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TIME-FREQUENCY SIGNAL ANALYSIS

Estimation of the sinusoidal signal
frequency based on the marginal

median DFT

Igor Djurovié

Abstract— The marginal-median DFT is used
for estimation of complex sinusoidal signals em-
bedded in an impulse noise environment. Ex-
pression for the marginal-median DFT of the
sinusoidal signal in the neighborhood of the
exact frequency is derived. Two specific dis-
placement techniques are proposed in order to
achieve an accurate estimation of frequency dis-
placed from the frequency grid. They are based
on specific ratio of the marginal-median DFT
magnitudes for samples in the neighborhood
of the marginal-median DFT maximum calcu-
lated over the frequency grid. Efficiency and
accuracy of the proposed techniques is proved
for mixed Gaussian and impulse noise environ-
ment.

I. INTRODUCTION

Numerous interpolation schemes in the
Fourier domain have been proposed for pre-
cise frequency estimation of the sinusoidal sig-
nals. Displacement based techniques have at-
tracted significant attention due to simple and
efficient realizations [1], [2], [3]. This group
of techniques is based on the magnitudes of
the discrete Fourier transform (DFT) maxi-
mum, as well as on the two adjacent samples.
The technique proposed by Quinn is one of
the most commonly used. It is applied on
the DFT with rectangular window function.
Alternative techniques are proposed for win-
dowed DFT forms [3]. Recently, a very ac-
curate iterative procedure has been proposed
for the frequency displacement estimation in
[4]. It has been shown that this technique pro-
duces variance in the frequency estimation ap-
proaching to just about 1.5% higher value than
the Cramér-Rao lower bound (CRLB) for the
Gaussian noise environment.

The standard DFT is a maximum likelihood
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estimation of the signal spectra for Gaussian
noise environment. Unfortunately, the DFT,
like other linear techniques, exhibits low accu-
racy for signals corrupted by impulse noises.
The robust DFT forms have been proposed re-
cently in order to handle the spectral analysis
issue for signals corrupted by impulse noise [5],
[6]. These transforms are derived according to
robust statistics concept introduced by Huber
[7]. However, methods for accurate interpola-
tion of robust DFT coefficients (for accurate
estimation of signal frequency) are not stud-
ied yet, and this paper is the first step in this
direction.

Here we consider estimation of sinusoidal
signals by using the marginal-median robust
DFT form. The first task is to derive exact
values for the marginal-median DFT for single-
tone (continuous-time) signal around the spec-
tral peak. It is derived by using continuous-
time median function according to [8], [9].
It will be shown that that this expression is
an accurate approximation for median of dis-
cretized signals used in numerical evaluation.
As opposed to the standard DFT case, magni-
tude of the marginal-median DFT for a single-
tone signal, calculated over frequency grid, de-
pends on a signal phase. It makes estimation
of the signal parameters based on the robust
DFT forms a more challenging task.

In this paper we consider two approaches for
accurate spectral estimation based on the ro-
bust DFT form. Proposed techniques are de-
veloped by using a specific ratio of the robust
DFT values displaced from the robust DFT
maximum for half of the sampling grid dis-
tance in the frequency domain. Motivation for
using this ratio is found in the similar mea-
sure used in [4] for the standard DFT. Deter-
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mined ratio, h(d, ), is function of § (displace-
ment) and ¢ (signal phase). The first proposed
technique for displacement estimation is cal-
culation of the inverse function § = h=1(d, ).
However, this inverse evaluation requires that
the signal phase be estimated in advance. The
second technique is based on the iterative pro-
cedure from [4]. Difference between the pro-
posed one and the technique from [4] is in the
applied DFT form. Note that estimation of
the signal phase is not required in the itera-
tive technique. The iterative procedure starts
with a coarse estimate determined based on
the position of the robust DFT maximum cal-
culated over the frequency grid. Subsequent
iterations are determined by evaluation of the
ratio h(d, »). Important property of h(d, ¢)is
the fact that |h(d, ¢)| < |d|. It means that the
proposed procedure converges toward the true
displacement value. Expected drawback of the
iterative procedure is calculation complexity
that depends on the number of iterations in
the procedure. However, it will be shown in
numerical study that the required number of
iterations is small.

The paper is organized as follows. Brief
overview of interpolation techniques for the
standard DFT case that are related to our ap-
proach is presented in Section II. Values of the
marginal-median DFT in the neighborhood of
the true signal frequency are analyzed in Sec-
tion ITI. Proposed techniques for interpolation
of the marginal-median DFT are described in
Section IV. Numerical analysis has been pre-
sented in Section V. Conclusion with further
steps in this research are given in Section VI.

II. INTERPOLATION OF THE STANDARD
DFT

Our goal is to estimate frequency (and
other parameters) of complex sinusoid f(t) =
Aexp(jwot + j¢), embedded in a white noise
v(t), z(t) = f(t) + v(t), based on discretized
observations z(n) = x(nAt), where At is the
sampling rate. We assume that we have N
samples of the signal within the interval of in-
terest T' = NAt. Without loss of generality,
even number of samples is assumed.

For the Gaussian noise environment, the
coarse frequency estimation can be performed

by using the standard DFT:

N/2—1

n=—N/2

X(k) =~

= mean{z(n)Wi¥ | n € [-N/2,N/2)},
k€ [-N/2,N/2), (1)

where Wy = exp(—j27/N). Numbers k €
[-N/2,N/2) in the DFT correspond to the
analog frequencies w = 2nk/T. For wg =
27l/T, where | € [-N/2,N/2), the DFT ex-
hibits:

[ Aexp(jp) k=1
X(k){ egw

elsewhere.

(2)

However, for frequency displaced from the fre-
quency grid wg = 2wl/T + 0, where § €
[-7/T,w/T], the DFT exhibits:

N/2-1

Z exp(jonAt + jp)
n=—N/2

X(1) = %

_ Aexp(jo) . 1 —exp(joT)
N N exp(=j0T/2) 1 —exp(joAt)

~ Aexp(—joT/2 — jp) sindT/2 (3)
N N sin §At/2°

It can be seen that the maximum of the stan-
dard DFT magnitude is achieved at k = [ that
is the closest to the true frequency. The im-
portant issue is that the magnitude of the DFT
is not phase dependent. The coarse frequency
estimation can be performed based on the po-
sition of the DFT maximum:

W = Q%ko = 2% argm}gm|X(k)|. (4)
For a fine estimation it is required to estimate
displacement § by using some available inter-
polation technique. One idea is to evaluate
DFT over a denser frequency grid, but it would
substantially increase the calculation complex-
ity. Quinn has proposed in [1] an algorithm for
estimation of displacement based on the DFT
maximum X (ko) and adjacent DFT samples
X (ko +1). That algorithm is widely used due
to its simplicity. Single step formulas for eval-
uation of the displacement in the case of the
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DFT windowed with smooth window functions
are also used in practice [3].

Recently a simple iterative scheme has been
proposed in [4]. After coarse estimation in (4),
new frequency is evaluated based on the DFT
magnitude for kg + 1/2. Next iterations are
repeated for the updated frequency. It has
been shown that this algorithm achieves ex-
cellent accuracy for signals embedded in the
white Gaussian noise producing unbiased es-
timate with variance that is just above 1.5%
higher than the asymptotic CRLB [2], [4]:

602

CRLB = ontve—vage O

where o2 is the variance of the Gaussian white
noise.

III. RoBUST DFT AROUND FREQUENCY OF
THE SINUSOIDAL SIGNAL

The standard DFT, like other commonly
used linear techniques, is sensitive to the im-
pulse noise influence. The robust DFT forms
are introduced to produce accurate spectral es-
timation of non-noisy signal’s DFT for signals
corrupted by an impulse noise [5], [6]. The ro-
bust DFT forms are used for filtering of high-
pass signals corrupted by a significant impulse
noise amount, as well as for parametric esti-
mation of signals embedded in impulse noise
[10], [11]. The marginal-median form of the
robust DFT is considered here. It is given as:

X (k) = median{Re{x(n)W*}|
ne€[-N/2,N/2)}
+jmedian{Im{z(n)Wa*}|
n € [—-N/2,N/2)}, (6)

for k € [-N/2,N/2). Note that evaluation of
the marginal-median DFT is more consuming
than that of the standard DFT. It leads to sim-
ple conclusion that evaluation of the marginal-
median over denser frequency grid is even more
unacceptable than a similar procedure in the
case of the standard DFT. Then, an inter-
polation technique for precise frequency esti-
mation is even more important in the case of
the marginal-median DFT. For complex sinu-
soid with frequency on the grid w = 27k /T,
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k € [-N/2,N/2), the marginal-median DFT
form produces the same results as the stan-
dard DFT (2). However, for signals that are
dislocated from the frequency grid, an expres-
sion for the robust DFT values is not derived
yet.

In order to give general formula for the
marginal-median DFT of the complex sinu-
soidal, the continuous-time signal f(t) =
Aexp(jwot + jo) within ¢ € [-T/2,T/2] is
considered. The marginal-median DFT of the
continuous-time signal can be written as:

Xy (w) = median{Re{z(t) exp(—jwt)}|

te[-T/2,T/2]}
+jmedian{Im{z(t) exp(—jwt)}|
te[-T/2,T/2]}. (7)

The continuous-time median for the consid-
ered interval is a value of argument function for
which half of the interval produces higher and
the other half gives smaller values of the argu-
ment function [8],[9]. Assume that frequency
of the sinusoid is displaced from the frequency
grid, wg = 2mko/T + 5. Then, the marginal-
median DFT calculated for frequency on the
frequency grid can be denoted as

since it depends on § and . After tedious
but straightforward derivations we have found
that

R(0,¢p) =
Cos ,
5 e [~ 4]
cos %T,
6 e[~ + 8, — A
U [M 8m _ M]
o TM 37 — 3
=) 8 gf 84| ©)
§ ¢ [ 7"3T ‘P|7 s ‘P|]U
U [87r—4<p 87r+8<p]
sp 3T 03T
—cos(%),
e [~ - 3
81 37
U [3F + 37 7,
1(5750 =
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sin @,
4(m/2— A(m/2—
sel- ( T\<P|)7 ( le\)]
sm%T
56[ 8r+4(n/2—|p|) —4(m/2—]|¢|)
U w/2 S 4<fr/2 ﬁoo]
= sin(ZE
é[—&% 8(7T 2—|p|) —8m+4(rw/2—]p])
3 37
U [Brmtlr/a=lel) Srese/lel)
3T 3T
fsm(é ),
= [ —37 ’—87r—8 m/2—|p ]U
[ E 3_W]3T
37T T
_J —R(6,-7/2—¢) ¢<0
I(‘W)—{ (0, 7/2—¢) @>0.
(10)

Note that Xy (k) is different from X (4, ¢)
since Xps(k) is evaluated by using a discrete
set of samples. Real parts of X(d,¢) and
Xu(k), for N = 32, N = 128, N = 1024
for ¢ = 0, ¢ = w/4, are visualized in Fig.
1. Difference between X (J,¢) and Xy (k)
is small even for N = 32, especially in the
main lobe (for |0 < «/T) and two neighbor
lobes (3n/T > |0| > «/T). It can be con-
cluded, based on Fig.1, that expressions (9)-
(10) may be used as an accurate approxima-
tion of Xs(w) in the interval around detected
spectral maximum.

IV. ALGORITHMS FOR ACCURATE
FREQUENCY ESTIMATION

Based on the previous analysis, we propose
two algorithms for accurate robust DFT inter-
polation. A ratio of the robust DFT samples
around maximum detected in the coarse phase
will be analyzed in Section IV.A. Two tech-
niques based on this ratio are proposed in Sec-
tion IV.B: the iterative procedure motivated
by Aboutanios’s paper and the single step ap-
proach.

A. Ratio h(d,p)

We propose two techniques for estimation of
the sinusoidal signals parameters. These tech-
niques are motivated with similar development
in the case of the standard DFT and Gaussian

noise environment. The main ingredient in
these procedures is the specific ratio between
magnitudes of the marginal-median DFT for
two frequencies displaced for +Aw/2 = +7/T
(half of the frequency sampling interval) from
the position of the robust DFT maximum & =
koAw, where kq is a coarse frequency estimate
calculated over the frequency grid.

This ratio is denoted by h(d, ) and it is
calculated as:

h(0, ) =
7 [ Xar(ho +1/2)] — | Xar(ko — 1/2)]
T\ X (ko +1/2)] + [ X (ko — 1/2))]
In order to study some important properties
of this function, we will consider a noiseless sig-
nal and perform approximation by using the

marginal-median DFT of continuous-time sig-
nals as:

(11)

h(d,p) =
(X +7/T,¢)| = |X(6 —7/T, o)
[X(6+7/T, )| + X (0 — /T, )|
(12)
[—7/T,7/T|x[—m/2,7/2] it can

il
T

For (8, ) €
be written as:

h(57 QO) -

ps 1—v2 cos(|8|T/4+m/4) .
T2 cos(3[T [a47/1) Slgn(d)z
for |6] € [~L= mln[l%’\,ﬂ/ *|¢|]7%]

1+251n o— \/(1+251n )27Sin25T/2
Tsin6T/2
for 0 < || < & — el A || <
1+200> p— \/ 142 cos? )2 —sin? §T/2
TsindT/2
for 0 < |6] < J—L

0 ford=0.

>J>|>l

A lel =%

(13)
Nlustration of h(d,p) for ¢ = 0, ¢ = 7/8
and ¢ = /4 as function of ¢ (for § = [0, 7/T))
is presented in Fig. 2a. Both h(d, ) and ¢
are normalized with T'/w. The most impor-
tant conclusion that can be drawn from this
illustration is that |h(d,¢)| < [4] (i-e., lines
representing h(d, ) are below the thin dotted
line that represents y = ¢ in the entire interval
and for all ¢). Displacement can be calculated
based on h(d, ) for a known ¢ as
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Fig. 1. Real part of marginal median DFT for various angles and number of samples. Thick line - derived
expression for continuous-time median function; Thin lines - discrete time DFT.
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Fig. 2. (a) h(d, ¢) as function of ¢ for fixed ¢. Thick solid line - ¢ = 7/4, Thick dotted line - ¢ = 7/8; Dash
dotted line - ¢ = 0; Thin dotted line - function y = §. (b) Illustration of the iterative procedure for angle
¢ = 7/8 and initial estimate displaced from the grid for § = 0.57/T. Small circles represents iterations in
the procedure.
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6 =
4 V2 1-T|h(S.o)|/m 7r/T)

T AICCOS “5° TR (3,¢0)| /7
Xsign(h((S;‘p))
. 1—v2sin(min[|e|,m/2—|¢|])
for |h(d, ¢)| 2T 1+\/§_sin(minﬂ¢\v”/27|@”)
2%h(5,¢)(1+2 sin? )
AFT2R2G 2)/m)
o 1—v2sin(min[|o|,m/2—|¢[])
= for [h6, ) <TG am(minllgl /o= lol)

2 .
T arcsin

A ol <m/4
I CC)S2
2 arcsin 2 ’{ﬂ?’fﬁgfo\?}/ﬂf :
m 1=v2sin(min{|e|,m/2—|e[])
for [0, )| <F 135 sintminllgln/2—lel)
N el >m/4

0 for h(d,p) =0.

(14)
Since (11) is an approximation of h(d, ¢) and
due to the noise presence we deal with the es-
timate h instead of the true value of h(d, p).
Our goal is to perform precise estimation of
frequency (i.e., displacement 0) from h. Two
algorithms are developed for this purpose in
the next subsection. One of them is a direct
application of (14) while the second is an iter-
ative procedure inspired by [4].

B. Proposed techniques

B.1. Direct approach

The first approach uses directly expression
(13) and estimates ¢, based on the inverse for-
mula (14). This procedure can be summarized
as follows.

Step 1. Evaluation of the robust DFT in (6).

Step 2. Determination of the robust DFT
maximum position (coarse frequency estima-
tion):

ko = arg max | Xy (k)|. (15)

Step 3. Function h(d, ) is estimated by us-
ing two samples displaced from ko for a half of
the sampling interval:

K | X (ko +1/2)] = | X (o — 1/2)

; |
h= - = .
T\ X (ko +1/2)| + | Xar(ko — 1/2)]
(16)
Step 4. Initial phase is estimated as:
® = phase {XM(I%O)} . (17)

Step 5. Displacement is estimated according
to (14) by using hand &

5=
(% arccos 3@;—;% - W/T) Sign(ﬁ)
~ E1—\/5s.in(minHLfOLﬂ' 2ol
for |l ZTA1+\/§Sin(min[|§o\,71'/2*\92’”)
5 . 2Zh(142sin? ¢)
T arcsin (1+T2i12/7r2)
~ T 1—+v/2sin(min[|¢],7/2—|2]])
for |h| <1775 el o[ =72 5[]}
A @l < /4 )
. 2Z}Q(142cos? ¢
% arcsin (1+(T252C;7r2;0)
A x 1=v2sin(min(|p|,m/2—|2]])
for |h| <175 el o[ w72 o[])
A gl > m/4
0 for h=0.
(18)
Step 6. Frequency is estimated as:

B.2. Iterative approach

The second approach is related to the
Aboutanios’s iterative approach developed for
the standard DFT. The single difference is in
application of the marginal-median DFT, in-
stead of the standard one.

Version of the iterative algorithm introduced
by Aboutanios and applied to the robust DFT
can be summarized as:

Step 1. Evaluation of the robust DFT in (6).

Step 2. Determination of the robust DFT
maximum position (15).

Step 3. Set py =0 and ¢ = 0.

Step 4. Calculate

1
Eh(l?i)*ﬂi

Piy1 = Pi —

1 [ X (ko + ps + 1/2)] — [Xaa (ko + p; — 1/2)]
21X (ko + p; +1/2)] + [ Xar (ko + p; — 1/(2)|)
20
Step 5. Then set ¢ = i + 1 and repeat step
4.
Step 6. After a specific number of iterations,
@, the frequency of sinusoid is estimated as:

& = koAw + poAw. (21)

Note that two different iterative approaches
are proposed in [4], and we use the second one
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in (20). Intuitively, it can be concluded that
this approach works accurately from the sev-
eral reasons. The first point is that the ro-
bust DFT is accurate estimate of the standard
DFT for non-noisy environment. Then it can
be expected that the main effect in applica-
tion of the robust DFT is in removing the im-
pulse noise but not in changing other impor-
tant properties that will affect accuracy of the
iterative algorithm. The second, more impor-
tant, point is that h(J, ) has the same sign
and smaller magnitude than ¢ (see Fig. 2a).
It means that any iteration h(p;) will push &
closer toward true value but at the same time
it will not exceed that value.

In order to show how the algorithm works,
we illustrate non-noisy signal case with ¢ =
7/8 in Fig. 2b. Assume that the result of
coarse estimation is displaced from the true
frequency for 6 = 0.5[7/T]. Then, the func-
tion & (i.e., h(py)) is evaluated for this point
(marked with a circle) producing the updated
estimate. It can be seen that the algorithm
converges toward the origin i.e., toward the
true frequency. Accuracy of the algorithm and
convergence will be considered in the next sec-
tion.

Computational complexity of both proposed
techniques depends on the marginal-median
DFT. In the first technique, the marginal-
median is calculated for N + 2, while in the
second approach it is evaluated for N + 2Q)
frequencies. The marginal-median means that
we calculate two median functions (for real and
imaginary parts) for sequences with N sam-
ples. Two strategies can be employed in this
case for median evaluation:

o sorting of entire sequence by using some
fast sorting procedure that typically requires
O(Nlog, N) comparisons and selecting the
median from them;

o applying the technique proposed in [12],
with O(N) comparisons for evaluation of me-
dian.

Since in our experiments @@ < N, it can
be concluded that the overall calculation com-
plexity of both algorithms is O(N?) for median
evaluated according to [12].

TIME-FREQUENCY SIGNAL ANALYSIS

V. NUMERICAL STUDY

In our experiment we consider the signal:

f(£) = exp(jwot + jot + jio),  (22)
within ¢ € [-T/2,T/2) with T = 2. Experi-
ments are performed with various numbers of
samples in the interval N € N = {Ng2K k =
0,1,..,6}, where Ny = 32. Here we demon-
strate results achieved only with N = 256
and N = 1024. We selected wg = 2wko/T
where kg = 12. In each trial of our Monte
Carlo simulations, § and ¢ are selected ran-
domly from the intervals § € [—7/T, 7/T] and
¢ € [-m/2,7/2]. Signal is embedded in the
mixed Gaussian and impulse noise:

w(t) = f(t) +vat) +vi(t),  (23)

where v (t) is a white complex Gaussian noise
with variance o2, while v;(t) is an impulse
noise where impulses appear in both real and
imaginary parts with probability p. We as-
sume that negative and positive impulses ap-
pear with the same probability p/2, with the
amplitude e = 5. Real and imaginary parts of
v1(t) are mutually independent!.

The technique based on the standard DFT
[4] is compared with two forms based on the
marginal-median DFT: direct approach based
on inverse function and iterative approach.

The mean squared error (MSE) for N = 256
and N = 1024 is depicted in Figs. 3 and 4.
In both cases we consider the following envi-
ronments: (a) Pure Gaussian noise as a func-
tion of SN R; (b) Mixed Gaussian and impulse
noise for fixed amount of impulse noise p =
5%, as a function of signal to Gaussian noise
ratio; (¢) Pure impulse noise as a function of
p; (d) Mixed Gaussian and impulse noise for
fixed amount of Gaussian noise o = 0.25 as a
function of p. For pure Gaussian noise the it-
erative approach applied to the standard DF T
outperforms other related techniques. How-
ever, it behaves worse than other techniques
even for small amount of impulse noise (even
for p = 0.5%). In general, the iterative pro-
cedure applied on the marginal-median DFT

1In numerous papers it is assumed that disturbance
can be considered to be of impulse nature if its mag-
nitude is at least three signal amplitudes.
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Fig. 3.
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Mean squared error in frequency estimation for N = 256 samples: Solid line - iterative procedure for

standard DFT; Solid line and * sign - iterative procedure for robust DFT; Solid line and o sign - inverse
h(8,p) evaluation; Dotted line - CRLB for Gaussian noise. (a) Pure Gaussian noise as function of SNR;
(b) Mixed Gaussian and impulse noise for fixed percentage of impulses 5% as function of ratio of signal
power and variance of Gaussian noise; (¢) Pure impulse noise as function of percentage of noise; (d) Mixed
Gaussian and impulse noise for fixed variance of the Gaussian noise o2 = 0.25 as function of percentage of

impulse noise.

behaves better than the inverse evaluation of

h(d, p).

For example, for mixed Gaussian and im-
pulse noise with ratio between signal am-
plitude and Gaussian noise of 7dB and for
p = 5%, the iterative procedure applied on
the robust DFT produces better results than
the evaluation of inverse function h(d,y) (for
1.5dB for N = 256 and 2.8dB for N = 1024)
or the iterative procedure applied on the stan-
dard DFT (for 3.5dB for N = 256 and for
3.2dB for N = 1024). For pure impulse noise
with p = 10% of impulses improvement is
even larger: 2dB for N = 256 and N = 1024
with respect to the inverse function, 7dB for

N = 256 and for 6.4dB for N = 1024 with re-
spect to the iterative procedure applied on the
standard DFT.

In addition, experiments related to depen-
dence of the MSE of ¢ are performed. The
MSE as a function on ¢ has been depicted in
Fig. 3 for N = 256. Results are obtained by
Monte Carlo simulations with 1000 trials for
each considered §. Two noise environments
are considered: Gaussian noise environment
with signal to noise ratio SNR=0dB (Fig. 5a)
and pure impulse noise environment with 2%
of impulses in both real and imaginary parts
of signal (Fig. 5b). It can be seen from Fig.
5a that the iterative algorithm applied to the
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Fig. 4. Mean squared error in frequency estimation for N = 1024 samples: Solid line - iterative procedure for
standard DFT; Solid line and * sign - iterative procedure for robust DFT; Solid line and o sign - inverse
h(8,p) evaluation; Dotted line - CRLB for Gaussian noise. (a) Pure Gaussian noise as function of SNR;
(b) Mixed Gaussian and impulse noise for fixed percentage of impulses 5% as function of ratio of signal
power and variance of Gaussian noise; (¢) Pure impulse noise as function of percentage of noise; (d) Mixed
Gaussian and impulse noise for fixed variance of the Gaussian noise o2 = 0.25 as function of percentage of

impulse noise.

robust DFT converges for Gaussian noise en-
vironment for just two iterations. Namely, for
) = 2 we obtain results of the same order of
accuracy as for @ > 2. Also, it can be seen
that this approach is significantly better than
estimation of displacement based on inverse
formula (18). An important fact is that the
MSE for @ = 2 is approximately constant for
0 € [-n/T,n/T]. However, direct evaluation
of the inverse formula produces highest error
for 6 ~ +0.37/T. Tt resulted in better accu-
racy of the iterative procedure by 5dB compar-
ing to the inverse evaluation for this environ-
ment. Note that the iterative procedure ap-
plied on the standard DFT for Gaussian noise
environment requires @ = 2 iterations to con-

verge toward accurate results, i.e., the same as
in the case of the robust DFT.

In the impulse environment at least Q@ = 5
iterations is required for the iterative proce-
dure to converge. Here, direct application of
(18) produces excellent results very close to
those of the iterative procedure after QQ = 5 it-
erations (only by 1.5dB worse). Results of this
experiment confirm that convergence of the it-
erative procedure applied to the robust DFT
for impulse noise environment is slower than in
the case of the standard DFT for signals cor-
rupted by Gaussian noise. Then, simpler pro-
cedure related to inverse evaluation of h(d, )
could be used in the case when computation
time is critical.
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MSE as function of § for N = 256 for two noise environments: (a) Gaussian noise SNR=0dB; (b)

Impulse noise environment with 2% of impulses in real and imaginary parts.

VI. CONCLUSION

Two procedures for precise estimation of si-
nusoidal signals parameters for signals embed-
ded in impulse noise environments are pro-
posed. These procedures have two stages:
coarse stage where estimation is performed by
using position of the robust DFT maximum
and a fine stage where specific ratio of robust
DFT samples close to maximum obtained in
coarse stage is used. The first procedure is
based on evaluation of the inverse function
§ = hY(4,¢) for estimated ¢, while the sec-
ond approach is an iterative procedure. Better
results are achieved with the iterative proce-
dure. In our experiments, it converges for 2-
7 iterations. Accuracy improvement with re-
spect to the iterative procedure applied on the
standard DFT is about 6dB for signals cor-
rupted with more than 5% of impulses. In
future research we will consider precise esti-
mation of signal parameters for other robust
DFT forms (especially for L-filter form).
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