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Analysis of meridian estimator
performance for non-Gaussian PDF

data samples
Dmitry A. Kurkin, Alexey A. Roenko, Vladimir V. Lukin, and Igor Djurovíc

Abstract– A sample meridian estimator of lo-
cation parameter (LP) has been proposed re-
cently and shown to be robust and controllable
by means of a tunable parameter δ. The es-
timator properties have been initially studied
but not analyzed thoroughly. In this paper we
address several practical questions. First, we
analyze conditions under which statistical prop-
erties of meridian estimator of LP considerably
differ from those ones of the sample median es-
timator. Second, we give examples of proba-
bility density functions for which the sample
meridian estimates can be sufficiently more ac-
curate than sample median. Third, we consider
practical situations when useful properties of
the meridian estimator of LP can be exploited
in practice of signal and data processing.

I. I������	�
��

During many years, Gaussian model of noise
and measurement errors has been widely used.
However, starting from the end of sixtieth
of the previous century, non-Gaussian models
have attracted wide attention due to the fact
that in numerous applications they describe
many natural phenomena more adequately [1].
Due to this, it became necessary to consider ro-
bustness aspects while designing methods for
data, signal and image processing [2, 3]. Dif-
ferent methods of robust estimation were put
into basis of filters [3, 4] and other means of
data processing intended for spectral analysis
[5], noise variance estimation [6], etc. Some of
them [4, 6-8] use robust estimators, in partic-
ular, a sample myriad estimator [4, 6, 8] with
adjustable parameters in order to provide de-
sirable properties for a given application.

Recently a new, sample meridian estimator
has been proposed [9]. It has some similarities
to both sample median and myriad estimators.
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Similarly to the myriad estimator, the sample
meridian estimator has a tunable parameter
(δ) that controls its performance. For small
δ, the sample meridian tends to be a distrib-
ution mode finder [9]. At the same time, for
relatively large δ the properties of a sample
meridian practically coincide with the proper-
ties of the sample median estimator. More-
over, a sample meridian is always an element
of a given data sample.

However, this is a very general description
of the meridian estimator. Any robust esti-
mator is of practical interest if it differs from
other ones by some peculiarities (features) that
can be useful for, at least, several applica-
tions (practical situations). Such positive fea-
tures could be better robustness to outliers,
lower computational complexity, higher accu-
racy of sample location or scale estimation, op-
timality or quasi-optimality for some distrib-
ution or a family of probability density func-
tions (PDFs), simplicity of parameter adapta-
tion in comparison to other known estimators,
etc. From this viewpoint, properties of any
recently developed estimator should be thor-
oughly studied before finding proper applica-
tions for this estimator.

Although good theoretical analysis of the
meridian estimator has been carried out in [9],
quite many questions remained unclear (recall
how many efforts were spent on analysis of
the median estimate for various applications,
see [10] and references therein). In particular,
it is desirable to know when sample median
and meridian coincide and when they consid-
erably differ from each other. It is possible
to expect that this can depend upon sample
size, underlying distribution and parameter δ.
When sample median and meridian do not co-
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incide, it is desirable to determine for what
situations the meridian estimator is able to
produce some benefits, e.g., better accuracy of
distribution parameter estimation. After this,
one can expect that obtained information will
clarify applications for which the meridian es-
timator could be a proper choice. Thus, the
goal of this paper is to produce additional in-
sights on properties of the meridian estimator
and to give some practical recommendations
on setting parameter δ.
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Analytically the sample meridian estimator
of location β̂ is defined as

β̂ = argmin
β

[
N∑

i=1

ln (δ + |xi − β|)
]

=

= meridian{xi, i = 1, ...,N; δ} (1)

where N denotes a sample size; xi is an i—th el-
ement of the sample; δ is also called medianity
parameter [9].

Let us briefly remind basic properties of
meridian estimate [9]. Its cost function is

ϕ (β) =
N∑

i=1

ln (δ + |xi − β|) . (2)

The function ϕ (β) monotonically decreases
for β <xmin and increases for β>xmax where
xmin and xmax are minimal and maximal el-
ements of a data sample, respectively. Thus,
minima of cost function are from xmin to xmax
and the number of minima is limited, it in-
creases if δ reduces. Moreover, minima can
be observed only for β that coincides with one
of elements of original sample. These prop-
erties show that a very simple algorithm for
finding β̂ can be realized. One has to calcu-
late ϕ (xi) , i = 1, ..., N and to find such i for
which ϕ (xi) is the smallest. As it is seen, the
algorithm is considerably simpler and faster
than for the myriad estimate [4]. Moreover,
in opposite to sample median, sorting is not
required for finding sample meridian.

Note that the meridian estimator is invari-
ant to translation of distribution center (LP
or mean if it exists). This allows restricting

consideration of meridian estimator properties
by the case of distributions with zero mean
(center). Besides, below we will concentrate
on studying only distributions symmetric with
respect to their means. It is proven in [9] that
for such distributions the meridian estimator
produces unbiased estimates for arbitrary δ.

Certainly, special attention in our analysis
should be paid to non-Gaussian heavy tailed
distributions. Thus, let us consider the fol-
lowing seven PDFs. The first one is Gaussian
PDF with variance σ2G and the second PDF
is Cauchy one which is a particular case of
symmetric α-stable distributions: f1(γ;x) =

γ
π(γ2+x2) where γ is the parameter character-

izing PDF scale. For both PDFs, their max-
ima are bell-shaped and continuous deriva-
tives. We have also analyzed two particular
cases of α-stable distributions (α=1.5 that has
lighter tail than the Cauchy PDF and α=0.7
that is characterized by very heavy tail).

Besides, let us analyze PDFs f2(x), f3(x),
f4(x) of the following three random variables:

1) Y1 = X1X2 (denoted as dgauss);
2) Y2 = X1X2X3 (denoted as tgauss);
3) Y3 = (X1)

3 (further referred as gauss3).
Here X1,X2, andX3 are independent zero

mean Gaussian variables with standard devia-
tions σX1, σX2, σX3, respectively. All three
PDFs f2(x), f3(x), f4(x) have heavier tails
than Gaussian. If σG=σX1 = σX2 = σX3 =
1, then for the PDFs f2(x) and f3(x) their
variances are equal to 1.0 and for the PDF
f4(x) the variance is approximately equal to
15.0. One more peculiarity of PDFs f2(x),
f3(x), f4(x) is that they all have peaky (sharp,
not bell-shaped) maxima [11], [12]. Ran-
dom variables with PDFs f2(x) and f3(x)
take place in bispectral signal processing [11],
PDF f4(x) has been considered in the paper
[12]. Since PDFs f2(x), f3(x), f4(x) have
heavy tails, it is reasonable to characterize
their scale by a robust estimate of scale. Me-
dian of absolute deviations (MAD) [3] can
serve as such a characteristic. For PDF f2(x),
MAD = 0.545σX1σX2; for f3(x) one has
MAD = 0.292σX1σX2σX3; for f4(x) MAD =
0.462σ3X1. Recall that the following expres-
sions are valid for Gaussian and Cauchy PDFs:
MAD = σG/1.483 [3] and MAD = 1.5γ[13].
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A characterization of tail weight could be
percentile coefficient of kurtosis (PCK) [14].
For Gaussian PDF it is equal to 0.26 [13], for
heavier tail distributions the PCK values are
smaller: 0.235 for α-stable PDF with α=1.5,
0.16 for Cauchy PDF, 0.088 for α-stable PDF
with α=0.7; 0.178, 0.132, and 0.076 for PDFs
f2(x), f3(x), and f4(x), respectively. Note
that it is shown in [15] that if a random vari-
able is a product of two or more random vari-
ables, then tail weight for this “product” ran-
dom variable is larger than tail weight of any
component random variable. This explains
why PDFs f2(x), f3(x), and f4(x) are heavy
tailed.

The first step in analysis of the sample
meridian estimator was to get imagination
about conditions under which a sample merid-
ian differs from median for the same data sam-
ple. For this purpose, let us determine prob-
ability P that meridian{xi, i = 1, ...,N; δ} =
median{xi, i = 1, ...,N}. A preliminary analy-
sis has demonstrated that for N=3 the proba-
bility is equal to unity for all seven considered
PDFs and for any δ. So, let us study larger N,
namely N=5 and 11 that correspond to typical
situations in signal processing in a sliding win-
dow manner [3]. The obtained dependencies
are presented in Fig. 1. For the PDFs f2(x),
f3(x), f4(x) we used σX1 = σX2 = σX3 = 1,
for Gaussian distribution σG = 1, for Cauchy
PDF γ is equal to 1.

As it is seen, all of them have similar behav-
ior in the sense that they have “saturation” to
unity for rather large δ and a flat region with
P �= 1 for rather small values of δ. Transition
zones between these two “saturations” are ob-
served for δ within the limits from 10−2 to 102

or, more generally speaking, for δ/MAD from
about 10−2 to 102. Note that for heavy tailed
distributions it is more correct to analyze the
obtained dependencies with respect to normal-
ized values δ/MAD since standard deviation is
a non-robust characteristic (estimate) of scale
and theoretically it can be infinite (not de-
fined) as for the family of symmetric α-stable
distributions.

At the same time, there are some differences
and other interesting observations. First, P
becomes practically equal to 1.0 for δ exceed-

ing 10 standard deviations of Gaussian noise
(σG). Moreover, for sharp peak PDFs, P
reaches 1.0 for δ/MAD of the order 10. . . 50.

The second observation that follows from
comparison of plots in different Figures 1,a-d
is that the probabilities P depend upon N for
small δ. For larger N, P becomes smaller. The
smallest P takes place for Gaussian PDF, for
other distributions that are heavy tailed the
values of P are approximately the same.

Dependences of P on δ for N=5 (a) and
N=11 (c) for Gaussian PDF and Cauchy
PDFs, and for N=5 (b) and N=11 (d) for
PDFs f2(x), f3(x), and f4(x)

The found tendencies simplify further analy-
sis of statistical characteristics of the merid-
ian estimator. Obviously, there is no sense to
study them for δ/MAD larger than 100 since
then the sample meridian and median coin-
cide and, thus, have the same statistical char-
acteristics. Besides, the properties of the sam-
ple meridian and median differ in the area of
δ/MAD<100 although this does not necessar-
ily mean that in this case the meridian estima-
tor accuracy is better than that of the median
estimator.
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For analysis of meridian estimator ac-
curacy, we have determined root mean
square error (RMSE) σβ of the obtained
estimates. Besides, we used MADβ =

median{
∣∣∣β̂j −median{β̂j}

∣∣∣ , j = 1, ...,Nexp}
where β̂j is the meridian estimate for the j -
th sample of data obeying a given PDF, Nexp
defines the number of experiments (analyzed
data samples, Nexp = 1000). Expedience of
analyzingMADβ stems from the fact that has
been found in experiments — PDF of the ob-
tained meridian estimates of location for PDFs
f2(x), f3(x), and f4(x) occurred to be sym-
metric but non-Gaussian. The same holds for
α-stable distribution with α=0.7. Similar ef-
fects have been observed for sample median
estimates in the case of Laplacian distribution
[14].

For Gaussian and Cauchy distributions,



ANALYSIS OF MERIDIAN ESTIMATOR PERFORMANCE FOR NON-GAUSSIAN PDF DATA SAMPLES 1165

Fig. 1. Dependences of P on δ for N=5 (a) and N=11 (c) for Gaussian PDF and Cauchy PDFs, and for N=5
(b) and N=11 (d) for PDFs f2(x), f3(x), and f4(x)

the meridian estimate distribution is close to
Gaussian, especially if N is large enough.
This also holds for α-stable distribution with
α=1.5.

In the case of Gaussian PDF, σβ andMADβ
for δ/MAD<0.1 are by approximately two
times larger than δ/MAD>100. There is no
minimums of the curves σβ(δ) and MADβ(δ).
Both curves are monotonically decreasing.
Both σβ(δ) and MADβ(δ) are proportional
to σG and they are approximately inversely
proportional to

√
N . The following condition

holds: σβ(δ) ≈ 1.5MADβ(δ). This indicates
that the distribution of estimates are close to
Gaussian.

Let us analyze data obtained for Cauchy
PDF, N=64. The dependences σβ(δ) and
MADβ(δ) are presented in Fig. 2,a. As
it is seen, these functions are monoto-
nously decreasing. For δ/MAD<0.1, σβ
and MADβ are by approximately two times
larger than for δ/MADX>10 whereMADX =
median{|xi −median{xi}| , i = 1, ...,N} for
a data sample at hand. Again σβ(δ) and
MADβ(δ) are proportional to data scale de-
fined by γ. For providing the best accuracy
of the meridian estimator it is enough to set
δ = (10...20)MADX . Thus, a common con-

clusion for Gaussian and Cauchy PDFs is that
accuracy of the meridian estimator cannot be
better than for median estimator.

Let us now study statistical characteristics
of meridian estimator for peaky PDFs start-
ing from the PDF f2(x). The obtained de-
pendencies are represented in Fig. 2,b. Both
curves σβ(δ) and MADβ(δ) have minima ob-
served for δ ≈ 1 and δ ≈ 0.1, respectively.
Note also that the ratioMADβ/σβ < 0.5, i.e.,
considerably smaller than if meridian estima-
tor is applied to Gaussian data. This indirectly
shows that the estimates β̂j , j = 1, ...,Nexp do
not obey Gaussian distribution and are heavy
tailed. This has been confirmed by analysis of
their histograms.

For data samples with PDF f3(x), the plots
σβ(δ) and MADβ(δ) are given in Fig. 3,a.
There are obvious minimums of both σβ and
MADβ observed for δ ≈ 0.1 and δ ≈ 0.01, re-
spectively. For practice, it is possible to recom-
mend using δ/MADY 2 ≈ 0.01 that clearly cor-
responds to modal mode of the meridian esti-
mator. Note thatMADβ/σβ for δ/MADY 2 ≈
0.01 becomes about 0.3. This means that PDF
of meridian estimates is non-Gaussian.

The dependencies σβ(δ) and MADβ(δ) for
the PDF f4(x) are represented in Fig. 3,b.



1166 TIME-FREQUENCY SIGNAL ANALYSIS

Fig. 2. Dependences σβ(δ) and MADβ(δ) for Cauchy PDF for γ = 1 and γ = 2 (a) and PDF f2(x) (b), N=64.

Minimum of σβ(δ) has place for δ ≈ 0.001,
minimum of MADβ(δ) is observed for δ ≈
0.00001, i.e. again the meridian estimator
looks for distribution mode. Thus, δ/MADY 3
should be about 0.0001. Note that σβ for
δ/MADY 3=1 is considerably larger than σβ
for the aforementioned optimum. This means
that the meridian estimator with properly
adjusted δ/MADY 3 is able to perform con-
siderably better than the median estimator.
MADβ/σβ occurs to be very small, about
0.02. This means that meridian estimates have
very heavy tails.

Interesting results have been obtained for
the α-stable distributions with α=0.7 and
α=1.5. The dependences σβ(δ) andMADβ(δ)
for them are presented in Fig. 4. The curves
for α=1.5 do not have minimums. At the same
time, the curves for α=0.7 have minima ob-
served for δ ≈ 10. This means that the sam-
ple meridian provides slightly better accuracy
than the sample median for very heavy tail α-
stable distributions under condition that the
sample meridian tunable parameter is prop-
erly adjusted.

For many widely used distributions (Gaussian,
Rayleigh, uniform) and conventional estima-
tors it is commonly considered that an esti-
mate RMSE is proportional to 1/

√
N [2, 10].

But for heavy tailed PDFs analyzed in our pa-
per there is another tendency. Table 1 presents
simulation results for PDFs f2(x), f3(x), and
f4(x) for three values of N equal to 32, 64, and
256 (these values are typical for robust DFT
applications [5]). The results are obtained for
quasi-optimal δqopt that correspond to mini-

mal σβ and MADβ. As it is seen, σβ and

MADβ decrease faster than 1/
√
N , especially

for data samples with the most heavy tailed
PDF f4(x). It is also worth stressing that
optimal δqopt decreases if N becomes larger.
This is a specific property that has not been
observed for the myriad estimator [13]. This
property makes more complicated designing an
adaptive algorithm for determination of δqopt
for limited a priori information on PDF a data
sample obeys to.

We have also analyzed dependence of δqopt
on data scale. As expected, experiments car-
ried out for all considered PDFs have demon-
strated that δqopt should be directly propor-
tional to MAD of a given distribution where
MADX can serve as its estimate.

It could be also interesting of what can
be the benefit due to applying the merid-
ian estimator with δqopt (given in Table 1)
to heavy tail PDFs in comparison to the
mean and median estimators. Their accu-
racy can be characterized by RMSE σmean
and σmed, respectively. The obtained data
are given in Table 2. It can be also ana-
lyzed in terms of the corresponding MAD val-
ues MADmean, MADβ, MADmed. The re-
sults are presented in Table 3.

Analysis of simulation data presented in Ta-
bles 2 and 3 shows that the use of the meridian
estimator with δqopt is expedient for all three
considered heavy tailed peaky PDFs, espe-
cially for data samples that obey PDFs f3(x)
and f4(x) and especially if a data sample size
is large. For the latter two cases, σβ can be
smaller than σmed by several times and even
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Fig. 3. Dependencies σβ(δ) and MADβ(δ) for the PDFs f3(x)(a) and f4(x) (b), N=64, σX1 = σX2 = σX3 = 1.

Fig. 4. Dependences σβ(δ) and MADβ(δ) for α-stable distributions with α=0.7 (a) and α=1.5 (b), γ = 1,
N=64.

TABLE I

A		��
	� �� ���
�
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�
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�� ���� N.

PDF f2(x) f3(x) f4(x)
N δqopt σβ MADβ δqopt σβ MADβ δqopt σβ MADβ
32 0.5 0.084 0.038 0.05 0.032 0.0080 0.00005 0.012 0.00017
64 0.3 0.050 0.023 0.03 0.016 0.0044 0.00003 0.0015 0.000034
256 0.03 0.018 0.0074 0.001 0.0036 0.0011 10−8 3.3õ10−5 3.8õ10−7

by tens of times. The same relates to MADβ
and MADmed. Note that for the PDFs f2(x),
f3(x), and f4(x) the median estimator pro-
vides better accuracy than the myriad estima-
tor with optimal k. Thus, the meridian esti-
mator can be useful for applications where one
deals with very impulsive noise environments
for which noise PDF is not bell-shaped. We
also expect that the properties of the merid-
ian and median estimators can differ a lot in
cases of processing data samples with asym-
metric distributions.

IV. C��	���
���

The studies carried out have shown that
there exist non-Gaussian distributions for
which the sample meridian with δqopt is able
to produce more accurate estimates of LP
than the most known robust estimators, sam-
ple median and myriad. All three PDFs for
which obvious benefits of the sample merid-
ian have been observed are peaky (not bell-
shaped) ones. This is explained by the pe-
culiarities of the used cost function (2). For
PDFs with heavier tails one has to set smaller
δqopt. At the same time, δqopt should be pro-
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TABLE II
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PDF f2(x) f3(x) f4(x)
N σmean σβ σmed σmean σβ σmed σmean σβ σmed
32 0.177 0.084 0.083 0.173 0.032 0.042 0.71 0.012 0.045
64 0.130 0.050 0.055 0.122 0.016 0.023 0.46 0.0015 0.015
256 0.062 0.018 0.021 0.063 0.0036 0.0070 0.24 3.3õ10−5 0.0018

TABLE III

C���
�
��� �� 
		��
	� ��� ��� ��
�, ���

� 
�� ���
�

� ���
�
���� ��� �
�
 �
����� �
��

�
������� N 
�� PDF�

PDF f2(x) f3(x)
N MADmean MADβ MADmed MADmean MADβ MADmed
32 0.120 0.037 0.046 0.108 0.008 0.015
64 0.084 0.021 0.028 0.082 0.0043 0.0084
256 0.041 0.007 0.012 0.040 0.00096 0.0034

PDF f4(x)
N MADmean MADβ MADmed
32 0.44 2.0õ10−4 0.0047
64 0.31 2.5õ10−5 0.0015
256 0.15 1.1õ10−6 0.00013

portional to data scale. These observations let
us hope that an adaptive algorithm for deter-
mination δ of the meridian estimator can be
designed.
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