �= 1. Besides, the boundary values
of k for which losses in accuracy of the esti-
mator can be considered negligible are given.
The approximation formula obtained in [18] is
generalized for arbitrary γ and comparison of
kappropt (α, γ) with theoretical optimal values is
done.
Two approaches for adaptation of myriad es-

timator to a priori unknown parameters of SαS
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TABLE IV

O����� MSE ������ ��� RDFT %���� �
&��� �
����
�&

Data processing method γ=0.5
α=1.2 α=1.5 α=1.8

Standard DFT 7.26 2.53 1.44
RDFT based on AM1 2.08 1.63 1.29
RDFT based on AM2 2.07 1.58 1.28
RDFT based on AM3 3.01 1.84 1.35
Median based RDFT 2.32 2.22 2.12

TABLE V

O����� MSE ������ ��� RDFT %���� �
&��� �
����
�&

Data processing method γ=1
α=1.2 α=1.5 α=1.8

Standard DFT 23.53 4.87 2.09
RDFT based on AM1 2.55 2.17 1.78
RDFT based on AM2 2.57 2.11 1.69
RDFT based on AM3 2.54 2.15 1.64
Median based RDFT 2.55 2.39 2.26

distribution are proposed. The first method
and the corresponding algorithms presume es-
timation of the parameters α and γ for a
processed data sample. Then the approxima-
tion formula for determination of kopt for the
myriad estimator to be used for location es-
timation is applied. The second approach is
based on direct calculation of the tunable pa-
rameter by using the estimates of PCK and
MAD for an observed data sample.

Performance analysis of the proposed adap-
tive myriad estimators has demonstrated that
they provide rather high accuracy for location
estimation of SαS PDF data samples. Vari-
ance of such estimates is greater than theoret-
ically reachable limit by no more than 50%.
The application of the myriad estimator with
the proposed adaptation procedures k̂opt1 and
k̂opt2 is reasonable for sample size larger than
70. For smaller sample sizes it is recommended
to apply McCulloch estimators within a frame-
work of approach metricconverterProductID1.
In1. In practice, main benefits of the proposed
adaptive estimators are observed if heaviness
of noise PDF tails increases.

Our future work will focus on performance
analysis of the designed adaptive myriad esti-

mator for other (not only SαS) non-Gaussian
heavy tail distributions.
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