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Modifications of the Cubic Phase
Function

Pu Wang, Igor Djurovíc, and Jianyu Yang

Abstract– By introducing a symmetric pair
of time instants, a modification of the cubic
phase (CP) function, named as the quartic
phase (QP) function, is proposed to estimate
the quadratic FM signal. The performance in
terms of estimate bias and variance is presented
via the first-order permutation principle. Two
extensions are presented for multiple compo-
nents and the cubic FM signals. Both theoret-
ical analysis and numerical examples confirm
that the QP function and its extensions pro-
vide a number of advantages, such as
1. lower asymptotic mean-square error (MSE)
for the estimate of the third-order phase para-
meter at high SNR;
2. a better capability of discriminating multi-
component signals;
3. a lower SNR threshold for the estimates of
the cubic FM signal.

I. I������	�
��

The frequency-modulated (FM) signal mod-
eling can be found in a number of applica-
tions such as radar, communications, music,
speech, geophysics, and biomedicine [1]-[5]. In
these applications, signals having the polyno-
mial phase with low order, i.e., the linear,
quadratic and cubic FM signals (correspond-
ing to the 2nd-, 3rd- and 4th-order polynomial
phase signal (PPS)), are the most frequently
encountered. In the literature, the case of the
linear FM signal has been thoroughly studied
[6]-[8], however, parameter estimation of the
quadratic and cubic FM signals is still a chal-
lenge.
The most accurate way for analyzing the

quadratic FM signal is the maximum like-
lihood (ML) estimation [5]. It yields opti-
mal results but requires a three-dimensional
maximization, and thus it is computationally
exhausting. To avoid the multidimensional
search, a number of suboptimal approaches
were proposed, for example, the high-order
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ambiguity function (HAF) [3], [9], the inte-
grated general ambiguity function (IGAF) [10]
and the product HAF (PHAF) [11]. The main
idea behind the HAF-based method is to itera-
tively transform the signal to obtain a sinusoid
at a certain frequency related to the phase pa-
rameters. Meanwhile, the polynomial Wigner-
Ville distribution (PWVD) was proposed for
the high-order FM signal, i.e., the quadratic
and cubic FM signal [12], [13]. The kernel of
the PWVD ensures a time-varying sinusoid at
the frequency related to the instantaneous fre-
quency (IF). Recently, a bilinear transform -
the cubic phase (CP) function was proposed by
introducing the instantaneous frequency rate
(IFR) in [4] and [14]. For a quadratic FM sig-
nal defined as

s(t) = Aejφ(t) = Aej(a0+a1t+a2t
2+a3t

3), (1)

−T/2 ≤ t ≤ T/2

where A, φ(t), and {ai}
3
i=0 are the amplitude,

phase, and phase coefficients, respectively, the
CP function is presented as

CP(t,Ω) =

∫ T/2

τ=0

s(t+τ)s(t−τ)e−jΩτ
2

dτ . (2)

Substituting (1) for s(t) in (2), the resulting
signal of the bilinear transform is

s(t+ τ)s(t− τ) = A2ej2[φ(t)+(a2+3a3t)τ
2]. (3)

From (2) and (3), the CP function will have a
peak at 2(a2 + 3a3t), which is the IFR of the
signal in (1). Once the IFR is obtained, the
phase parameters, a2 and a3, can be estimated
by selecting two time positions and solving the
resulting equations. In this paper, we present
a modification of the CP function by using
two time instants which are symmetric with
respect to zero. This modification results in
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the quartic phase (QP) function. The theoret-
ical analysis shows that, with respect to the
Cramér-Rao lower bounds (CRLB), the QP
function has a closer asymptotic mean-square
error (MSE) than other existing methods at
high SNR. Two extensions are introduced to
discriminate multicomponent signals and esti-
mate the parameters of the cubic FM signal.
This paper is organized as follows. Section

II presents the QP function. In section III,
the asymptotic statistical result for the a3 es-
timate is derived. Extensions for the case of
multiple components and the case of the cubic
FM signal are described in Section IV. Section
V provides some numerical examples to eval-
uate the performance of the QP function and
corresponding extensions. Finally, conclusions
are drawn in Section VI.

II. T�
 P�����
� A����
���

By introducing a symmetric pair of time in-
stants, the QP function is defined as

QP(t, ω) =

∫ T/2

τ=0

s(t + τ)s(t− τ)

×s∗(−t+ τ)s∗(−t− τ)e−jωτ
2

dτ. (4)

where t is assumed to be positive.
From (2) and (4), the significant difference is
the employing nonlinear transform. The CP
function employs a bilinear transform and the
QP function involves in a fourth-order nonlin-
earity. In the following, we will introduce the
QP function in two steps: the nonlinear trans-
form and the quadratic phase filter.

A. The Fourth-order Nonlinear Transform

For an arbitrary signal with phase φ(t), as-
sume that φ1 = phase[s(t + τ)], φ2 =
phase[s(t − τ)], φ3 = phase[s(−t + τ)], φ4 =
phase[s(−t−τ)], and φQP = phase[s(t+τ)s(t−
τ)s∗(−t+τ)s∗(−t−τ)], where phase[.] denotes
the phase extractor. Using the Taylor series
expansion and setting the expansion order as
M , we obtain

φ1 + φ2 =

M/2∑

l=0

2φ(2l)(t)τ2l

(2l)!
; (5)

φ3 + φ4 =

M/2∑

l=0

2φ(2l)(−t)τ2l

(2l)!
; (6)

φQP = (φ1 + φ2)− (φ3 + φ4) =

M/2∑

l=0

2[φ(2l)(t)− φ(2l)(−t)]τ2l

(2l)!
. (7)

Substituting
∑P
i=0 ait

i for φ(t), where P is

the phase order and letting η(φ) = φ(2l)(t) −

φ(2l)(−t) yield

η(φ) =






P/2−1∑

v=l

2a2v+1t
2v−2l+1(2v+1)!

(2v−2l+1)! P is even;

(P−1)/2∑

v=l

2a2v+1t
2v−2l+1(2v+1)!

(2v−2l+1)! P is odd.

(8)
Using (8), (7) can be expressed as

φQP=






P/2∑

l=0

P/2−1∑

v=l

4a2v+1t
2v−2l+1τ2l(2v+1)!

(2l)!(2v−2l+1)! P is even;

P−1

2∑

l=0

P−1

2∑

v=l

4a2v+1t
2v−2l+1τ2l(2v+1)!

(2l)!(2v−2l+1)! P is odd.

(9)
For a quadratic FM signal, (9) reduces to

φQP = 4(a1t+ a3t
3) + 12a3tτ

2. (10)

It can be said that the multilinear transform
converts the quadratic FM signals into a space
that, at any given value of time sets, has a
quadratic term in τ and another invariant to
τ . In particular, the quadratic phase coeffi-
cient of the resulting signal is 12a3t. With the
knowledge on this coefficient, we can estimate
the parameter a3.

B. The Quadratic Phase Filter

In order to obtain the quadratic phase co-
efficient, a quadratic phase filter is applied to
compensate the quadratic phase term in τ [14].
Using the identity [15]

+∞∫

−∞

e−jτt
2

dt =

√
π

τ
e−j(π/4), τ > 0, (11)

we obtain

|QP(t, ω)| =
A4

2

√
π

|12a3t− ω|
. (12)
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It can be concluded that the QP function max-
imizes along ω = 12a3t, while dispersing for
other ω. The parameter a3 can be estimated
once a distinct peak is detected. Using the
nonlinear least squares, the estimate of a3 is
given as

â3 =
argmaxω |QP(t, ω)|

12t
. (13)

Generally, the time instant, t, determines the
variance of the a3 estimate. Based on the sta-
tistical analysis (see Appendix for the details),
if the time set is chosen to be n ≈ 0.2291N in
discrete time (N is the number of samples), the
a3 estimate achieves the minimum asymptotic
mean-square error at high SNR [19].

C. Implementation

The implementation of the QP-based
method is shown as follows. The first step is to
determine the a3 estimate at a time position
by extracting the peak from the QP function.
Once a3 has been obtained, the observation
can be appropriately dechirped to a chirp sig-
nal and a conventional techniques can then be
used to estimate the parameters of the result-
ing chirp signal.
Directly computing (4) requires about

O(N2) operations. Motivated by the fast im-
plementation of the CP function, maximiza-
tion of the QP function can be reduced to
O(N log2N) operations using the subband de-
composition techniques [4].

III. S���
��
	�� A�����
� �� ��
 a3
E��
���
�

Since the estimation algorithm is iterative,
it inevitably suffers from the error propagation
effect. That is error in the a3 estimate will
propagate to the latter estimates. Hence, the
statistical analysis of the a3 estimate is the
most crucial part in this paper, while other
estimates can be analyzed in a similar way in
[9] and [16].
There are three existing methods for para-

meter estimation of the quadratic FM signal,
i.e., the HAF, PWVD and CP function. Table
I lists the asymptotic MSE of these methods
for the a3 estimate at high SNR. The HAF-
based method maybe the most frequently

used. However, the inherent eighth-order non-
linearity in the HAF for the quadratic FM
signal results in high asymptotic MSE. Quan-
tificationally, the HAF-based asymptotic MSE
is about 43.17% higher than the QP function
with respect to the CRLB. Moreover, the high-
order nonlinearity in the HAF gives rise to
high SNR threshold (see Section V for the
details). In the literature of time-frequency
analysis, the PWVD is adaptive to high-order
FM signal the quadratic time-frequency distri-
bution such as the Wigner-Ville distribution.
The QP function outperforms the PWVD in
terms of the SNR threshold and asymptotic
MSE, due to the fact that there is sixth-order
nonlinearity in the PWVD [4]. The most com-
petitive method to the QP function is the
standard CP function, since the CP function
involves in only a second-order nonlinearity,
which leads to lower SNR threshold than the
QP function. However, with respect to the
CRLB, the asymptotic MSE of the a3 estimate
using the QP function is about 32.53% lower
than the CP function at high SNR.

IV. A����
��� E��
��
���

The above content established the QP-based
method for the monocomponent quadratic FM
signal. In the following, the QP-based method
is simply modified for the case of multicom-
ponent signals and the case of the cubic FM
signal. Specifically, we note that the cubic FM
signal has two practical applications, which are
described in [17].

A. Multicomponent Case

It has been shown in [18] that for multi-
component signals the distinct cross-terms or
spurious peaks occur producing problem with
identification of parameters of signal compo-
nents using the CP function. The QP func-
tion with simply modification can be extended
for multicomponent case. To discern the auto-
terms from the cross-terms or possible spuri-
ous peaks, it is better to make use of the time
dependence. From (12), it is clear that the
auto-terms are linearly related to the time po-
sition, i.e. ω = 12a3n. However, the cross-
terms have not this type of time dependence,
i.e., nonlinear to the time. By using the spec-
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TABLE I

T�
��
�
	�� MSE ��� ��
 a3 
��
���
 �� �
�� SNR

The Estimate QPF CPF HAF CRLB
a3

1582.5
N7SNR

2038
N7SNR

2187
N7SNR

1400
N7SNR

Ps 13.04% 45.57% 56.21% -

tral scaling technique introduced in the PHAF
[11], the product form of QP functions is de-
fined as

PQP(ω; nL) =
L∏

l=1

QP(nl,
nL
nl
ω). (14)

It can be said from (14) that the spectral scal-
ing operation ensures the peaks are properly
aligned at ω = 12a3nL. When the auto-terms
are aligned, the subsequent multiplication am-
plifies the auto-terms and weakens the cross-
terms that are misaligned. In order to simplify
the implementation of the PQP function, the
set of time instants can be selected as nL =
2nL−1 = 4nL−2 = · · · = 2L−1n1, followed by
an interpolation with order 2, 4 · · · , 2L−1.

B. Parameter Estimation of the Cubic FM

signal

Conventional techniques such as the HAF
for the cubic FM signal first estimate the
highest-order phase coefficient, i.e., a4, dechirp
the observations with the estimate, and re-
peat the above procedure until the spectrum
does not present non-zero peak. In con-
trast to the conventional techniques, the QP-
based method makes use of the QP func-
tion to extract and estimate the a3 other
than a4 with (10) which holds for the cu-
bic FM signal as well. Once a3 is obtained,
the dechirp technique is used and the result-
ing signal can be approximated as sd(t) =

Aej(a0+a1t+a2t
2+a4t

4). To estimate the a4 from
the dechirped signal sd(t), we apply a modi-
fied QP function with two time instants one of
which is zero. The modified QP function can
be defined as

QPm(t, ω) =

Fig. 1. The estimate procedure for the cubic FM signal

=

T/2∫

τ=0

sd(t+τ)sd(t−τ)s
∗

d(0+τ)s
∗

d(0−τ)e
−jωτ2dτ.

(15)
Taking the dechirped signal into (15) yields

|QPm(t, ω)| =
A4

2

√
π

|12a4t2 − ω|
. (16)

Hence, the value ω that maximizes the modi-
fied QP function in (16) can determine the a4.
Compared with other techniques for the

cubic FM signal, the QP-based method in-
volves in only a fourth-order nonlinearity that
is lower than a sixth-order nonlinearity in
the higher-order phase function (HPF: higher-
order version of the CP function) [4] and the
PWVD [12], and an eighth-order nonlinearity
in the HAF [3]. As a consequence, the QP-
based method allows parameter estimation at
low SNR. The procedures of the above meth-
ods for the cubic FM signal are compared in
Fig. 1.

V. S
�����
���

Example 1 : In order to directly compare with
other methods, the tested signal in this exam-
ple is the same quadratic FM used in [3, Sect.
IV.A] and [4, Sect. IV]. The SNR is incre-
mented in 1 dB interval from -5 to 20 dB, the
sampling interval is 1, and the number of sam-
ples is N = 257. The signal parameters are
A = 1, a3 = π10−5, a2 = −π10−3, a1 = 0.3π,
and a0 = 0. At each SNR, 200 runs of the
Monte Carlo simulation are performed. The
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Fig. 2. Comparisons between theoretical and mea-
sured MSE for the a3 estimate of the quadratic
FM signal

MSEs of the a3 estimate are plotted in Fig.
2. The measured MSEs are indicated with cir-
cles, whereas corresponding asymptotic MSEs
are shown as dotted lines. The straight line in
this plot is the CRLB for the a3 estimate. It
confirms that the simulation results adhere to
the theoretical analysis above the SNR thresh-
old which is about 4 dB.
Fig. 2 presents the performance comparisons
among the above three methods. In this plot,
we define a term Ps indicating how far from
the CRLB to the asymptotic MSE:

Ps =
AsymptoticMSE

CRLB
− 1. (17)

Obviously, larger Ps means corresponding
MSE is further from the CRLB. The theoreti-
cal and measured Ps for the HAF, CP function
and QP functions above the SNR threshold are
shown in Fig. 3. At high SNR, the Ps is also
listed in Table I. It verifies that the measured
MSE for the QP function is generally lower
than that of the CP function above 4 dB and
the HAF at all SNR. Note that the fluctua-
tion of the measured MSE can be observed in
Fig. 3. This is because the term Ps magnifies
the errors between the theoretical and measure
MSEs.
Example 2 : This example presents the
PQP function applied to multicomponent 1)
quadratic FM signals and 2) cubic FM signals.
The parameters of two quadratic FM signals
are
• 1st component: A1 = 1, a10 = 0, a11 =
π/5, a12 = −2π/(5N), a13 = π/(5N2);

Fig. 3. Performance comparisons among the HAF, the
CP function and QP function for the a3estimate
above 3 dB

Fig. 4. Product QP function with L = 3 for two-
component quadratic FM signals

Fig. 5. Product QP function with L = 3 for two-
component cubic FM signals
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Fig. 6. Performance comparisons among the HAF,
HP function and QP function for the a4 estimate
of the cubic FM signal

• 2nd component: A2 = 1, a20 = 0, a21 =
−2π/5, a22 = π/(5N), a23 = −2π/(5N

2).

The set of time instants in the PQP function
is [5, 10, 20], andL = 3. The result is shown
in Fig. 4. In this plot, two distinct peaks
can be easily observed at ω1 = π/(5N2)× 20
andω2 = −2π/(5N2) × 20. Then we apply
the PQP function to two-component cubic FM
signals with parameters:

• 1st component: A1 = 1, a10 = 0, a11 =
π/5, a12 = −2π/(5N), a13 = π/(5N2), a14 =
−π/(5N3);
• 2nd component :A2 = 1, a20 = 0, a21 =
−2π/5, a22 = π/(5N), a23 = −3π/(5N

2), a24 =
3π/(5N3).

The set of time instants is [5, 10, 20], and L =
3. Once again, two distinct peaks can be ob-
served in Fig. 5. The spectral positions corre-
sponding to two peaks are ω1 = π/(5N2)× 20
and ω2 = −3π/(5N2)× 20.

Example 3 : To evaluate the a4 estimate for the
cubic FM signal, 200 runs of the Monte Carlo
simulation are performed. The selected signal
is the first cubic FM signal in Example 2. The
results are shown in Fig. 6. In this plot, the
lowest threshold SNR around 4dB is derived
by using the QP-based method. It is about
2dB and 6dB lower than the SNR threshold of
the HPF and HAF. Moreover, when the SNR is
higher than the threshold, the measured MSE
for the QP-based method is generally lower
than other methods.

VI. C��	���
��

A modification of the CP function has
been proposed for parameter estimation of a
quadratic FM signal. It utilizes a symmetric
pair of time instants and employs a fourth-
order nonlinear transform. Statistical analysis
shows that the variance of the a3 estimate is
only 13.04% higher than the CRLB at high
SNR. The extensions for multicomponent case
and parameter estimation of the cubic FM sig-
nal are also discussed. The simulation results
adhere to the theoretical analysis.

A��
��
�

This appendix provides the first-order per-
mutation analysis for the a3 estimate. For
brevity, we use the same notation of symbols
in [4] (see Appendix I of [4]).
In order to apply the general formulae in

Appendix I of [4], it is necessary to reassign
the variables and equations corresponding to
the QP-based method:

gN(ω) = QPs(n, ω), (18)

where the QPs represents the QP function of
the noiseless signal s(n).
The perturbation to gN(ω) provided by addi-
tion of noise,v(n), to s(n) is

δgN(ω) =

(N−1)/2−n∑

m=0

zvs(n,m)e−jωm
2

, (19)

where zvs(n,m) approximates the interference
terms containing not more than two noise fac-
tors. Note that n is assumed to be positive.
The function gN(ω), δgN(ω), and their deriv-
atives, evaluated at the point of global maxi-
mum ω0 = 12a3n, are given by

gN(ω0) ≈ A4K(N/2− n), (20)

∂gN(ω0)

∂ω
≈ −jA4K

(N/2− n)3

3
, (21)

∂2gN(ω0)

∂ω2
≈ −A4K

(N/2− n)5

5
, (22)

δgN(ω0) ≈

N/2−n∑

m=0

zvs(n,m)e−jω0m
2

, (23)
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∂δgN(ω0)

∂ω
≈ −j

N/2−n∑

m=0

m2zvs(n,m)e−jω0m
2

,

(24)

where K = ej4[a1n+a3n
3].

Substituting the above results for correspond-
ing symbols of Appendix I in [4] yields

α ≈
−8A8(N/2− n)6

45
, (25)

β ≈ −2A4(N/2− n)[	{Γ}], (26)

where

Γ≈K

N/2−n∑

m=0

(
m2 −

(N/2− n)2

3

)
z∗vs(n,m)ejω0m

2

,

(27)
and 	(·) denotes the imaginary part of (·).
Henceforth, we have

δω ≈ −
45 · 	{Γ}

4A4(N/2− n)5
. (28)

Its expectation, the bias of the a3 estimate, is
asymptotical zero (to the first-order approxi-
mation).
For the mean-square of (28), it is necessary
to compute the values of E{ΓΓ∗} and E{ΓΓ}.
With some tedious but straight computations,
we get

E{ΓΓ∗} ≈
8

45
(2A6σ2 + 3A4σ4)(N/2− n)5,

(29)

E{ΓΓ} ≈
1

180

(
2A6σ2 +A4σ4

)
ϕu (N− 4n) ,

(30)
where ϕ = N5−20nN4+120n2N3−240n3N2+
80n4N − 64n5, and u(·) denotes the unit step
function. Subsequently,

E
{
(δω)2

}
≈

E{β2}
α2 (31)

where SNR = A2/σ2.
Taking into account δa3 = δω/12n, we get

E{(δa3)
2} ≈

5

1024n2(N/2− n)5SNR

×

[
16

(
2 +

3

SNR

)

−

(
1 +

1

2SNR

)
ϕ

(N/2− n)5
u (N − 4n)

]
.

(32)

It is shown that the variance of the a3estimate
depends on the values of N,SNR and n. For
any given N and SNR, E

{
(δa3)2

}
can be min-

imized by choosing n. Numerical study shows
that n ≈ 0.2291N gives the minimum vari-
ance of the a3 estimate at high SNR. There-
fore, the recommended choice of time instant
is n = 0.2291N . When n = 0.2291N , the min-
imum asymptotic MSE for the a3 estimate is

E{(δa3)
2} ≈

1582.5 + 2829.7
SNR

N7SNR
. (33)
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