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Estimation of single-tone signal
frequency by using the L-DFT

Igor Djurovi¢ and Viadimir V. Lukin

Abstract— Frequency estimation of com-
plex sinusoidal signal parameters for mixed
Gaussian and impulse noise environment is con-
sidered. We assume that the sinusoid has con-
stant amplitude. The first stage in the pro-
posed algorithm is calculation of the L-DFT
forms for various parameters. Then, an opti-
mal value of the L-DFT parameter is estimated
as a value minimizing the L-DFT energy. Posi-
tion of the L-DFT maximum calculated for the
optimal parameter is used as a coarse frequency
estimate. Fine estimation is performed by a re-
cently proposed iterative procedure. Numeri-
cal analysis confirms accuracy of the proposed
technique.

I. INTRODUCTION

Precise estimation of sinusoidal signal fre-
quency is an important task from both theo-
retical and practical point of view. Commonly,
problem of precise estimation is addressed only
for Gaussian noise environment. Displacement
techniques based on the standard DFT are the
simplest and the most efficient techniques for
precise frequency estimation of these signals
[1]-[4]. In numerous applications signals are
corrupted by impulsive and/or heavy tailed
disturbances. The standard DFT based tech-
niques fail to produce accurate results for these
environments [5], [6]. Recently, the DFT forms
(robust DFT's) derived according to the robust
statistics concept introduced by Huber [7] have
been proposed for handling the spectral analy-
sis issue for signals corrupted by an impulse
and/or heavy-tailed noise.

The problem of precise estimation of the si-
nusoidal signal frequency for impulse noise en-
vironment has been addressed in [8], where
the marginal-median DFT form was used as
an estimation tool. This robust DFT form
can be used as an estimate of the standard
DFT of non-noisy signals for impulse noise en-
vironment. The coarse frequency estimation is
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performed by using position of the marginal-
median DFT maximum. Subsequent itera-
tions are determined according to the tech-
nique proposed by Aboutanios and Mulgrew
[4]. This technique has been used in order
to get fine (precise) estimate. Note that the
Aboutanios and Mulgrew algorithm is pro-
posed for Gaussian noise environment and ap-
plied to the standard DFT. The main ingredi-
ent in this procedure is the ratio of magnitudes
of the DFT for two frequencies around the
coarse estimate. It has been shown in [8] that
the ratio of the magnitude of the marginal-
median DFT for two frequencies displaced
from the coarse estimate has a form similar
to the standard DFT for Gaussian noise envi-
ronment. Namely, this ratio has opposite sign
and smaller magnitude than the displacement
of the coarse estimate from the true frequency.
The updated frequency is calculated as a sum
of the coarse estimate and the ratio. The fre-
quency is then updated and the procedure re-
peated. This technique has been shown to be
convergent with the rate of convergence de-
pending on the considered noise environment.
However, in general, it is fast since the number
of required iterations is relatively small.

The main drawback of the marginal-median
DFT form is the spectral distortion effect [9)].
It is caused by the fact that the marginal-
median DFT is calculated as one (or two) mod-
ulated signal sample for each instant. In order
to reduce spectral distortion effect, the L-filter
DFT (L-DFT) forms are proposed in [9]. The
L-DFT can be used for spectral analysis of sig-
nals corrupted by mixed Gaussian and impulse
noise.

In this paper we propose a precise estima-
tion of the frequency of sinusoids corrupted by
mixture of Gaussian and impulse noise by us-
ing the L-DFT [9]. In the first stage, a simple
strategy for determination of the sub-optimal
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L-DFT is applied. The coarse estimation of
the signal frequency is performed by using po-
sition of the L-DFT maximum. The fine es-
timation of displacement from the frequency
grid is performed by an iterative procedure
from the Aboutanios and Mulgrew algorithm
[4]. In this paper, the iterative procedure is
applied to the L-DFT for signals corrupted by
mixture of Gaussian and impulse noise.

The paper is organized as follows. A brief
overview of the robust DFT forms is given
in Section 2. Determination of the optimal
robust DFT form is considered in Section 3.
The proposed frequency estimation technique
is summarized in Section 4. Results of experi-
ments are presented in Section 5.

II. RoBusT DFT FORMS

In this paper we consider the complex
sinusoid with constant amplitude, f(n)=
Aexp(jwon+jp), embedded in the white noise
z(n)=f(n)+n(n). Our goal is to perform esti-
mation of the frequency of the sinusoid based
noisy observations since it is crucial parameter
of these signals. For Gaussian noise environ-
ment the basic tool for frequency estimation is
the standard DFT that can be defined as:

N/2-1

> a(n)exp(—j2mnk/N) =

n=—N/2

Xs(k) = i

= mean {x(n)exp(—j27nk/N)
In € [=N/2,N/2)}

for k € [-N/2,N/2). This DFT form is
the ML estimate of the signal spectra for
Gaussian noise environment where n(n) is a
white complex-valued Gaussian noise with in-
dependent real and imaginary parts. The stan-
dard DFT can be calculated as a solution of
the following optimization problem (common
for ML estimates):

(1)

Xs(k) =
N/2-1

= argmin > F(|z(n) exp(—j2mnk/N)—pl),
n=—N/2
(2)
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where the loss function is F(x)=|x|?. How-
ever, the standard DFT, like other linear tech-
niques, exhibits weak performance for signals
corrupted by impulse noise. For a known noise
environment, the corresponding ML DFT form
can be determined. In particular, the ML
DFT form for Laplacian noise with indepen-
dent real and imaginary parts is obtained with
the loss function F'(x)= |Re(x)|+|Im(x)|, lead-
ing to the marginal-median form of the robust
DFT [6]:

X (k) = median {Re[x(n) exp(—j2mnk/N)],
n € [-N/2,N/2)}

+jmedian {Im[x(n) exp(—j27nk/N)],
n € [-N/2,N/2)}

For a white a-stable noise environment, the
myriad filter forms are proposed with the loss
function F(x)=log(|x|>+K?), where K is the
so-called linearization parameter [9]-[11].
These ML forms can be sensitive to varia-
tions in the assumed model of noise environ-
ment. For this reason the L-DFT forms were
proposed in [9]. They are very effective in
a mixed Gaussian and impulse noise environ-
ment. Also, L-DFT forms introduce smaller
spectral distortion effects than the marginal-
median DFT. The L-DFT can be defined as:

3)

N—1
Xp(k) = Z allri(k) + ju(k)],  (4)
1=0
where q;, [=0, 1, ..., N-1 are L-estimate coef-

ficients, while r;(k) and i;(k) are ordered el-
ements from the sets: r;(k)eR(k)={Re{z(n)
exp(-j2mnk/N)|n€[-N/2,N/2)} and i;(k)€l(k)
={Im{z(n)exp(-j2mnk/N)|ne[-N/2,N /2)},
with I'l(k): I'lJrl(k) and ll(k):11+1(]€) Coef-
ficients of the L-filter are commonly selected
as Zfigl a; = 1 and g¢q=any_1_;. Due to
its simplicity, we will consider the a-trimmed
mean form of the L-DFT with coefficients de-
termined as (under the assumption that N is
even):

o = { —N(1£2a) l€]aN,N(1—-a)—1]

0 elsewhere.

()
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Special cases of the L-DFT are the stan-
dard DFT for a=0 (for YVoy=1/N) and the
marginal-median DFT form [6] for a=0.5-2/N
(an j2—1=an 2=1/2 and a;=0 elsewhere).

These two special L-DFT forms exhibit
quite different behavior: the standard DFT
produces the ML estimate for Gaussian noise
environment, but is sensitive to even small
amount of impulse noise; the marginal-median
DFT is robust to impulse noise influence but
can introduce the spectral distortion effect [6],
[9]. Tt suggests that it is possible to design
optimal L-DFT form for particular signal and
noise environment by selecting the value of pa-
rameter a. This form should produce a trade-
off between robustness to the noise influence
and spectral distortion effects. Several tech-
niques for adaptive determination of the para-
meter a in the L-DFT are reviewed in [9], [13].
Alternative techniques can be found in [14]-
[16]. In addition, determination of the adap-
tive K parameter in the myriad form of the
robust DFT is considered in [10], [11]. These
methods are auxiliary tools for our research.
In the next section, a technique developed in
[9] that can be applied for FM signals with
constant amplitude embedded in an impulse
noise, will be described.

III. OptmvmAL L-DFT

Optimal selection of the parameter a in the
a-trimmed mean DFT is still an active research
topic. However, under the assumption that
signal of interest is pure sinusoid with con-
stant amplitude and that we have relatively
large number of signal samples, a very sim-
ple procedure for adaptive selection of a can
be utilized (already used in [9]). Denote the a-
trimmed mean DFT with particular parameter
a as X,(k). This X,(k) can be written as:

Xa(k) = F(k) + Na(k) + Do(k),  (6)

where F(k) is the standard DFT of non-noisy
signal, while N (k) is the residual noise term
and D, (k) is spectral distortion term. Under
the assumption that F'(k), N,(k) and Dg(k)
are mutually independent, one can use the fol-
lowing approximate expression for energy of
the X, (k):
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N/2-1

Y IXa®k)P

k=—N/2

N/2-1

~ > AIFE)P+INa(F)P+|Da(k)*}. (7)
k=—N/2

This conclusion has been confirmed by simu-
lations for the considered type of signals em-
bedded in different noise environments [9)].
Under introduced realistic assumptions for
the considered signal type, parameter a that
produces the smallest energy of transform

kNZ/Q:J\}/z | Xo(k)|? gives the smallest joint in-
fluence of the noise and spectral distortion ef-
fects:

N/2-1

T i X, (k)2
Qlopt argaerﬁ){gﬁ]kz;ml (k)]

(8)

Note that a similar methodology can be used
for determination of the optimal parameter K
if the myriad DFT forms are used for estima-
tion of signals with constant amplitude. Some
other sophisticated statistical techniques for
selection of the optimal parameters for FM sig-
nals with time-varying amplitude are reviewed
in [11].

IV. FREQUENCY ESTIMATION

Assume that complex sinusoidal f(¢)=
Aexp(jwot+jp) embedded in a white noise
environment, z(¢)=f(t)+n(t), is considered
within ¢€[-T/2,T7/2) and sampled with
Dt=T/N, i.e., z(n)=z(nDt), n€[-N/2,N/2).

The optimal L-DFT obtained by the pro-
cedure described in Section 3, Xp(k) =
Xag, (k), or the L-DFT with fixed parame-
ter a, Xr,(k)=X,(k), can be used as a coarse
frequency estimator:

& = koAw ko = arg max | Xo(k)| (9)
with Dw=27/T. In order to handle the issue
of precise frequency estimation, we adopted
the iterative technique proposed in [4] for the

standard DFT and for signals corrupted by
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Gaussian noise. This algorithm can be sum-
marized as follows.

Step 1. Calculation of the robust DFT (4)
and (5) and determination of the optimal L-
DFT by using the procedure given in Section
3. Estimate kg as

ko = arg max | Xy, (k)|. (10)
Step 2. Set p, = 0 and i=0.
Step 3. Calculate
A N_l ~ ~
Xy =Y alnlko+ p; +9) + jirko + p; + 9],
1=0
forg = £0.5. (11)

Step 4. Next iterations are evaluated as [4]:

Pix1 = Pi — h(p;) (12)

where

_ 1] Xos| — X0
2| Xo5)+ | X_0.5]
Set 1=i+1, and repeat steps 3 and 4.
Step 5. After a specific number of itera-

tions @), the frequency of sinusoid is estimated
as:

h(p;) (13)

& = (ko + pg)Aw. (14)

Comments on the algorithm

Note that an alternative form of update rule
(13) has been proposed in [4]. However, this
alternative form does not produce accurate re-
sults for the robust DFTs and we decided to
use (13) that is accurate for the considered sig-
nal and noise model. X

Note that ri(ky + p; + g) and i;(ko + p; +
g) in (11) are sorted elements from the sets
ri(ko+ p; +9)€ R(ko + p; + g)={Relz(n)exp(-
j2mn(ko + p; + g)/N)|In€[-N/2,N/2)} and
1i(ko + p; + 9)€X(ko + p; + )= {Im[z(n)exp(-
j27in(ko + p; + g)/]Y)HnG[—N/Q,N/Q)A}, with
ri(ko+p; +g)=ri+1(ko+p; +g) and iy (ko +p; +
g)=i;41(ko + p; +¢g). Samples X405 are dislo-
cated from the detected maximum in previous
phase for a half of the frequency sampling in-
terval £Dw /2. Coefficients a; are given by (5)
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where parameter a can be fixed or determined
by using the proposed procedure (8).

This procedure requires evaluation of the L-
DFT for N4+2@Q frequencies. Note that, in
our simulation, the required number of itera-
tions is below Q=8, i.e., Q@ < N. This pro-
cedure, applied on the standard DFT, pro-
duces results very close to the Cramer-Rao
lower bound within only Q=2 iterations [4].
In [8] this procedure has been applied for the
marginal-median DFT. It has been shown that
convergence is stable for various noise environ-
ments and that accurate results are achieved
for Q€[2,7]. Improvement achieved by further
increase of @) is negligible. Thus, this proce-
dure is more efficient than the frequency inter-
polation by using the zero padding. Namely,
the zero padding would require evaluation of
the L-DFT for RN frequencies where, typi-
cally, R > 1 and (N+2Q) < RN.

V. NUMERICAL ANALYSIS

In the experiment we consider a single-tone
sinusoidal signal:

f(t) = exp(jwot + jot + je),  (15)

within ¢€[-T/2,T/2) with T=2. Experiments
have been performed with various numbers
of samples and here we present results ob-
tained with N=32, 256 and 1024. In the sim-
ulations, we set wo=2mko/T, where ko=12,
and in each trial of the Monte Carlo simula-
tions, d and ¢ have been selected randomly
with uniform distribution on the intervals de[-
7w/ Tyw/ T) and p€[-7/2,m/2], respectively. Sig-
nal has been embedded in mixed Gaussian and
impulse noise:

x(t) = f(t) + ng(t) +nr(t),

where ng(t) is a white complex Gaussian noise
with variance s2, while n;(#) is a model of im-
pulse noise. Impulses appear with probability
p in both real and imaginary parts. We as-
sume that negative and positive impulses ap-
pear with the same probability p/2, with a
constant amplitude a=5.

We compared the method based on the stan-
dard DFT [4] with the proposed technique
based on the optimal L-DFT, L-DFT with

(16)
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Mean squared error in frequency estimation for N=32 samples within t€[-T/2,T7/2), T=2: (a) Pure

Gaussian noise as a function of SNR; (b) Mixed Gaussian and impulse noise for fixed percentage of impulses
5% as a function of ratio of signal power and variance of Gaussian noise; (¢) Pure impulse noise as a
function of percentage of noise; (d) Mixed Gaussian and impulse noise for fixed variance of the Gaussian
noise 02=0.25 as a function of percentage of impulse noise.

fixed value of the parameter a=1/4 and a=3/8
and the procedure applied to the marginal-
median DFT form [8]. The mean squared error
(MSE) in dB defined as:

MSE = 10logyy E{[& — (wo +0)]?}  (17)

is depicted in Figs. 1-3 for N=32, N=256
and N=1024, respectively. The following
noise environments are considered: (a) Pure
Gaussian noise as a function of SNR; (b)
Mixed Gaussian and impulse noise for fixed
amount of impulse noise p=5%, as a func-
tion of signal to Gaussian noise ratio; (c) Pure
impulse noise as a function of p; (d) Mixed
Gaussian and impulse noise for fixed amount
of Gaussian noise s2=0.25 as a function of p.
In all experiments, the number of iterations in
the proposed procedure was Q=5.

For pure Gaussian noise (Figs.la, 2a and

3a), the proposed technique behaves the same
as the technique from [4] applied to the stan-
dard DFT. Note that the technique from
[4] produces excellent accuracy for Gaussian
noise environment that is just 1.5% above the
Cramer Rao lower bound. Results obtained in
this case confirm that the proposed technique
for determination of the optimal a-trimmed
mean DF'T selects the standard DFT as an op-
timum for this environment. For small num-
ber of samples, N=32, and other noise envi-
ronments (Figs.1b, ¢, d), it can be seen that
the L-DFT forms with fixed a outperform the
L-DFT with parameter a calculated by using
(8). The reason is in fact that we need rela-
tively large number of samples in order that
the residual noise influence and distortion ef-
fects could be assumed independent. How-
ever, for larger number of samples (Figs. 2
and 3) the considered technique for determina-
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Fig. 2. Mean squared error in frequency estimation for N=256 samples within t€[-T/2,7/2), T=2: (a) Pure
Gaussian noise as a function of SNR; (b) Mixed Gaussian and impulse noise for fixed percentage of impulses
5% as a function of ratio of signal power and variance of Gaussian noise; (¢) Pure impulse noise as a
function of percentage of noise; (d) Mixed Gaussian and impulse noise for fixed variance of the Gaussian
noise 02=0.25 as a function of percentage of impulse noise.

tion of adaptive a produces very accurate re-
sults. For the second noise environment with
fixed percentage of the impulse noise p=5%
(Figs.2b and 3b), it can be seen that for small
amount of Gaussian noise, the new technique
outperforms the standard one by more than
10dB, but that with increase of the Gaussian
noise influence this difference decreases. For
the first two noise environments, the common
detection threshold effect can be noticed for
small SNR [12]. In the case of the pure im-
pulse noise shown in Figs.2c and 3c, the pro-
posed technique performs significantly better
(by more than 15dB) than the standard tech-
nique for a wide range of p values. This im-
provement exists even for a small amount of
impulse noise (for example p=0.2%). Finally,
for the second considered form of the mixed
noise with fixed amount of Gaussian noise, we
can see that again the standard DFT based

technique produces results similar to the pro-
posed technique only for a very small amount
of impulse noise. The marginal-median DFT
form performs worse than the other consid-
ered algorithms for the Gaussian noise envi-
ronment. However, for other three consid-
ered noise environments it performs between
the standard DFT and the proposed proce-
dure. As mentioned before, the marginal-
median DFT introduces the spectral distortion
effects [6], [9]. These effects are the reason why
the L-DFT procedure with optimal a outper-
forms the marginal-median DFT. The L-DFT
forms with fixed a=1/4 and a=3/8 produce
results that are close to the optimal one for
almost all considered noise environments.

In addition, we considered behavior of the
MSE for fixed d within Monte Carlo simula-
tion. Again, in each trial we selected randomly
p€[-m/2,m/2]). Obtained MSE for optimal L-
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impulses 5% as a function of ratio of signal power and variance of Gaussian noise; (¢) Pure impulse noise as
a function of percentage of noise; (d) Mixed Gaussian and impulse noise for fixed variance of the Gaussian
noise 2=0.25 as a function of percentage of impulse noise.

DFT for six different noise environments for
N=1024 with respect to de(0,7/ T is depicted
in Fig. 4. The MSE for a coarse estimate (9) is
given with dashed line, after one iteration with
dotted line and after 5 iterations with solid
line. It can be seen that obtained accuracy af-
ter just 5 iterations is approximately constant
for the considered noise environments.

VI. CONCLUSION

An effective technique for estimation of
single-tone sinusoidal signal frequency is pro-
posed. The technique is based on three in-
gredients: the robust DFT form (here the a-
trimmed mean DFT is considered); the opti-
mization technique that determines parame-
ter a in the robust DFT used as the coarse
frequency estimate; the iterative approach re-
cently proposed by Aboutanios and Mulgrew
for obtaining precise frequency estimate. Ac-
curacy of the proposed technique has been
tested in the numerical study and compared

with the original approach and with the itera-
tive approach applied to the marginal-median
DFT. For Gaussian noise environment the pro-
posed technique behaves like the technique de-
veloped for the standard DFT, while for the
impulse and mixed impulse and Gaussian noise
environment the proposed technique outper-
forms both the standard and marginal-median
DFT based algorithms. In future research we
will try to determine asymptotic accuracy of
the proposed procedure, to consider its appli-
cation for the myriad DFT forms, to employ
some more sophisticated schemes for optimal
DFT determination and, finally, to apply the
procedure for signals with multiple tones.
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