Aliasing detection and resolving in the estimation of polynomial-phase signal parameters

Slobodan Djukanović and Igor Djurović

Abstract—A novel method for aliasing detection and resolving in the estimation of polynomial-phase signal (PPS) parameters is presented. Aliasing is detected using two high-order ambiguity functions (HAFs) of a uniformly sampled PPS embedded in noise. If aliasing occurred, we propose a way of recovering the true parameters from their aliased positions. To that end, a closed-form expression for the true parameter value is derived. As opposed to the concurrent methods, the proposed method provides much more robust results with higher order PPSs and does not require nonuniform sampling. In addition, it can be readily extended to the multicomponent PPS case. Simulations support the theoretical results.

I. INTRODUCTION

Polynomial-phase signals (PPSs) are found in numerous application fields including radar, sonar, seismology, biomedicine and radio communication. Therefore, a significant attention has been paid to the estimation of PPS parameters [1—6]. A particularly popular approach entails finding the high-order instantaneous moment (HIM) of the considered PPS [2—5]. When the order of the HIM and that of the PPS coincide, the HIM outputs a complex sinusoid whose frequency is proportional to the highest order phase coefficient. The sinusoid frequency is then estimated from the samples of the discrete Fourier transform (DFT) of the HIM, which can be done using well developed sinusoid frequency estimation techniques [7—9]. The DFT of the HIM is referred to as the high-order ambiguity function (HAF), originally known as the polynomial-phase transform (PPT) [2].

Despite the significant interest in PPSs, aliasing of polynomial-phase parameters has not been addressed to any great degree. The parameter is said to be aliased if the frequency of the sinusoid output by the HIM violates the Nyquist criterion. The sinusoid frequency depends on the value of lags used in the HIM calculation. In some applications, however, this issue is of crucial importance. In direct sequence spread-spectrum (DS-SS) systems, for example, an adversary can transmit a highly nonstationary jammer whose phase cannot be approximated by a polynomial with non-aliased parameters within the considered time interval [10]. As a result, the jammer cannot be properly modeled and suppressed.

In [11], the authors presented a way to recover the true PPS parameters from their aliased positions by using two coprime lags and solving linear Diophantine equations. The dynamic parameter range obtained in [11] is the maximal one for monocomponent PPSs [12]. In [13], the author showed that aliasing can be avoided by a nonuniform sampling, i.e., by adopting an irrational interval between some of the samples.

In this paper, we show that the method proposed in [11] works only with low PPS order. We present a way to detect aliasing from maxima positions of two HAFs of a uniformly sampled PPS embedded in noise. If aliasing occurred, we propose how to recover the true parameters without solving Diophantine equations.

Paper is organized as follows. Section 2 covers the HAF-based PPS parameter estimation, the problem of aliasing and one way to resolve it [11]. The proposed method is presented in Section 3. Simulations are presented in Sec—
tion 4, and conclusions are drawn in Section 5.

II. HAF-based PPS parameter estimation

Consider a uniformly sampled PPS

\[x(n) = A e^{j2\pi \sum_{m=0}^{p} \alpha_m (n\Delta)^m}, \quad n = 0, \ldots, N-1, \]

where \(A \) is the amplitude, \(\alpha_m \) the polynomial coefficients, \(\Delta \) the sampling interval and \(N \) the number of samples. The multilag HIM (ml-HIM) of \(x(n) \) is defined as [5]

\[x_1(n) = x(n) \]
\[x_2(n; \tau_1) = x_1(n + \tau_1)x_1^*(n - \tau_1), \]
\[x_3(n; \tau_2) = x_2(n + \tau_2; \tau_1)x_2^*(n - \tau_2; \tau_1), \]
\[\vdots \]
\[x_p(n; \tau_{p-1}) = x_{p-1}(n + \tau_{p-1}; \tau_{p-2}) \times x_{p-1}^*(n - \tau_{p-1}; \tau_{p-2}), \]

where \(\tau_i = [\tau_1, \tau_2, \cdots, \tau_i], \) \(i = 1, ..., P - 1, \) are sets of used time lags. In \(x_k(n; \tau_{k-1}), \) \(k = 1, 2, \cdots, P, \) index \(n \) goes from \(\sum_{i=1}^{k-1} \tau_i \) to \(N - \sum_{i=1}^{k-1} \tau_i - 1. \) The multilag HAF (ml-HAF) is defined as the DFT of the ml-HIM,

\[X_P(f; \tau_{p-1}) = \sum_{n=0}^{N-2\sum_{k=1}^{p-1} \tau_k} x_p(n; \tau_{p-1}) e^{-j2\pi fn}. \]

When \(x(n) \) is a \(P \)th order PPS, \(x_P(n; \tau_{p-1}) \) is a complex sinusoid with normalized frequency [5]

\[f = 2^{p-1} \Delta P l_2 \prod_{k=1}^{P-1} \tau_k. \]

The coefficient \(\alpha_P \) can therefore be estimated by searching for the position of maximum in the ml-HAF. Once the estimation of \(\alpha_P \), denoted as \(\hat{\alpha}_P \), is obtained, we can demodulate \(x(n) \) by \(\exp(-j2\pi \hat{\alpha}_P(n\Delta)^P) \) to reduce the PPS order by one. The procedure is repeated until all remaining coefficients are estimated [2].

In order to avoid aliasing in estimating \(\alpha_P \), the following relation must hold:

\[|\alpha_P| \leq \alpha_P^{\text{max}} = \frac{1}{2^P \Delta P \prod_{k=1}^{P-1} \tau_k}, \]

since \(f \) is limited to \([-\frac{1}{2}, \frac{1}{2})\).

In [11], the authors proposed a method to recover the true PPS parameters if aliasing occurred. To that end, two HAFs are calculated, using coprime lags \(\tau_1 \) and \(\tau_2 \), from which two (possibly aliased) peak locations \(f_1 \) and \(f_2 \), where \(f_1, f_2 \in [-\frac{1}{2}, \frac{1}{2}) \), are obtained. Therefore, two integers \(k_1 \) and \(k_2 \) exist such that

\[k_1 + f_1 = 2^{p-1} \Delta P l_2 \alpha_P \tau_1^{-1} \]
\[k_2 + f_2 = 2^{p-1} \Delta P l_2 \alpha_P \tau_2^{-1}. \]

Combining the equations in (6) yields the linear Diophantine equation

\[k_2 \tau_1^{-1} - k_1 \tau_2^{-1} = f_1 \tau_2^{-1} - f_2 \tau_1^{-1} \pm M. \]

(7)

In the following step, two integers, \(n_1 \) and \(n_2 \), such that \(n_2 \tau_1^{-1} - n_1 \tau_2^{-1} = 1 \) are found. The solutions \(k_1 \) and \(k_2 \) of (7) are completely characterized by [11]

\[k_1 = n_1 M + q \tau_1^{-1}, \]
\[k_2 = n_2 M - q \tau_2^{-1}, \]

(8)

where \(q \in \mathbb{Z}. \) By changing \(q \) we find a value of \(k_1 \), denoted as \(k_1^q \), such that \(k_1 + f_1 \) falls within \([-\frac{\tau_1^{-1}}{2}, \frac{\tau_1^{-1}}{2})\). Finally, the parameter \(\alpha_P \) is estimated as

\[\alpha_P = \frac{k_1^q + f_1}{2^{p-1} \Delta P l_2 \tau_1^{-1}}. \]

In the rest of the paper, we will refer to the method proposed in [11] as the ZW method.

The problem with the ZW method is the estimation of number \(M \) in (7). Due to the errors in estimation of \(f_1 \) and \(f_2 \), \(M \) will not be an integer and it has to be rounded to the nearest integer [11]. If we assume that the errors in

\footnote{Note that, comparing to (4) and (5) in [11], in (6) we have an additional term \(2^P \Delta P \) which is due to the symmetric definition of the HIM that we use. In addition, in [11], \(\Delta = 1 \) and, in the HIM calculation, all lags coincide.}
estimation of \(f_1 \) and \(f_2 \) are uncorrelated and characterized by zero mean and same variance \(\sigma_f^2 \), the variance of estimation of \(M \) equals

\[
\sigma_M^2 = \left(\tau_1^{2(P-1)} + \tau_2^{2(P-1)} \right) \sigma_f^2. \tag{10}
\]

Clearly, \(\sigma_M^2 \) can take significant values with higher values of \(P \), which, in turn, can lead to false rounded value of \(M \) used in (8). This is illustrated in Figs. 1b) and 2b) in the Simulations section.

In addition, in the ZW method, we cannot conclude whether aliasing occurred or not based only on the peak locations \(f_1 \) and \(f_2 \). The resolving procedure is performed anyway and the obtained value \(k^*_f \) indicates aliasing, i.e., aliasing occurred if \(k^*_f \neq 0 \).

In the following section, we first propose how to detect parameter aliasing, and, if aliasing occurred, how to recover the true parameter value without solving Diophantine equations.

III. ALIASING DETECTION AND RESOLVING

Let us assume that restriction (5) does not apply to \(\alpha_P \). Then \(\alpha_P \) can be written as

\[
\alpha_P = 2Q\alpha_P^{\text{max}} + \Delta\alpha_P, \tag{11}
\]

where \(Q = 0, \pm 1, \pm 2, \pm 3, \ldots \) and \(\Delta\alpha_P \) is residual that satisfies \(|\Delta\alpha_P| < \alpha_P^{\text{max}}. \) The case of no aliasing corresponds to \(Q = 0 \), whereas all other \(Qs \) imply aliasing. After calculating the \(P \)th order ml-HAF (3), a spectral peak will appear at frequency

\[
f = 2^{P-1}\Delta P \prod_{k=1}^{P-1} \tau_k. \tag{12}
\]

The estimation of \(\Delta\alpha_P \) does not suffice for determining \(\alpha_P \) since \(Q \) remains unknown.

Consider first the case of no aliasing. If we use the other set of time lags, \(\tau'_{P-1} = [\tau'_1, \tau'_2, \ldots, \tau'_{P-1}] \), in calculating the \(P \)th order ml-HIM, and calculate the ml-HAF \(X_P(S(\tau'_{P-1}, \tau_{P-1})f; \tau'_{P-1}) \), where the scaling coefficient \(S(\tau'_{P-1}, \tau_{P-1}) \) satisfies

\[
S(\tau'_{P-1}, \tau_{P-1}) = \prod_{k=1}^{P-1} \frac{\tau'_{k}}{\tau_k} \tag{13}
\]

a spectral peak will appear at frequency [5]

\[
f' = 2^{P-1}\Delta P \prod_{k=1}^{P-1} \tau_k, \tag{14}
\]

which coincides with (12) since \(\Delta\alpha_P = \Delta\alpha'_{P} \) and all other terms are the same. This is the well-known product HAF (PHAF) principle of aligning the autoterm in frequency [5]. Therefore, when no aliasing occurs, \(X_P(f; \tau_{P-1}) \) and \(X_P(S(\tau'_{P-1}, \tau_{P-1})f; \tau'_{P-1}) \) will have a spectral peak at the same frequency.

Consider now the case of aliasing. According to (5) and (11), using a different set of time lags \(\tau'_{P-1} \) yields \(\alpha_P^{\text{max}} \) and \(\Delta\alpha'_{P} \) that differ from \(\alpha_P^{\text{max}} \) and \(\Delta\alpha_P \) obtained when \(\tau_{P-1} \) is used. In addition, the corresponding value of \(Q' \) is possibly different from \(Q \). However, \(\alpha_P^{\text{max}}, \Delta\alpha_P \) and \(Q' \) satisfy

\[
\alpha_P = 2Q'\alpha_P^{\text{max}} + \Delta\alpha'_{P}. \tag{15}
\]

The difference between \(\tau_{P-1} \) and \(\tau'_{P-1} \) gives rise to different positions of spectral peaks in \(X_P(f; \tau_{P-1}) \) and \(X_P(S(\tau'_{P-1}, \tau_{P-1})f; \tau'_{P-1}) \), since the peak frequency depends on residual \(\Delta\alpha_P \).

Therefore, the aliasing detection is performed by comparing the peak frequencies of HAFs \(X_P(f; \tau_{P-1}) \) and \(X_P(S(\tau'_{P-1}, \tau_{P-1})f; \tau'_{P-1}) \), namely \(f \) and \(f' \), respectively. If the peak frequencies coincide, aliasing has not occurred. Otherwise, it has occurred.

In addition to detection, the values of \(f \) and \(f' \) can serve in recovering the true value of \(\alpha_P \) if aliasing occurred. Assume, for the moment, that \(\prod_{k=1}^{P-1} \tau_k \) and \(\prod_{k=1}^{P-1} \tau'_k \) do not differ much, so that \(Q = Q' \) holds. In that case, combining (11) and (15) gives

\[
Q = \frac{\Delta\alpha_P - \Delta\alpha'_{P}}{2(\alpha_P^{\text{max}} - \alpha_P^{\text{max}})}
\]

which combined with (5), (12) and (14) gives the final value of \(Q \) as

\[
Q = \frac{f - f'}{\prod_{k=1}^{P-1} \frac{\tau'_k}{\tau_k} - 1}. \tag{16}
\]

The estimated \(Q \) has to be rounded to the closest integer and the true value of \(\alpha_P \) can now
be estimated either from (11) or (15). Using (11) gives the final expression for \(\alpha_P \) as

\[
\alpha_P = \frac{f - f' \prod_{k=1}^{P-1} \tau_k}{2^{P-1} \Delta F P! \left(\prod_{k=1}^{P-1} \tau_k - \prod_{k=1}^{P-1} \tau_k' \right)}.
\]

(17)

If the values of \(\prod_{k=1}^{P-1} \tau_k \) and \(\prod_{k=1}^{P-1} \tau_k' \) differ so much that \(Q = Q' \) does not hold, relation (16) will not be correct and the values of \(\alpha_P \) obtained from (11) and (15) will not coincide. In that case, we have to decrease the difference between these two products. Specifically, we can choose lags \(\tau_k \) close to the optimal values \(^2\) [5], and lags \(\tau_k' \) to satisfy \(\tau_k' = \tau_k - L \), where \(L \) is a predefined integer. If \(Q = Q' \) does not hold, we can reduce \(L \) by one. If, however, \(L = 1 \), we can decrease \(\tau_k \), set \(L \) to the predefined value and repeat the procedure. Decreasing \(\tau_k \) provides wider dynamic range of \(\alpha_P \) (5).

The estimation procedure can be summarized as follows.

1. Calculate the HAFs \(X_P(f; \tau_{P-1}) \) and \(X_P(S(\tau'_{P-1}, \tau_{P-1})f; \tau'_{P-1}) \) and find the corresponding peak frequencies \(f \) and \(f' \), respectively. If \(f = f' \) aliasing has not occurred.
2. Estimate \(\alpha_P \) according to (4) and exit. Otherwise, go to Step 2.
3. Decrease the difference between \(\prod_{k=1}^{P-1} \tau_k \) and \(\prod_{k=1}^{P-1} \tau_k' \) and go to Step 1.

In case of multicomponent PPSs, the extension of the proposed algorithm is straightforward. We can use the approach proposed in [3, Section II], where two steps, namely 1) the estimation of parameters of the strongest component and 2) filtering that component out, are iterated \(N_c \) times, where \(N_c \) is the number of components. In the current iteration, the parameters of the current strongest component are estimated, starting from the highest one, using the procedure summarized above. Therefore, the check for aliasing and alias resolving if it occurred are performed for each parameter of each component of multicomponent PPS.

IV. SIMULATIONS

In this section, we will estimate the parameters of a PPS \(x(n) \) from

\[
y(n) = x(n) + \nu(n), \quad n = 0, \ldots, N-1, \tag{19}
\]

where \(\nu(n) \) is zero-mean complex Gaussian noise with i.i.d. real and imaginary parts, and variance \(\sigma^2 \). The signal-to-noise ratio (SNR) is defined as \(\text{SNR} = 10 \log_{10}(A^2/\sigma^2) \). In addition, \(N = 512 \) and \(\Delta = 1 \). We compared our method to the ZW method in terms of the mean squared error (MSE), calculated over 500 trials.

Example 1. Let us first consider the parameter estimation of a single chirp \(x(n) = A \exp(j2\pi\alpha_0 n/\Delta)^2 \), where \(\alpha_0 = 9.73 \times 10^{-3} \), Note that this chirp is undersampled; its bandwidth exceeds the sampling rate around ten
times. In the proposed method, we used lags \(\tau_1 = 128\) and \(\tau'_1 = 126\). On the other hand, in the ZW method, we used coprime lags \(\tau_1 = 128\) and \(\tau_2 = 121\). With these lags, we have \(M = Q = 5\) (see (7) and (11)). The obtained MSE versus SNR curves are depicted in Fig. 1a), where the SNR is varied from \(-5\) dB to \(2\) dB in increments of \(0.5\) dB. Our method has a bit lower SNR threshold, approximately \(0.5\) dB. The Cramér-Rao lower bound (CRLB) is also given in Fig. 1a). In addition to the MSE curves, in Fig. 1b), we depicted the false \(M\) percentage (FMP) versus SNR for the ZW method. In the ZW method, we used lag sets \(\tau_1 = [86, 23, 12, 11, 3]\), \(\tau_2 = [86, 82]\), and the estimation of the coefficient \(\alpha_3\). In the proposed method, we used lag sets \(\tau_1 = [86, 86]\) and \(\tau'_2 = [86, 82]\). In the ZW method, we used coprime lags \(\tau_1 = 85\) and \(\tau_2 = 81\). With these lags, we have \(M = Q = 1\). Note that \(x(n)\) is undersampled, although its coefficients \(\alpha_2\) and \(\alpha_3\) are aliased. The obtained MSE versus SNR curves are depicted in Fig. 2a), where the SNR is varied from \(-2\) dB to \(24\) dB in increments of \(1\) dB. Now, the difference in performance is tremendous. Our method has the SNR threshold that is around \(14\) dB lower than that of the ZW method. Again, the FMP curve, given in Fig. 2b), proves that ZW method’s poor performance is due to the bad estimation of \(M\) used in (8). False \(M\)s begin to appear around \(\text{SNR} = 17\) dB, which corresponds to the SNR threshold for the ZW method.

Note that in both the second- and third-order parameter estimation, our method retains the SNR threshold determined for the HAF when PPS with non-aliased parameters is considered [14]. Specifically, for the second-order, the threshold is \(-3\) dB, whereas for the third-order it is \(3.77\) dB (see Table II in [14]).

Example 3. Finally, we consider a two-component signal

\[
x(n) = A_1 e^{(j 2 \pi (\alpha_{12}(n\Delta) + \alpha_{13}(n\Delta)^3))} + A_2 e^{(j 2 \pi (\alpha_{22}(n\Delta) + \alpha_{23}(n\Delta)^3))},
\]

where \((\alpha_{12}, \alpha_{13}) = (2.59 \times 10^{-4}, 4.71 \times 10^{-5})\) and \((\alpha_{22}, \alpha_{23}) = (9.73 \times 10^{-3}, 2.19 \times 10^{-6})\). In addition, \(10 \log_{10}(A_1^2/\sigma_e^2) = 13\) dB and \(10 \log_{10}(A_2^2/\sigma_e^2) = 10\) dB. In the proposed method, we used \(\tau_1 = [86, 86]\) and \(\tau'_2 = [86, 82]\) for the third-order HIM, and \(\tau_1 = 128\) and \(\tau'_1 = 126\) for the second-order HIM. In the ZW method, we used \(\tau_1 = 85\) and \(\tau_2 = 81\) for the third-order HIM and \(\tau_1 = 128\) and \(\tau_2 = 121\) for the second-order HIM. With these lag values, parameters \(\alpha_{12}\) and \(\alpha_{23}\) are not aliased, whereas \(\alpha_{13}\) and \(\alpha_{22}\) are aliased with \(M = Q = 5\) and \(M = Q = 8\), respectively. The obtained MSE values in the estimation of both components’ parameters are given in Table I.

As opposed to the ZW method, our method successfully resolved aliasing of both components’ parameters. The ZW method fails to

Table I

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Proposed method</th>
<th>ZW method</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha_{12})</td>
<td>(-119.12) dB</td>
<td>(-22.75) dB</td>
</tr>
<tr>
<td>(\alpha_{13})</td>
<td>(-176.89) dB</td>
<td>(-39.96) dB</td>
</tr>
<tr>
<td>(\alpha_{22})</td>
<td>(-121.83) dB</td>
<td>(-23.04) dB</td>
</tr>
<tr>
<td>(\alpha_{23})</td>
<td>(-179.36) dB</td>
<td>(-39.38) dB</td>
</tr>
</tbody>
</table>
resolve aliasing when components are PPSs of third or higher order. The influence of components on each other increases the variance of the frequency estimation σ_f^2, thus making the estimation of M less accurate.

V. CONCLUSIONS

In this paper, we proposed the method for aliasing detection and resolving in the estimation of PPS parameters. Both detection and resolving of aliasing are performed using maxima positions of two HAFs of the PPS embedded in noise. We derived the expression for calculating the true value of the aliased PPS parameter. The proposed method provides much more robust results than the one proposed in [11] when higher order PPSs are considered. Furthermore, it retains the SNR threshold derived for the case when no aliasing occurs and it does not require a nonuniform sampling as the one proposed in [13]. The method can be readily extended to deal with multicomponent PPSs.

ACKNOWLEDGMENT

This research is supported in part by the Ministry of Science of Montenegro.

REFERENCES