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Robust M-periodogram with
dichotomous search
Slobodan Djukanović, Igor Djurovíc

Abstract– The problem of sinusoidal fre-

quency estimation in heavy-tailed noise envi-

ronment is addressed. A method based on the

robust M -periodogram is proposed. Specifi-

cally, a suboptimal coarse frequency estimate

provided by the robust M -periodogram is im-

proved using the modified dichotomous search.

Simulations that consider most common heavy-

tailed noise models demonstrate that the pro-

posed method outperforms several recently

proposed methods. The method can be readily

extended to deal with multiple sinusoids.

I. I������	�
��

Frequency estimation of sinusoidal signals
corrupted by additive Gaussian noise is of-
ten encountered in practice. The topic is
relevant to numerous applications, including
radar, sonar and speech processing, to name
a few. It has been extensively dealt with
in the literature in the past several decades
[1—8]. The maximum likelihood (ML) estimate
of the frequency is given by the location of
the periodogram’s highest peak [1]. This ap-
proach can be effectively implemented using
the fast Fourier transform (FFT) algorithm.
The periodogram maximization is usually per-
formed in two steps, coarse search and fine
search. Coarse search represents finding the
maximum bin of the FFT of a noisy sinusoid.
Fine search represents refining the coarse es-
timate through the interpolation or some iter-
ative method. Numerous iterative maximiza-
tions have been proposed in the literature. In
[3] and [4], estimators that interpolate the true
signal frequency using two discrete Fourier
transform (DFT) coefficients from either side
of the maximum bin are proposed. These al-
gorithms, however, have frequency-dependent
performance that is worst when the frequency
displacement δ of the true signal frequency
from a DFT bin is zero. In [5], an iterative
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binary search is proposed, a method referred
to as the dichotomous search of periodogram
peak. It is necessary, however, to zero-pad the
data prior to the coarse search. In [7], a mod-
ified version of the dichotomous search that
achieves the CRB without the zero-padding is
presented. In [8], two asymptotically unbiased
fine search iterative procedures are proposed;
their estimation variance exceeds the CRB for
about 1.5% for Gaussian noise environment.
In many important applications (e.g., radar,

HF and cellular communication, underwater
acoustics), the additive noise exhibits heavy-
tailed nature. Unfortunately, the standard
DFT-based techniques fail to produce satis-
factory results in such environments. Methods
based on the robust statistics [9] appeared as a
solution to this problem. Of particular impor-
tance is the robust M -periodogram [10], [11],
where a nonquadratic loss function is used for
fitting of observations corrupted by noise with
unknown heavy-tailed distribution. Specifi-
cally, the absolute value loss function offers a
radical improvement of the periodogram qual-
ity in terms of the resolvability of signal peaks.
In [12], the marginal-median DFT is proposed
as an alternative to the standard DFT. The
main drawback to this method is the spec-
tral distortion [12] due to the fact that each
marginal-median DFT sample equals one mod-
ulated signal sample (odd signal length) or the
average of two modulated samples (even sig-
nal length). The spectral distortion can be re-
duced using the L-filter DFT (L-DFT) forms
[13]. A robust frequency estimation method
based on the L-DFT is proposed in [14]. In
a non-Gaussian noise environment, the ampli-
tude and frequency of a sinusoid can be es-
timated more accurately than the Gaussian
CRB suggests [15]. The ML estimator derived
under the condition of Laplace white noise is
able to attain an asymptotic CRB that is one
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half of that achieved by periodogram maxi-
mization and nonlinear least squares [15].
In this paper, we propose a method for ro-

bust sinusoidal frequency estimation. In the
robust M -periodogram, the maximum bin’s
position represents the coarse estimate, which
is refined using a modified dichotomous search.
The modified dichotomous search does not re-
quire zero-padding of the data, which is a
very desirable property since the robust M -
periodogram is calculated iteratively at each
frequency. The power of FFT algorithms can-
not be fully harnessed here.
The paper is organized as follows. A brief

overview of the robustM -periodogram is given
in Section 2. The proposed frequency estima-
tion refinement is presented in Section 3. Sim-
ulations are given in Section 4 and conclusions
are drawn in Section 5.

II. R���
� M -���
�������

Consider a constant amplitude complex si-
nusoid embedded in a heavy-tailed noise ν(n),

y(n) = Aej(ω0nT+φ)+ν(n), n = 0, · · · , N−1,
(1)

where A, ω0 and φ are unknown real-valued
amplitude, frequency and phase, respectively,
T the sampling interval and N the number of
samples. Our goal is to estimate ω0.
The M -estimates ω̂ and Ĉ of the frequency

and amplitude, respectively, are introduced as
a solution to the following optimization prob-
lem [11]:

(ω̂, Ĉ) = argmin
C,ω∈Qω

J(ω,C), (2)

where

J(ω,C) =
∑

n

ρ(n) (F (eR(n)) + F (eI(n))),

(3)

e(n) = y(n)−CejωnT ,

eR(n) = Re(e(n)), eI(n) = Im(e(n)),

Qω = {ω| −
π

T
< ω <

π

T
, ω �= 0}.

In (3), ρ(n) is a non-negative window function
and F (x) is a convex non-negative loss func-
tion.

In particular, when F (x) = x2, definition
(2) yields the standard periodogram [10], [11].
In this paper, we will consider the absolute
value loss function, F (x) = |x|, since it is as-
ymptotically optimal in the minimax sense for
two very important classes of noise distribu-
tions [11],
• class of nonsingular distributions, i.e., when
nothing is known about the noise distribution
except that its p.d.f. g(x) satisfies g(0) > 0,
and
• class of approximate exponential distribu-
tions,

g(x) = (1− γ)f0(x) + γf1(x), 0 < γ < 1,

where f0(x) is the Laplace distribution and
f1(x) is an arbitrary distribution.
The robust M -periodogram is defined as a

function [11]

IR(ω) = J(0, 0)− J(ω,C(ω)), (4)

where

J(0, 0) =
∑

n

ρ(n) (F (Re(y(n))) + F (Im(y(n))),

and C(ω) is a minimizer of J(ω,C) provided
a fixed value of ω, i.e.

C(ω) = argmin
C

J(ω,C).

The function IR(ω) is calculated for each
ω ∈ Qω and the frequency is estimated as

ω̂ = argmax
ω∈Qω

IR(ω). (5)

In practice, the set Qω is given by a grid of
Fourier frequencies

Qω = {ω|ωk =
π

NT
k, k = −N+1, · · · , N−1}.

(6)
Let us denote the frequency estimation er-

ror with ∆ω and distribution function of noise
ν(n) as G(x). From (13) and (14) in [11], we
see that the robust M -periodogram is the un-
biased estimator of the complex sinusoid fre-
quency with the asymptotic variance of

Var[∆ω] = V (F,G)
T

A2h3
Wω + o(T/h3), (7)
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where

V (F,G) =

∫∞
−∞(F

(1)(x))2dG(x)
(∫∞

−∞
F (2)(x)dG(x)

)2 , (8)

h is the window length, Wω is a window-
dependent parameter and limx→∞ o(x)/x = 0.
The term V (F,G) completely and solely de-
scribes the influence of the noise distribution
and cost function on the variance.

III. D
	�������
 
���	� �� ��� ����
�

M -���
������� ����

In this section, we present a robust M -
periodogram maximization method based on
the dichotomous search proposed in [5]. The
dichotomous search is a binary search method,
where we first locate the DFT peak, then take
two DFT coefficients from either side of the
peak and adjust the frequency estimation to-
ward the larger coefficient. We calculate new
DFT coefficient halfway between the peak and
the larger coefficient. The position of the
calculated coefficient represents improved fre-
quency estimation over the initial one. The
procedure is iterated Q times. A drawback to
this method is the need to zero-pad the data to
a length of at least 1.5N , in order to approach
the CRB.

In [7], a modification to the dichotomous
search that attains the CRB without the zero-
padding is proposed. Here we will use the same
approach with slightly different initialization
step. It is given below.

Step 1. Calculate the robust periodogram
IR(ω) at the grid of Fourier frequencies and
find position ωm of the maximum of IR(ω).
Denote I0 = IR(ωm). Set ∆ω = ∆ω

2 , where
∆ω is the frequency resolution, and calculate
IR(ω) at two points ωm ±∆ω, i.e.

I±1 = IR(ωm ±∆ω),

Step 2. Iterate Q times

∆ω =
∆ω

2
if I1 > I−1 then

I−1 = I0 and ωm = ωm +∆ω

else

I1 = I0 and ωm = ωm −∆ω

calculate IR(ωm) and set I0 = IR(ωm),

The final frequency estimation is ω̂ = ωm.
In each iteration, the frequency resolution

∆ω is halved, i.e., improved two times. It can
be shown that the final frequency resolution,
after Q iterations, equals

∆ω =
2π

TN2Q+1
. (9)

The frequency resolution should be small
enough to allow for accurate estimation. One
approach to defining the number Q is to re-
duce ∆ω until it is smaller than the square
root of the CRB [6]. However, in [6], the fre-
quency estimation in Gaussian environment is
considered with the CRB [1]

σCRω =

√
6σ2

T 2N(N2 − 1)A2
. (10)

In the robust M -periodogram case, instead
of the CRB, we can consider the asymptotic
variance, which could be easily obtained from
(10) by substituting the noise variance σ2 with
V (F,G) defined in (8). This is a consequence
of the fact that the influence of the noise dis-
tribution and cost function are fully incorpo-
rated within V (F,G). Therefore, the criterion
for defining Q could be

∆ω <

√
6V (F,G)

T 2N(N2 − 1)A2
⇒

Q < log2

(

πA

√
N2 − 1

6NV (F,G)

)

. (11)

In [8], the frequency displacement is calcu-
lated iteratively; in each iteration, the dis-
placement δ is updated by a value that de-
pends on ratio (X0.5+X−0.5)/(X0.5−X−0.5),



ROBUST M -PERIODOGRAM WITH DICHOTOMOUS SEARCH 1191

where X−0.5 and X0.5 are DFT bins displaced
by −0.5 and 0.5 from the current frequency es-
timate, respectively. This approach, however,
is optimal for the Gaussian noise environment.
We find the dichotomous search a more nat-
ural choice, since the only assumption regard-
ing the peak shape is that it is a monotonically
increasing function in the interval [ωt−

∆ω
2 , ωt]

and monotonically decreasing in [ωt, ωt+
∆ω
2 ],

where ωt is the true signal frequency.
The proposed method can be readily ex-

tended to the multiple sinusoids case provided
that sinusoids are well separated in frequency
so that mutual influence of components can be
neglected. The standard periodogram-based
techniques cannot resolve sinusoidal frequen-
cies that differ by less than one cycle per
unit time. In that case, robust high-resolution
spectral methods should be used [16].
Frequency estimation of multiple sinusoids

can also be performed using the coarse and fine
search strategy. If we assume that the number
of components, K, is known, the coarse search
is performed by locating K strongest spectral
peaks. The fine search is performed for each
located peak separately.

IV. S
�����
��


In the experiment, we consider a complex
sinusoid

s(n) = ej((ω0+δ)nT+φ), n = 0, 1, · · · ,N − 1,
(12)

where ω0 = 2πk0/T is a DFT frequency closest
to the true sinusoid frequency ω0 + δ, δ is the
frequency displacement from the grid and k0
is an integer from interval [0, N − 1]. Herein,
we will set T = 1 and k0 = 12, and, in each
trial of the Monte Carlo simulations, both δ
and φ will be selected randomly with uniform
distribution, δ on interval [−π/(NT ), π/(NT )]
and φ on [−π, π].
As for the additive random noise ν(n), we

assume complex model

ν(n) = νR(n) + jνI(n), (13)

where real and imaginary parts νR(n) and
νI(n) are i.i.d. variables. We consider four
noise models,

• zero-mean Gaussian noise with variance b/2.
The term V (F,G) for F (x) = |x| equals
V (F,G) = πb/4.
• Cauchy noise with the p.d.f. g(x) =
γ/[π(x2 + γ2)]. For F (x) = |x|, we have
V (F,G) = π2γ2/4.
• Laplace noise with the p.d.f. g(x) =
e−|x|/b/(2b). For F (x) = |x|, we have
V (F,G) = b2.
• symmetric α-stable noise (skewness β = 0)
with the characteristic exponent α = 0.5 and
location parameter δ = 0. The characteristic
function of such a noise is ϕ(t; 0.5, 0, γ, 0) =

e−|γt|
0.5

. Since the p.d.f. of this noise cannot
be determined analytically, we will calculate
V (F,G) numerically.

We compared the proposed method with the
standard periodogram, robustM -periodogram
without a fine search [11], marginal-median
DFT method [12] and optimal L-DFT method
[14]. Comparison is made for N = 1024 and is
quantified in terms of the mean squared error
(MSE) defined as

MSE=10 log10

∑Nsim

k=1 [ω̂k − (ω0 + δk)]
2

Nsim
,

(14)
where ω̂k and δk are the estimated frequency
and displacement in the kth simulation and
Nsim is the number of Monte Carlo simula-
tions. In our simulations, Nsim = 500. In the
proposed method, Q = 10 was used; the same
number of iterations was used in the fine search
in the marginal-median DFT and optimal L-
DFT methods, where the iterative procedure
from [8] has been adopted. The standard peri-
odogram is maximized also using the dichoto-
mous search approach with Q = 10.
The obtained MSE curves versus variable

noise parameter are given in Fig. 1, where the
upper left corner corresponds to the Gaussian
noise, upper right to the Cauchy noise, lower
left to the Laplace noise and lower right to the
alpha-stable noise. In all the plots, the dotted
line corresponds to the standard periodogram,
solid line to the robust M -periodogram, thick
dashed line to the proposed method, dash-
dot line with triangles to the marginal-median
DFT and dashdot line to the optimal L-DFT
method. In addition, asterisks and squares
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Fig. 1. MSE versus noise parameter. Considered noise models are (a) Gaussian noise, (b) Cauchy noise, (c)
Laplacian noise, and (d) α-stable noise. The legend in subplot (a) applies to all the subplots.

correspond to the CRB and asymptotic vari-
ance, respectively. The CRB is obtained from
(7) and (8) with F (x) = − log(G(x)) according
to the ML principle. On the other hand, the
asymptotic variance is obtained with F (x) =
|x|, and, in case of Laplace noise, it equals the
CRB. Otherwise, it exceeds the CRB.

As expected, in the Gaussian environment,
the standard periodogram performs the best,
whereas in the heavy-tailed environment it
performs poorly. Specifically, it fails com-
pletely for each considered parameter of the
Cauchy and α-stable noises.

In comparison to the robustM -periodogram
without a fine search, the proposed method
shows the improved accuracy provided by
the dichotomous fine search algorithm. The
thresholds coincide since, in our method, the
frequency estimate provided by the robust M -
periodogram represents the coarse estimate.

As for the other methods, the proposed one
exhibits superior performance in terms of ac-

curacy and threshold for all the considered
heavy-tailed noise types. The difference in per-
formance is significant for the α-stable noise
when the threshold of the proposed method
for the α-stable noise is around γ = 3.5,
which exceeds that of the methods based on
the marginal-median DFT and optimal L-DFT
about three times.

Although we used the preset value ofQ = 10
in our simulations, the first three iterations in
the algorithm provided the accuracy gain of
around 6 dB per iteration and the following
couple of iterations provided the rest. For each
considered noise, performing the algorithm for
Q > 6 provides no more gain than 0.1 dB.

We have also evaluated the proposed
method in the frequency estimation of a mul-
ticomponent signal that contains three sinu-
soids with frequencies ω1 = 11.1792πT , ω2 =
25.4312πT and ω3 = 59.687

2π
T , and amplitudes

A1 = 1.3, A2 = 1 and A3 = 0.8. We consid-
ered the symmetric α-stable noise with β = 0,
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TABLE I

MSE �����
 
� ��� �������	� �
�
���
�� �� ����� 

��
�
�
 
� α-
����� ��

�

Periodogram M -periodogram Proposed Median DFT Opt. L-DFT

γ = 0.5
ω1 5.64 dB -59.19 dB -74.77 dB -72.46 dB -72.48 dB
ω2 2.38 dB -51.49 dB -71.82 dB -70.9 dB -71.3 dB
ω3 4.66 dB -54.33 dB -71.17 dB -67.42 dB -67.62 dB

γ = 1.5
ω1 6.09 dB -59.19 dB -72.82 dB -2.96 dB -3.19 dB
ω2 3.4 dB -51.21 dB -67.83 dB -23.59 dB -23.1 dB
ω3 4.71 dB -54.01 dB -66.54 dB -4.71 dB -3.71 dB

TABLE II

N����� �� ������
��
 �� ��� 	��

����� ����
� ������


Proposed Median DFT Opt. L-DFT

Additions 2N(6 + 5K)(N +Q+ 2) 2N(N + 2Q) + 2Q N(5N + 3

2
Nα + 6Q) + 2Q

Multiplications N(16 + 9K)(N +Q+ 2) 4N(N + 2Q) N(8N +Nα + 8Q)
Divisions (N + 1)(K + 1)(N +Q+ 2) Q 2N + 2Nα + 5Q
Sines/Cosines 2N(Q+ 2) 4QN 4QN
Sorts – 2N + 4Q 4(N +Q)

α = 0.5, δ = 0 and two values of γ, γ = 0.5
and γ = 1.5. The MSE values, obtained after
100 trials, are given in Table I. The methods
based on the marginal-median DFT and opti-
mal L-DFT completely fail for γ = 1.5. Due
to the presence of multiple sinusoids, the MSE
for each sinusoid is bit higher than in the single
sinusoid case.

Finally, the computational complexity of the
considered robust methods is given in Table
II. All operations are real. In the proposed
method, K corresponds to the number of iter-
ations of the optimization algorithm (usually
3 − 5, [11]). In the optimal L-DFT method,
Nα is the number of considered αs in the opti-
mization procedure. In addition, the average
number of additions is shown for this method.
In the last row, one sort corresponds to the
sorting of an N -element real array. Recall
that the average complexity of the quick sort
is O(N log(N)), where O represents the big-
O notation. From Table II, we see that the
complexity of the proposed method, O(KN2),
is primarily due to the arithmetic operations,
whereas the complexity of the other two meth-
ods, O(N2 log(N)), is primarily due to sort-
ings. Knowing that K is relatively small, we
can conclude that all the three methods have
approximately the same complexity.

V. C��	��

��

In this paper, we proposed a method for si-
nusoidal frequency estimation in heavy-tailed
noise environment. The method is based on
the robustM -periodogram, i.e., it takes a sub-
optimal frequency estimate obtained by the
robust M -periodogram as the coarse estimate
and refines it using the dichotomous search.
The proposed method is compared to several
recently proposed methods in the field. For the
considered heavy-tailed noise types, namely
the Cauchy noise, Laplace noise and α-stable
noise, it outperforms other methods in the fre-
quency estimation of both single and multiple
sinusoids.

R������	�


[1] D. C. Rife and R. R. Boorstyn, ”Single tone pa-
rameter estimation from discrete-time observa-
tions,” IEEE Transactions on Information The-
ory, vol. 20, pp. 591-598, September 1974.

[2] T. Abatzoglou, ”A fast maximum likelihood al-
gorithm for frequency estimation of a sinusoid
based on Newton’s method,” IEEE Transactions
on Acoustics, Speech and Signal Processing, vol.
33, pp. 77-89, February 1985.

[3] B. G. Quinn, ”Estimating frequency by interpo-
lation using Fourier coefficients,” IEEE Transac-
tions on Signal Processing, vol. 42, pp. 1264-1268,
May 1994.

[4] B. G. Quinn, ”Estimation of frequency, amplitude
and phase from the DFT of a time series,” IEEE
Transactions on Signal Processing, vol. 45, pp.
814-817, March 1997.

[5] Y. V. Zakharov and T. C. Tozer, ”Frequency es-



1194 TIME-FREQUENCY SIGNAL ANALYSIS

timator with dichotomous search of periodogram
peak,” Electronics Letters, vol. 35, pp. 1608-1609,
September 1999.

[6] Y. V. Zakharov, V. M. Baronkin, and T. C. Tozer,
”DFT-based frequency estimators with narrow
acquisition range,” IEE Proceedings Communica-
tions, vol. 148, pp. 1-7, February 2001.

[7] E. Aboutanios, ”A modified dichotomous search
frequency estimator,” IEEE Signal Processing
Letters, vol. 11, pp. 186-188, February 2004.

[8] E. Aboutanios and B. Mulgrew, ”Iterative fre-
quency estimation by interpolation on Fourier co-
efficients,” IEEE Transactions on Signal Process-
ing, vol. 53, pp. 1237-1242, April 2005.

[9] P. J. Huber, Robust statistics. John Wiley &
Sons; 4th edition, 1981.

[10] V. Katkovnik, ”Robust M-periodogram,” IEEE
Transactions on Signal Processing, vol. 46, pp.
3104-3109, November 1998.

[11] V. Katkovnik, ”Robust M-estimates of the fre-
quency and amplitude of a complex-valued har-
monic,” Signal Processing, vol. 77, pp. 71-84, Au-
gust 1999.

[12] I. Djurovíc, ”Estimation of the sinusoidal signal
frequency based on the marginal median DFT,”
IEEE Transactions on Signal Processing, vol. 55,
pp. 2043-2051, May 2007.

[13] I. Djurovíc, L. Stankovíc, and J. F. B:ohme, ”Ro-
bust L-estimation based forms of signal trans-
forms and time-frequency representations,” IEEE
Transactions on Signal Processing, vol. 51, pp.
1753-1761, July 2003.

[14] I. Djurovíc and V. V. Lukin, ”Estimation of
single-tone signal frequency by using the L-DFT,”
Signal Processing, vol. 87, pp. 1537-1544, June
2007.

[15] T. H. Li and K. S. Song, ”Estimation of the
parameters of sinusoidal signals in non-gaussian
noise,” IEEE Transactions on Signal Processing,
vol. 57, pp. 62-72, January 2009.

[16] T. H. Li, ”A robust periodogram for high-
resolution spectral analysis,” Signal Processing,
vol. 90, pp. 2133-2140, July 2010.


