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Parameter Estimation of 2-D Cubic
Phase Signal Using Cubic Phase
Function with Genetic Algorithm

Igor Djurovíc, Pu Wang, Cornel Ioana

Abstract– This paper presents a general-
ization of cubic phase function (CPF) for
two-dimensional (2-D) cubic phase polynomial
phase signals (PPS). Since a straightforward
application of the CPF to the 2-D PPS leads to
a demanding three-dimensional (3-D) search an
efficient implementation is proposed by using
genetic algorithms. Simulation results demon-
strate that the proposed approach outperforms
the classical Francos-Friedlander technique in
terms of lower SNR threshold.

I. I������	�
��

Polynomial-phase signals (PPS) are impor-
tant in practice and their applications include
radar signal processing, sonar processing, com-
munications, speech, etc [1]-[4]. For exam-
ple, 2-D PPS signals are frequently recorded
in applications involving dual-channel and in-
terferometric synthetic aperture radars [5]-[8].
Phase differencing is a popular technique for
parameter estimation of the higher-order PPSs
[9]-[11]. Friedlander and Francos have gen-
eralized the phase differencing for parameter
estimation of the 2-D PPSs [5], [6], [12]-[14].
Specifically, their approach requires two con-
secutive phase differencing steps for estimat-
ing the highest-order parameters of a 2-D cu-
bic phase PPS (CP-PPS). Then, the lower
order coefficients are estimated after dechirp-
ing procedure in a straightforward manner of
the 1-D case. However, dechirping causes
the error-propagation effect on estimation of
lower-order parameters. Recently, O’Shea and
co-workers have proposed a novel technique,
cubic phase function (CPF), for estimation
of a one-dimensional (1-D) CP-PPS with one
difference only [15], [16]. As a result, the
reduced non-linearity allows improvement of
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the robustness to a high amount of additive
noise and, in addition, this technique avoids
the error-propagation effect for estimating the
second-order parameters in the CP-PPS. Nu-
merous refinements and generalizations for the
higher-order PPS have been presented in [15]-
[20].
In this paper, we consider a generalization

of the CPF for the 2-D CP PPS. Straight-
forward application of the CPF leads to a
three-dimensional (3-D) search. A genetic al-
gorithm is introduced to facilitate the search
over the 3-D coordinates. Numerical results
show that the genetic algorithm based pro-
posed technique outperforms the Friedlander-
Francos (FF) approach in term of lower esti-
mation threshold for 4-5dB.
The manuscript is organized as follows: The

signal model and the FF approach are de-
scribed in Section II. The proposed technique
is presented in Section III. Asymptotic accu-
racy study is carried out in Section IV. The
genetic algorithm used for performing the 3-
D search is described in Section V. Numerical
examples are provided in Section VI. Conclu-
sions and discussions are given in Section VII.

II. T�
��
�
	�� ��	�������

A. Signal model

Consider the following 2-D CP-PPS model:

y(n,m) = x(n,m) + ν(n,m),

(n,m) ∈ [−N/2, N/2)× [−M/2,M/2), (1)

where

x(n,m) = Ae(jφ(n,m)) =

= Ae(j
∑

3

p=0

∑
3−p
q=0 c(p,q)n

pmq), (2)
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and ν(n,m) is a white complex Gaussian
noise with zero-mean and variance σ2, i.e.,
E{ν(n,m)} = 0 and E{ν(n,m)ν∗(n1,m1)} =
σ2δ(n − n1,m −m1). In (2), A is a constant
amplitude, φ(n,m) is a polynomial phase with
total order up to 3, and c(p, q) is the (p + q)-
layer parameter. The 2-Dmodel in (2) is called
the 2-D triangular form; see [5], [6], [12]-[14]
and references. The signal support region is
N ×M . In this paper, our goal is to estimate
the second-order partial derivatives of the sig-
nal phase: 




∂2φ(n,m)
∂n2

∂2φ(n,m)
∂n∂m

∂2φ(n,m)
∂m2






=




2c(2, 0) + 2c(2, 1)m+ 6c(3, 0)n
c(1, 1) + 2c(2, 1)n+ 2c(1, 2)m
2c(0, 2) + 2c(1, 2)n+ 6c(0, 3)m



 , (3)

and, based on the estimates of the above
derivatives, to estimate signal parameters
{c(p, q)|p ∈ [0, P ] and q ∈ [0, Q], P + Q ≤ 3}
and A in a more accurate manner than the FF
algorithm used as the benchmark [5], [6], [12].

B. FF approach

For the 2-D CP-PPS, the FF approach uses
three phase differences to estimate the highest-
layer parameters as

PD0,2[y(n,m)]

= y(n,m)[y∗(n,m+ τm)]
2y(n,m+ 2τm),

PD1,1[y(n,m)]

= y(n,m)y∗(n+ τn,m)×

y∗(n,m+ τm)y(n+ τn,m+ τm),

PD2,0[y(n,m)]

= y(n,m)[y∗(n+ τn,m)]
2y(n+ 2τn,m), (4)

where ∗ denotes complex conjugation, and τn
and τm are two lag coefficients in the n and m
axes. It should be noted that each phase dif-
ference involves a fourth-order non-linearity. If
the phase differences are calculated for a noise-
free signal, the resulting phases of the above
differences are given by (constant phase terms

independent on n and m are removed since
they do not change position of the maximum):

φ0,2(n,m) = angle{PD0,2[y(n,m)]}

= 2τ2mc(1, 2)n+ 6τ2mc(0, 3)m

φ1,1(n,m) = angle{PD1,1[y(n,m)]}

= 2τnτmc(2, 1)n+ 2τnτmc(1, 2)m

φ2,0(n,m) = angle{PD2,0[y(n,m)]}

= 6τ2nc(3, 0)n+ 2τ
2
nc(2, 1)m. (5)

It is observed that the phase differences in
(4) are 2-D complex sinusoids with frequency
proportional to the highest-layer parameters
c(3, 0), c(2, 1), c(1, 2) and c(0, 3). These pa-
rameters can be estimated as positions of the
corresponding 2-D FT (FT2D) maximum. The
estimates of the highest-layer parameters can
be obtained by locating the peaks of corre-
sponding 2-D Fourier spectra. For example:

(ω̂n, ω̂m)

= arg max
(ωn,ωm)

|FT2D[PD0,2[y(n,m)]]|, (6)

where FT2D denotes the 2-D Fourier trans-
form, and the parameters c(1, 2) and c(0, 3)
can be estimated as

(ĉ(2, 1), ĉ(0, 3)) =

(
ω̂n
2τ2m

,
ω̂m
6τ2m

)
. (7)

Other phase parameters can be estimated by
dechirping the original signal with the ob-
tained highest-layer estimates in a similar pro-
cedure as in the 1-D case.
The main problem here is that the FF ap-

proach employs the fourth-order non-linearity
limiting the accuracy of the highest-order esti-
mates. Furthermore, the current estimate er-
rors propagate to the subsequent estimates af-
ter the dechirping.

III. P�����
� ������	�

The proposed approach is based on the
CPF, which is recently introduced by O’Shea
and co-workers for the chirp-rate estimation
of the CP-PPS [15], [16]. Generalizations of
this approach for the higher-order PPS can be
found in [17], [18]. In this paper, a new phase
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differencing operator, named the chirp differ-
encing, is introduced as a generalization of the
CPF for the case of the 2-D CP-PPS.
The proposed chirp difference is defined as

ry(n,m; τn, τm)

= y(n+ τn,m+ τm)y(n− τn,m− τm). (8)

Compared with the phase differences in (4),
the chirp difference involves only a second-
order non-linearity. This property benefits the
accuracy of the estimates, i.e., it lowers the
SNR threshold. Following evaluation of the
chirp difference, the magnitude of the 2-D CPF
is given as:

fy(n,m;Ψ) = |gy(n,m;Ψ)|
2

= |gy(n,m;ψn, ψnm, ψm)|
2 =

∣∣∣∣∣∣

min(N/2−n−1,N/2+n)∑

τn=−min(N/2−n−1,N/2+n)

min(M/2−m−1,M/2+m)∑

τm=−min(M/2−m−1,M/2+m)

ry(n,m; τn, τm)

×e(−jψnτ
2

n−jψmτ
2

m−j2ψnmτnτm)
∣∣∣
2

, (9)

where Ψ = [ψn,ψnm,ψm] is a vector in the
space used for estimation of the second-order
derivatives of the signal phase:

Ω̂(n,m)= [Ω̂n(n,m), Ω̂nm(n,m), Ω̂m(n,m)]

= argmax
Ψ

fy(n,m;Ψ).

In the absence of noise, the 2-D CPF achieves
maxima at:

Ω̂n(n,m) = Ωn(n,m)

= 2c(2, 0) + 2c(2, 1)m+ 6c(3, 0)n, (10)

Ω̂m(n,m) = Ωm(n,m)

= 2c(0, 2) + 2c(1, 2)n+ 6c(0, 3)m, (11)

Ω̂nm(n,m) = Ωnm(n,m)

= 2c(2, 1)n+ 2c(1, 2)m+ c(1, 1), (12)

where Ω(n,m) = [Ωn(n,m), Ωnm(n,m),
Ωm(n,m)] are exact values of the second-
order partial derivatives of the 2-D PPS. (10)-
(12) suggest that the proposed 2-D CPF can
be used to estimate the second-order partial
derivatives of the signal phase even in the pres-
ence of a high noise.
Based on the estimates of Ω̂(n,m) the rele-

vant phase parameters in (3) can be estimated
as follows
1) Choose three instants pairs, i.e., (ni,mi),

i = 1, 2, 3;
2) Estimate the corresponding Ω̂(ni,mi) =

[Ω̂n(ni,mi), Ω̂nm(ni,mi), Ω̂m(ni,mi)] i =
1, 2, 3, by searching for the maxima of (9);
3) Estimate seven phase parameters includ-

ing the four third-layer ones {c(3, 0), c(2, 1),
c(1, 2), c(0, 3)} and the three second-layer ones
{c(2, 0), c(1, 1), c(0, 2)} using




ĉ(2, 0)
ĉ(3, 0)
ĉ′(2, 1)





=




2 6n1 2m1

2 6n2 2m2

2 6n3 2m3





−1 


Ω̂n(n1,m1)

Ω̂n(n2,m2)

Ω̂n(n3,m3)



 ,




ĉ(0, 2)
ĉ(0, 3)
ĉ′(1, 2)





=




2 6m1 2n1
2 6m2 2n2
2 6m3 2n3





−1 


Ω̂m(n1,m1)

Ω̂m(n2,m2)

Ω̂m(n3,m3)



 ,




ĉ(1, 1)
ĉ′′(2, 1)
ĉ′′(1, 2)





=




1 2n1 2m1

1 2n2 2m2

1 2n3 2m3





−1 


Ω̂nm(n1,m1)

Ω̂nm(n2,m2)

Ω̂nm(n3,m3)



 .

(13)
It is observed that the above equations pro-

duce two estimates of “mixed” the third-layer
parameters c(1, 2) and c(2, 1), i.e., ({ĉ′(2, 1),
ĉ′′(2, 1)} and {ĉ′(1, 2), ĉ′′(1, 2)}). Depending
on the problem at hand, the final estimates of
c(1, 2) and c(2, 1), can be obtained by either
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choosing one of the twice estimates or averag-
ing them.
After finding the above estimates, the lower-

layer phase parameters and the amplitude can
be estimated in a straightforward manner as
in [10]. Note that the dechirping technique
is used again here to estimate the zero-layer
phase parameter c(0, 0), the first-layer phase
parameters c(0, 1) and c(1, 0), and the ampli-
tude. Therefore, these estimates undergo the
error-propagation effects from the third-layer
and second-layer parameter estimation. Nev-
ertheless, the second-layer parameter estima-
tion is free of the error-propagation effects,
while the FF approach introduces the prop-
agated error to the second-layer parameter es-
timates.
Since the 2-D CPF results in a 3-D func-

tion of [ψn, ψnm, ψm] for a fixed instant pair
(n,m), a 3-D search is the required to locate
the maxima in the 2-D CPF; see (9). How-
ever, the main problem in this approach is
required 3-D search for second-order deriva-
tives. The statistical performance analysis of
the proposed technique is given in the next
section while a technique for the 3-D search
employing the genetic algorithm is described
in Section V.

IV. S���
��
	�� �
�������	


The proposed estimator is unbiased, i.e.,
E{ĉ(i, j)} = c(i, j) for the second and third-
layer coefficients i + j ≥ 2. The estimator of
the second layer coefficient is asymptotically
efficient, i.e., the variance of these parame-
ters estimate for high SNR is approaching the
Cramer Rao lower bound (CRLB):

E{[c(2, 0)− ĉ(2, 0)]2}

= E{(δc(2, 0))2} =
90
(
1 + 1

2SNR

)

SNR N5M

E{(δc(0, 2))2} =
90
(
1 + 1

2SNR

)

SNR M5N

E{(δc(1, 1))2} =
72
(
1 + 1

2SNR

)

SNR M3N3
. (14)

For high SNR we can neglect the term SNR−2

with respect to SNR−1 and the variance is

approaching the CRLB [6]:

CRLB{c(2, 0)} =
90

SNR N5M

CRLB{c(0, 2)} =
90

SNR M5N

CRLB{c(1, 1)} =
72

SNR M3N3
. (15)

The estimator of the third-layer coefficients
achieves the following variances:

E
{
(δc(3, 0))2

}
=
2036.03 + 1844.46

SNR

SNR N7M

E
{
(δc(0, 3))2

}
=
2036.03 + 1844.46

SNR

SNR NM7

E{(δc(2, 1))2} =
1440 + 2160

SNR

SNR N5M3

E{(δc(1, 2))2} =
1440 + 2160

SNR

SNR N3M5
(16)

while the corresponding CRLBs are

CRLB{c(3, 0)} =
1400

SNR N7M

CRLB{c(0, 3)} =
1400

SNR NM7

CRLB{c(2, 1)} =
1080

SNR N5M3

CRLB{c(2, 1)} =
1080

SNR N3M5
. (17)

It can be seen that for high SNR when the
term SNR−2 can be neglected with respect
to SNR−1, the proposed estimator produces
variance 1.63dB higher than the CRLB for pa-
rameters c(3, 0) and c(0, 3). In the case of
the mixed parameters c(2, 1) and c(1, 2), the
estimator variance is higher than the CRLB
for only 1.25dB. Note that the related deriva-
tions are tedious; the main steps are outlined
in the Appendix. In addition, the accuracy
of third order-coefficients depends on the po-
sitions (ni,mi), i = 1, 2, 3, in (12). This point
is also discussed within the Appendix.
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V. G
�
�
	 �����
���

A. GA background

Genetic algorithms have found applications
in diverse fields as possible solutions for
multi-parameter and multi-modal optimiza-
tion problems, especially for the case of large
dimensions [21], [22]. A nice overview of the
genetic algorithms and their applications in
signal processing is given in [23]. The appli-
cation of these algorithms in signal process-
ing has significantly increased, especially in the
fields where multiparameter optimization is re-
quired [22].

B. 2-D CPF with GA implementation

Since there is no firm proof of the conver-
gence of the genetic algorithms for the con-
sidered problem, i.e., maximization of func-
tion (9), we turn to experimental trials for
an appropriate setup of the genetic algorithm.
With extensive experimental trials, it is ob-
served that single population algorithms do
not produce accurate results. Therefore multi-
population algorithms are used in order to
achieve more accurate estimates.
In this paper, we use the following setup

of the genetic algorithm. Each parameter of
Ψ = [ψn, ψnm, ψm] is represented with a 14-
bit string with a grid of 1.22 · 10−7. A popu-
lation of 100 chromosomes, i.e., combinations
of Ψ = [ψn,ψnm,ψm], is randomly selected,
and then divided into 10 subgroups of 10 chro-
mosomes. In each generation (fact iteration)
80% of the previous population survives, and
probability of recombination, i.e., probability
of combining string containing parameters Ψ,
is set to 1. Furthermore, the genetic algorithm
assumes 10% of mutations (random changes in
bits representing chromosomes) in one genera-
tion. The maximal number of the generations
is 150 and, after 5 generations, 20% of the
chromosomes move between subgroups (sub-
population).
The above setup represents an aggressive

genetic algorithm due to a large percentage
of mutations, the percentage of chromosomes
moved between subgroups, etc. However, it
still does not give us satisfactory results since
sometimes we have obtained results trapped

within local optimum. Specifically, the ex-
periment results show that, around the SNR
threshold, 3% of outliers in the estimation of
the second-order partial derivatives are caused
by the divergence of the genetic algorithm. To
mitigate the effects of the divergence, an ap-
proximate bound of the divergence of the ge-
netic algorithm is proposed. The approximate
bound of the divergence is found as

BN,div = [2 arctan(SNR[dB]/2 + 8)/π]
2.5

Bdiv = A2Π [2 arctan(SNR[dB]/2 + 8)/π]2.5 ,
(18)

where BN,div and Bdiv denote the approximate
bounds with and without normalization with
respect toA2Π, respectively, andΠ is the num-
ber of terms in sum (9). Fig. 1 shows experi-
mental results of the normalized |gy(n,m;Ψ)|
at and away from the true second-order deriv-
atives (Ψ = Ω(n,m)), and compares these
results with the proposed divergence bound.
In this experiment, the number of instants
was 8000. In Fig. 1, the thin line represents
the maximal values of the |gy(n,m;Ψ)| devi-
ating from the exact second-order derivatives,
the thick line corresponds to the minimal val-
ues of the |gy(n,m;Ψ)| at the exact locations,
and the dashed line denotes the approximate
bound of the divergence. To set the thresh-
old, we used the following two constraints: 1)
values of |gy(n,m;Ψ)| at the exact position
of the second-order derivatives are larger than
the threshold; 2) values of this function away
from the exact position are smaller than the
threshold. Using these constraints we would
know whether we reached the exact values for
the second order derivatives or we are trapped
within a local maximum. The approximate
bound (18) can be used to verify whether the
genetic algorithm produces an outlier. For ex-
ample, if the obtained values of (9) are smaller
than the bound after 150 generations, suggests
that the estimate might be an outlier with high
probability and thus we repeat the genetic al-
gorithm with new starting population of chro-
mosomes. To limit the computation time, the
maximal number of the algorithm runs is set
to 20. Fig. 1 clearly demonstrates that the
second-order partial derivative in (10)-(12) can
be accurately estimated for SNR ≥ −10dB.
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Fig. 1. Determination of the divergence bound of the genetic algorithm: thick line - minimal value of the
function |gy(n,m;Ψ)| for the exact values of the second-order partial derivatives; thin line - the maximal
values of the function |gy(n,m;Ψ)| for positions outside of the secondorder partial derivatives; dashed line
- adopted threshold.

Hence, it can be assumed that the SNR thresh-
old of the algorithm is about −10dB. More-
over, the proposed bound provides a good es-
timate of the values of the |gy(n,m;Ψ)| at the
exact locations.
Since the approximate bound (18) requires

the knowledge of A as well as the SNR, an
efficient estimate of A is given as [24]:

Â2 =
√
|2E2

2 −E4| (19)

σ̂2 = |E2 − Â2| (20)

where
Ei = E{yi(n,m)}. (21)

Subsequently, the SNR can be estimated as

ŜNR =
Â2

σ̂2
. (22)

C. Computational Issue

Before proceeding with numerical examples,
we need to briefly elaborate the usage of the
genetic algorithm in this application. Assume
the number of discrete grids for each parame-
ter, i.e., [ψn, ψnm, ψm] is 200. In the case of
the direct search, we need to search over a 3-
D space with about 2003 = 8 · 106 elements.

We should keep in mind that all operations
are performed on the 2-D data and that the
3-D search can be more demanding. To refine
these estimates, additional interpolation may
be required around the obtained estimates. On
the other hand, the genetic algorithm requires
150 generations with 100 members and, in the
worst case, 20 runs of the algorithm. This im-
plementation leads to about 3 · 105 computa-
tions. As a result, the genetic algorithm is
faster at least 25 times (it can be up to 500
times) than the direct search.

Note that the FF approach is less demand-
ing than the proposed technique. Namely, the
overall complexity of the FF approach is of
the order of magnitude O(NM log2NM) since
all functions (4) could be evaluated by us-
ing the 2-D FFT algorithms. The complex-
ity of the evaluation of (9) for a single triplet
[ψn, ψnm, ψm] is O(NM). As previously ex-
plained, we need to evaluate this function for
thousands points. It means that the complex-
ity is significantly higher than for the case of
the FF approach, i.e., O(RNM), where R is a
total number of elements used in the genetic al-
gorithm evaluation (between 15·103 and 3·105

in our implementation). Note that the FF ap-
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proach commonly requires an additional inter-
polation of estimates in order to get precise
results close to the CRLB.

VI. N��
�
	�� 
�����


In this section, we numerically examine the
proposed approach. First, we generated the
signal given by (2) with parameters A = 1,
c(0, 0) = 1, c(1, 0) = 4.5 · 10−1, c(0, 1) = 8.2 ·
10−2, c(2, 0) = −1.5 · 10−3, c(1, 1) = 6 · 10−3,
c(0, 2) = −2.2 · 10−3, c(3, 0) = 1.7 · 10−5,
c(2, 1) = 4·10−5, c(1, 2) = 3.73·10−5, c(0, 3) =
−1.35 · 10−5, N = 100 and M = 100. The FF
approach is used as the benchmark [12]. The
relevant coefficients for the FF approach are
chosen as τn = τm = 33 (4), [12] and the
corresponding search is performed over a 2-D
space with 512×512 elements for all three func-
tions (4). Additional interpolations are per-
formed around initial estimates by a factor of
100. The 2-D CPF is evaluated at the instants
(50, 50), (50, 40) and (40, 50) using the genetic
algorithm setup described in previous section
and the 3-D search procedure for optimization
of (9). Numerical results are given in Fig. 2,
where the MSEs for four characteristic higher-
order parameters of the 2-D CP-PPS are de-
picted. Results are obtained with 200 runs of
the Monte-Carlo simulation. Thin solid lines
represent the MSEs achieved by the FF ap-
proach, the thick solid lines correspond to the
proposed approach 2-D CPF evaluated by the
genetic algorithm, the thick dashed lines de-
pict the MSEs of the 2-D CPF with 3-D search,
while the thin dashed lines are for the corre-
sponding CRLB. Note that the MSE is calcu-
lated for each coefficient as:

MSE(p,q) =
1

#

#∑

i=1

(c(p, q)− ĉ(p, q))2, (23)

where c(p, q) and ĉ(p, q) are the considered co-
efficient and the corresponding estimate, while
# is number of trials in the Monte-Carlo sim-
ulation.
The proposed approach with the 3-D search

procedure outperforms the FF approach both
in the terms of lower MSE and lower SNR
threshold ≈7dB. However, the complexity of
this approach limits its practical application.

Due to the estimation bias, the genetic algo-
rithm achieves higher MSEs than the FF ap-
proach for SNR≥-2dB. Generally, the estima-
tion bias can be caused for various reasons in-
cluding a small number of generations, dis-
cretization in parameter space, etc. Never-
theless, the SNR threshold of this algorithm
is shown in Fig. 2 to be about 5dB lower
than that of the FF approach. This is a sig-
nificant advantage of the proposed approach
since in the range of at least 5dB it signif-
icantly outperforms the FF technique. The
threshold of the proposed genetic algorithm
based approach is 2dB higher than in the case
of direct search; however it significantly re-
duced the computation burden. The conver-
gence of the genetic algorithm in the above
setup is relatively good as described below.
For SNR≥0dB, it always produces satisfactory
results after a single algorithm run; for SNR=-
4dB it requires an average 1.03 runs of the al-
gorithm; for SNR =-6dB on average 1.26 runs
are required; while, for SNR =-8dB, we require
3.2 runs of the algorithm. The maximal num-
ber of the algorithm runs in all trials was 13.
The numerical results imply that for high

SNR it is better to use the FF approach, while
below the SNR threshold of the FF technique
we can apply the proposed approach with ge-
netic algorithm. Below the threshold of the
genetic algorithm we can try with the 3-D
search. Note that the low accuracy of the ge-
netic algorithm for high SNR can be avoided
with the direct search in a narrow range about
the obtained estimates or with some alterna-
tive search procedure (for example the least
mean squares (LMS) algorithms). These top-
ics remains outside of the current research.

VII. C��	���
�� ��� �
�	���
��

The 2-D CPF is proposed for estimation
of parameters of the 2-D CP-PPS. The 3-D
search for the estimates is performed using the
genetic algorithm. Parameters of the genetic
algorithm are described in details. Asymp-
totic accuracy study of the proposed technique
is performed with optimal selection of coeffi-
cients (ni,mi) in (9). In our opinion this re-
search is just the first step in this direction,
since we will consider several important di-
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Fig. 2. MSE for the proposed genetic algorithm-based approach (thick solid line), direct 3D search with the
2D CPF (thick dashed line), the FF approach (thin solid line), and the CRLB (thin dashed line) for the
estimates of (c(3, 0), c(2, 1), c(2, 0), and c(1, 1)).

rections for generalization to higher-order 2-D
PPS and for multidimensional PPS. In addi-
tion, the genetic algorithm can be combined
with the LMS algorithms as it was done in
[23] to further reduce the computation burden.
Finally, the most important direction is to re-
duce the dimension of the problem from the
3-D toward 2-D or even to 1-D.

VIII. A��
��
�

A. Model

Consider a noisy signal (1). The 2-D CPF
is gy(n,m;Ψ) = gx(n,m;Ψ) + δg(n,m;Ψ)
where signal component is given as

gx(n,m;Ψ) =

×
∑

τn

∑

τm

rx(n,m; τn, τm)

e−jψnτ
2

n−jψmτ
2

m−j2ψnmτnτm (24)

while a component introduced by interferences
is:

δg(n,m;Ψ) =
∑

τn

∑

τm

zxν(n,m, τn, τm)

×e−jψnτ
2

n−jψmτ
2

m−j2ψnmτnτm (25)

where
zxν(n,m, τn, τm)

= x(n+ τn,m+ τm)ν(n− τn,m− τm)+

ν(n+ τn,m+ τm)x(n− τn,m− τm)+

ν(n+ τn,m+ τm)ν(n− τn,m− τm). (26)

Function |gx(n,m;Ψ)|
2 achieves the maxi-

mum forΨ = Ω(n,m)= [Ωn(n,m), Ωnm(n,m),

Ωm(n,m)=
[
∂2φ(n,m)

∂n2 , ∂2φ(n,m)
∂n∂m , ∂2φ(n,m)

∂m2

]
.
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Due to the noisy term δg(n,m;Ψ) the max-
imum of fy(n,m;Ψ) moves to Ω + δΩ =
[Ωn + δΩn, Ωnm + δΩnm, Ωm + δΩm]. Here-
after, due to brevity we remove the depen-
dency of the second-order derivatives of the
signal phase on position (n,m).
Then, it follows:

[
∂fx(n,m;Ψ)

∂ψi
+

∂δf(n,m;Ψ)

∂ψi

]
|Ψ=Ω+δΩ

= 0, i = 1, 2, 3, (27)

where ψi, i = 1, 2, 3 are corresponding ele-
ments of the vector Ψ, ψ1 = ψn, ψ2 = ψnm,
ψ3 = ψm.
Perturbation δf(n,m;Ψ) can be approxi-

mated by δg(n,m;Ψ) under the assumption
that the SNR is relatively large resulting in
neglecting of the term |δg∗(n,m;Ψ)|

2

δf(n,m;Ψ)

≈ 2Re {gx(n,m;Ψ)δg
∗(n,m;Ψ)} . (28)

We expand (27) around Ω for high SNR into
the Taylor expansion up to the second term:

∂fx(n,m;Ψ)

∂ψi
|Ψ=Ω +

∂δf(n,m;Ψ)

∂ψi
|Ψ=Ω+

3∑

l=1

δΩl
∂2fx(n,m;Ψ)

∂ψi∂ψl
|Ψ=Ω = 0, i = 1, 2, 3.

(29)
This can be written in the matrix form:

δF1 +F2δΩ = 0, (30)

where
δF1

=
[

∂δf(n,m;Ψ)
∂ψ

1

∂δf(n,m;Ψ)
∂ψ

2

∂δf(n,m;Ψ)
∂ψ

3

]T

|Ψ=Ω
,

δΩ =
[

δΩ1 δΩ2 δΩ3
]T

and
F2 =






∂2fx(n,m;Ψ)
∂2ψ

1

∂2fx(n,m;Ψ)
∂ψ

1
∂ψ

2

∂2fx(n,m;Ψ)
∂ψ

2
∂ψ

1

∂2fx(n,m;Ψ)
∂ψ2

2

∂2fx(n,m;Ψ)
∂ψ

3
∂ψ

1

∂2fx(n,m;Ψ)
∂ψ

3
∂ψ

2

∂2fx(n,m;Ψ)
∂ψ

1
∂ψ

3

∂2fx(n,m;Ψ)
∂ψ

2
∂ψ

3

∂2fx(n,m;Ψ)
∂ψ2

3






|Ψ=Ω

. (31)

Elements of F2 are given as:

[F2]il =
∂2fx(n,m;Ψ)

∂ψi∂ψl
|Ψ=Ω

= 2Re

{
∂2gx(n,m;Ω)

∂ψi∂ψl
g∗x(n,m;Ω)+

∂gx(n,m;Ω)

∂ψi

∂g∗x(n,m;Ω)

∂ψl

}
. (32)

Note that the matrix F2 is symmetric since
[F2]il = [F2]li.
Similarly, elements of δF1 follow from (28)

as:
[δF1]i

= 2Re

{
∂gx(n,m;Ω)

∂ψi
δg∗(n,m;Ω)+

gx(n,m;Ω)
∂δg∗(n,m;Ω)

∂ψi

}
. (33)

B. Asymptotic MSE of the second-layer para-

meter estimates

Since the function fx(n,m;Ψ) is noise-free
and δf(n,m;Ψ) is random perturbation, the
matrix F2 is deterministic and the vector δF1
is random. Then the estimation error can be
expressed as

δΩ = −F−12 δF1. (34)

Taking the expectation with respect to δΩ the
bias is:

E{δΩ} = −F
−1
2 E{δF1} (35)

and the covariance matrix of δΩ is:

E{(δΩ)(δΩ)T} = F−12 CδF1F
−1
2 (36)

where CδF1 = E{(δF1)(δF1)
T}. Finally, the

variances for the estimate errors are given as:

E{(δΩi)
2} = [F−12 CδF1F

−1
2 ]ii. (37)

We can use the following intermediate results:

g∗y(n,m;Ψ)|Ψ=Ω =g
∗
y(n,m;Ω)
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=
K∑

τn=−K

L∑

τm=−L

A2e−j2φ(n,m)

×ej(Ωn−ψn)τ
2

n+j(Ωm−ψm)τ
2

m+j2(Ωnm−ψnm)τnτm

|Ψ=Ω = A
2e−j2φ(n,m)(2K+1)(2L+1). (38)

Using the following approximation that holds
for even k and K � k:

K∑

m=−K

mk ≈ 2Kk+1/(k + 1) (39)

we can evaluate derivatives of gx(n,m;Ψ) for
Ψ = Ω as

∂gx(n,m;Ω)

∂ψ1
≈ −jA2ej2φ(n,m)

2K3

3
(2L+ 1)

(40)
∂gx(n,m;Ω)

∂ψ3
≈ −jA2ej2φ(n,m)

2L3

3
(2K + 1)

(41)
∂gx(n,m;Ω)

∂ψ2
= 0, (42)

∂2gx(n,m;Ω)

∂ψ21
≈ −A2ej2φ(n,m)

2K5

5
(2L+ 1)

(43)
∂2gx(n,m;Ω)

∂ψ1∂ψ3
≈ −A2ej2φ(n,m)

2K3

3

2L3

3
(44)

∂2gx(n,m;Ω)

∂ψ1∂ψ2
=

∂2gx(n,m;Ω)

∂ψ2∂ψ3
= 0 (45)

∂2gx(n,m;Ω)

∂ψ23
≈ −A2ej2φ(n,m)

2L5

5
(2K + 1)

(46)
∂2gx(n,m;Ω)

∂ψ22
≈ −4A2ej2φ(n,m)

2K3

3

2L3

3
(47)

where (2K +1)× (2L+1) is the window size.
Then the matrix F2 is given as:

F2

= −
128

9
A4K2L2




1
5K

4 0 0
0 K2L2 0
0 0 1

5L
4



 .

(48)
To determine the random term δF1 (33) by
using (25) we need to evaluate ∂δg∗(n,m;Ψ)

/∂ψi|Ψ=Ω, i = 1, 2, 3. This term can be writ-
ten as

∂δg∗(n,m;Ω)

∂ψi

= j
M∑

τn=−M

L∑

τm=−L

ξi(τn, τm)

×z∗xν(n,m; τn, τm)e
jψnτ

2

n+jψmτ
2

m+j2ψnmτnτm

(49)
where

ξi(τn, τm) =






τ2n i = 1
2τnτm i = 2
τ2m i = 3.

(50)

After tedious but straightforward derivations
it follows:

[δF1]i = −8A
2KL Im {Γ(i,K,L)} , (51)

where
Γ(i,K,L)

= ej2φ(n,m)
K∑

τn=−K

L∑

τm=−L

λi(τn, τm)×

z∗xν(n,m; τn, τm)e
jψnτ

2

n+jψmτ
2

m+j2ψnmτnτm

(52)
and

λi(τn, τm) =






τ2n −
K2

3 i = 1
2τnτm i = 2

τ2m −
L2

3 i = 3.

(53)

Again, for the sake of brevity we removed ex-
plicit dependence of Γ(i,K,L) on the position
(n,m). Since E{δF1} = 0 then E{δΩ} = 0.
In other words, the estimator is unbiased. In
order to determine variances, we need to de-
termine CδF1 = E{(δF1)(δF1)

T}, whose the
elements are:

[CδF1 ]il =
[
E{(δF1)(δF1)

T}
]
il
=

64A4K2L2E {Im[Γ(i,K,L)] Im[Γ(l,K,L)]} .
(54)

Here, the expectation can be rewritten as

E {Im[Γ(i,K,L)] Im[Γ(l,K,L)]}

= −
1

4
E{[Γ∗(i,K,L)
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−Γ(i,K,L][Γ∗(l,K,L)− Γ(l,K,L]},

where
E{Γ(i,K,L)Γ(l,K,L)}

= E{Γ∗(i,K,L)Γ∗(l,K,L)} = 0

and

E{Γ(i,K,L)Γ∗(l,K,L)} ≈ 0 for i 
= l.

Then:
[CδF1 ]il

≈

{
32A4K2L2E{|Γ(i,K,L)|2} i = l

0 i 
= l.
(55)

By using (52) and (39) we obtain

E{|Γ(i,K,L)|2}

=






32
45(2A

2σ2 + σ4)K5L i = 1
32
9 (2A

2σ2 + σ4)K3L3 i = 2
32
45(2A

2σ2 + σ4)KL5 i = 3.
(56)

Then, it follows:

CδF1 =
1024

9
(2A2σ2 + σ4)A4K3L3

×




1
5K

4 0 0
0 K2L2 0
0 0 1

5L
4



 . (57)

It can be noticed that CδF1 = −8KL(2A2σ2+
σ4)F2. Now, we have:

E{(δΩi)
2} = [F−12 CδF1F

−1
2 ]ii =

−8KL(2A2σ2 + σ4)[F−12 ]ii, (58)

where

F−12 = −
9

128A4K2L2




5
K4 0 0
0 1

K2L2 0
0 0 5

L4





(59)
and

E{(δΩ1)
2} = E{(δΩn)

2}

=
45
(
2 + 1

SNR

)

16SNR K5L
(60)

E{(δΩ2)
2} = E{(δΩnm)

2}

=
9
(
2 + 1

SNR

)

16SNR K3L3

E{(δΩ3)
2} = E{(δΩm)

2}

=
45
(
2 + 1

SNR

)

16SNR KL5
. (61)

To estimate the second-layer parameters we
assume that the evaluation is performed for
central instant of considered domain. Then,
τn ∈ [−(N − 1)/2, (N − 1)/2] and τm ∈
[−(M − 1)/2, (M − 1)/2] and we have

E{(δc(2, 0))2}

=
E{(δΩn)2}|n=0

m=0

4
=
90
(
1 + 1

2SNR

)

SNR N5M
(62)

E{(δc(0, 2))2}

=
E{(δΩm)2}|n=0

m=0

4
=
90
(
1 + 1

2SNR

)

SNR M5N

E{(δc(1, 1))2}

= E{(δΩnm)
2}|n=0

m=0
=
72
(
1 + 1

2SNR

)

SNR M3N3
. (63)

This confirms that the proposed estimator is
asymptotically efficient for the second-layer
parameters (neglecting the terms containing
SNR−2).

C. Asymptotic MSE of the third-layer parame-

ter estimates

Here, we will consider the asymptotic MSEs
of parameters c(2, 1) and c(3, 0) while simi-
lar derivations hold for parameters c(1, 2) and
c(0, 3). To simplify the analysis we estimate
Ωn for three points (n = 0, m = 0), (n,m = 0)
and (n = 0, m). The estimates can be written
as: 


ĉ(2, 0)
ĉ(3, 0)
ĉ(2, 1)





=




2 0 0
2 6n 0
2 0 6m





−1 


Ωn(0, 0)
Ωn(n, 0)
Ωn(0,m)



 , (64)

while the estimation error for parameters is
linearly related to errors in estimation of phase
parameters. 


δĉ(2, 0)
δĉ(3, 0)
δĉ(2, 1)




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=




2 0 0
2 6n 0
2 0 6m





−1 


δΩn(0, 0)
δΩn(n, 0)
δΩn(0,m)



 , (65)

The covariance matrix exhibits

C1 =




2 0 0
2 6n 0
2 0 6m





−1

×E









δΩn(0, 0)
δΩn(n, 0)
δΩn(0,m)








δΩn(0, 0)
δΩn(n, 0)
δΩn(0,m)





T





×




2 0 0
2 6n 0
2 0 6m





−1

. (66)

The diagonal elements of C1 give the MSE of
the three estimates c(2, 0), c(3, 0) and c(2, 1).
Here, we will consider just the third-order pa-
rameters:

E{(δc(3, 0))2} =
E{(δΩn(0, 0))

2}

36n2

+
E{(δΩn(n, 0))

2} − 2E{δΩn(0, 0)δΩn(n, 0)}

36n2

E((δc(2, 1))2} =
E{(δΩn(0, 0))2}

4m2
+

E{(δΩn(0,m))2} − 2E{δΩn(0, 0)δΩn(0,m)}

4m2
.

(67)

C.1 Asymptotic MSEs of the c(3, 0) estimates

To calculate E{(δc(3, 0))2} we need to de-
termine E{δΩn(0, 0)δΩn(n, 0)} while
E{(δΩn(0, 0))

2} and E {(δΩn(n, 0))
2} follows

from (60) for K = N/2 and L =M/2 for (0, 0)
andK = N/2−n and L =M/2 for (n, 0). This
quantity is equal to

E{δΩn(0, 0)δΩn(n, 0)}

=
452

162A4
(
N
2

)5 (N
2 − n

)5 (M
2

)2×

E{Im {Γ(1, N/2,M/2)}

Im {Γ(1,N/2− n,M/2)}} =

452E {Γ(1, N/2,M/2)Γ∗(1, N/2− n,M/2)}

512A4
(
N
2

)5 (N
2 − n

)5 (M
2

)2

(68)

where

E {Γ(1, N/2,M/2)Γ∗(1,N/2− n,M/2)}

≈ 4A2σ2
(N − 2n)5M

180
(69)

E {Γ(1, N/2,M/2)Γ(1, N/2− n,M/2)} = 0.
(70)

As a result

E{(δc(3, 0))2} =
E{(δΩn(0, 0))

2}

36n2
+

E{(δΩn(n, 0))
2} − 2E{δΩn(0, 0)δΩn(n, 0)}

36n2

≈

45(2+ 1

SNR)
16SNR(N2 )

5(M2 )

36n2

+

45(2+ 1

SNR)
16SNR(N2 −n)

5

(M2 )
− 720

SNR N5M

36n2
. (71)

Numerical results show that n = 0.1114N or
n ≈ 0.11N produces the minimum MSE for a
high SNR (e.g. SNR = 20dB). By substitut-
ing n ≈ 0.11N into the above expression we
obtained the MSE for the c(3, 0) estimate as:

E
{
(δc(3, 0))2

}
=
2036.03 + 1844.46

SNR

SNR N7M
. (72)

Similarly we can derive the asymptotic accu-
racy for c(0, 3) as:

E
{
(δc(0, 3))2

}
=
2036.03 + 1844.46

SNR

SNR NM7
. (73)

Remark: It is interesting to note that, the ac-
curacy in estimation of the c(3, 0) and c(0, 3)
is similar to the 1-D case [16]. In the 1-D case,
n = 0.11N gives MSE of the third-order para-
meter:

E
{
(δa3)

2
}
=
2038 + 1844

SNR

SNR N7
. (74)

C.2 Asymptotic MSEs of the c(2, 1) estimates

Again, from (61) we have to determine
E{δΩn(0, 0)δΩn(0,m)} since E{(δΩn(0, 0))2}
is given with (62) while E{(δΩn(0,m))

2} fol-
lows from (60) as:

E{(δΩn(0,m))
2} =

180
(
2 + 1

SNR

)

SNR N5 (M − 2m)
.

(75)
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After a tedious but straightforward derivations
it follows that

E{δΩn(0, 0)δΩn(0,m)} =

452E {Γ(1, N/2,M/2)Γ∗(1, N/2,M/2−m)}

512A4
(
N
2

)10 (M
2

) (
M
2 −m

)

(76)
where

E {Γ(1, N/2,M/2)Γ∗(1, N/2,M/2−m)}

≈ 4A2σ2
N5(M − 2m)

180
. (77)

Then, the MSE for parameter c(2, 1) is

E{(δc(2, 1))2} ≈

45(2+ 1

SNR)
16SNR(N2 )

5(M2 )

4m2

+

45(2+ 1

SNR)
16SNR(N2 )

5(M2 −m)
− 720

SNR N5M

4m2
. (78)

Numerical results show that m = 0.2502M or
m ≈ 0.25M gives minimumMSE for high SNR
(e.g. SNR = 20dB). By inserting m ≈ 0.25M
into the above expression we obtain the MSE
for the c(2, 1) estimate as

E{(δc(2, 1))2} =
1440 + 2160

SNR

SNR N5M3
. (79)

Similarly, the asymptotic accuracy for c(1, 2)
is equal to:

E{(δc(1, 2))2} =
1440 + 2160

SNR

SNR N3M5
. (80)
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