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Generalized High-order Phase Function
for Parameter Estimation of Polynomial
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Pu Wang, Igor Djurovíc, and Jianyu Yang

Abstract– The high-order phase function
(HPF) has been introduced recently to esti-
mate the parameters of a polynomial phase sig-
nal (PPS). In this paper, we generalize the
standard HPF by introducing multiple time
instants. Thus, the standard HPF can be
treated as a special example of the general-
ized HPF with identical time instants. We
propose procedure for finding time instants
minimizing the mean squared error (MSE).
The proposed method achieves better perfor-
mances than the high-order ambiguity function
(HAF) and polynomial Wigner-Ville distribu-
tion (PWVD). The theoretical analysis as well
as the Monte-Carlo simulations verify the ad-
vantages such as lower MSE and lower SNR
threshold for the PPS.

I. I������	�
��

The polynomial phase structure has been
widely used to model non-stationary signal ap-
pearing in radar (e.g., pulse-Doppler radar,
SAR and ISAR), sonar, communications, bio-
medicine, seismic analysis, animal sounds
modeling and passive acoustic applications
[1—4]. For example, in radar, the output of the
matched filter can be well approximated by a
polynomial of a finite order within a closed in-
terval, according to the Weierstrass theorem.
The parameter estimation of polynomial

phase signal (PPS) with constant amplitude
has received much attention for the last two
decades. The maximum likelihood estimation
(MLE) [5], which is asymptotically efficient,
requires high computational load for multi-
parameter estimation. In addition, the cost
function in the MLE could have poor numer-
ical properties due to many local maxima. A
number of simpler approaches have been pre-
sented to reduce the computational complex-
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ity. The rank reduction technique for linear
FM signals (the second-order PPS) was ex-
tended by Peleg and co-workers, to deal with
higher-order PPS. This approach was then re-
ferred to as the discrete polynomial transform
(DPT) or the high-order ambiguity function
(HAF) [3,6,7]. The HAF-based approach em-
ploys iterative finite differences of the phase
to obtain a sinusoid at a certain frequency di-
rectly proportional to the highest-order phase
parameter. This parameter can then be es-
timated by using a number of spectral esti-
mation techniques. Meanwhile, advances in
the time-frequency (TF) distribution for the
generic non-stationary signal can be applied
to analyze the PPS. Typically, the polynomial
Wigner-Ville distribution (PWVD) was pro-
posed for the PPS with arbitrary order in a
way analogous to the WVD for the linear FM
signal [8]. The PWVD transforms the signal
to ensure a delta function around the instan-
taneous frequency (IF) of the signal in the
TF domain. Besides the HAF and PWVD,
the instantaneous frequency rate (IFR) esti-
mator has been recently developed by O’Shea
in [9] and [10]. While the IF is defined as the
first-order derivative of the phase, the IFR can
be considered as the second-order derivative
of the phase. In analogy to the PWVD, the
high-order phase function (HPF) [10] was pro-
posed to reveal the variation of the IFR with
respect to time. Specifically, in the case of the
quadratic FM signal (the third-order PPS),
the second-order HPF is reduced to the cubic
phase function (CPF), which provides a lower
SNR threshold at SNR = −2 dB when the
number of samples is 257 [10].

Here, we generalize the standard HPF by
relaxing the constraint on identical time in-
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stants. The additional time redundancy allows
us to find a nonlinear transform with lower or-
der for the PPS. Hence, the proposed method
offers some advantages compared with conven-
tional methods. The theoretical results via the
first-order perturbation principle show lower
MSE and lower SNR threshold for the pro-
posed method compared with the HAF and
PWVD. In particular, for a fourth-order PPS,
the proposed method provides a SNR thresh-
old as low as 3 dB, which is 4 and 7 dB smaller
than the PWVD and HAF, respectively. In
essence, the CPF, the HPF and the gener-
alized CPF in [14] can all be interpreted as
special cases of the method proposed in this
paper. In other words, the proposed method
could inherit the conventional advantages of
the HPF in certain cases (i.e., the low order of
nonlinearity of the CPF) and it improves the
performance of the HPF in other cases (i.e.,
lower MSE of the algorithm in [14]).

The rest of this paper is organized as fol-
lows. Section II first briefly reviews the HAF
and PWVD. Then, we establish lag-coefficient
equations for the standard HPF. In Section
III, the generalized high-order phase function
(GHPF) is defined and corresponding prop-
erties are provided. To gain insight into the
GHPF, we present several specific examples.
Section IV provides an asymptotic closed-form
expression of the MSE for the GHPF-based es-
timates via the first-order perturbation princi-
ple. The theoretical results are identified using
the Monte-Carlo simulations in Section V. Fi-
nally, conclusions are provided in Section VI.

II. H
�
-����� P
��� F��	�
��

The signal considered in this paper is mod-
eled as follows:

x(t) =s(t) + v(t) = A exp {jφ(t)}+ v(t)

=A exp

{

j

p∑

i=0

ait
i

}

+ v(t), (1)

where A is the amplitude, φ(t) is the pth-
order polynomial phase, {ai}

p
i=0 are unknown

phase parameters, v(t) is white Gaussian noise
with zero mean and variance σ2, and t ∈
[−T/2, T/2].

For the PPS defined in (1), a number of tech-
niques can be applied to estimate the parame-
ters, i.e., the HAF [3], PWVD [8] and HPF
[10]. The phase differentiation in the HAF
is performed (p − 1) times. The highest or-
der parameter ap is estimated based on ob-
tained sinusoid. The order of non-linearity in
this transform is 2(p−1). The lag-coefficients of
the PWVD are selected in such a manner that
the PWVD is concentrated around the IF of
(1) (see (5) and (6) in [8]). For example, for a
quadratic FM, p = 3, or for a cubic FM signal,
p = 4, [8] gave two solutions regarding the lag-
coefficients: (1) d1 = d2 ≈ 0.675, d3 ≈ −0.85
and (2) d1 ≈ 0.62, d2 ≈ 0.75, d3 ≈ −0.87.
In both cases, the PWVD contains the sixth-
order nonlinearity.
The qth-order HPF can be considered as

the output of the quadratic phase filter with
the input (nonlinear kernel): Kq(t;d) =
q/2∏

l=1

[s(t+ dlτ )s(t− dlτ )]
rl , where d is the set

of lag-coefficients, d =
{
d1,d2, · · · ,dq/2

}
and

the symbol [·]rl indicates the conjugation of [·]
if rl = −1 and [·] if r1 = 1; or, equivalently
[10],

Wq(t,Ω) =

+∞∫

−∞

Kq(t;d)e
−jΩτ 2

dτ , (2)

where Ω denotes the IFR spectrum. With
q = 2, d1 = 1 and rl = 1 in (2), the W2(t,Ω)
turns into the CPF in [10]. To concentrate the
energy along the IFR of the signal, we give the
following proposition without proof 1 .
Proposition 1: For a pth-order PPS, the lag-

coefficients of the HPF should be chosen from
the real solutions of the following equations:

q/2∑

l=0

rld
2
l = 1,

q/2∑

l=0

rld
m
l = 0, for even m: 4 ≤ m ≤ p.

Provided that the lag-coefficients satisfy the
Proposition 1, the kernel Kq(t;d) of the HPF

1All related derivations are available at
http://personal.stevens.edu/∼pwan
g4/index.htm
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is shown to be Kq(t;d) = A
q
e
j[τ 2IFR(t)+ζ ],

while the corresponding qth-order HPF can be

expressed as |Wq(t,Ω)| = Aq
√

π
|IFR(t)−Ω| , with

the help of the following equations [11]

∞∫

−∞

sinax2dx =

∞∫

−∞

cos ax2dx =

√
π

2a
. (3)

The above results suggest a HPF-based es-
timation algorithm for a PPS with a known
order p: 1) for a specified iteration index �
(initiate � = 1), only one time instant t
 is
determined and the corresponding IFR(t
) is
obtained by directly searching the maximum
of |Wq(t,Ω)| over the set of Ω values; 2) re-
peat the iteration step until � = p − 1. In
other words, we select p − 1 values of IFR at
(p− 1) time instants and then simultaneously
solve the set of p− 1 equations to find the es-
timates, i.e.,






â2
...
âp




 =






2 · · · p(p− 1)tp−21
...

. . .
...

2 · · · p(p− 1)tp−2p−1






−1

×






IFR(t1)
...

IFR(tp−1)




 .

The rest phase parameters, i.e., a1 and a0,
can be estimated using conventional frequency
estimation techniques by dechirping the ob-
served signal with the obtained estimates.
The analysis of the estimation accuracy is

performed only for the quadratic FM signal
[9, 10]. In general, p − 1 time instants should
be jointly chosen to minimize the MSE of the
estimates. For example, for the quadratic FM
signal with p = 3, two time instants, n = 0
and n = 0.11N , are jointly selected to lower
the MSE of both a2 and a3 estimates, where
N is the number of samples [10].

III. G������
��� H
�
-����� P
���

F��	�
��

From the HPF-based method, it is appar-
ent that the time instant is constrained by us-
ing only one time instant t
 in one iteration

step. To relax this constraint, we generalize
the HPF by involving multiple time instants
t
 in one iteration step, where t
 includes q/2
time instants, i.e., t
 =

{
t
,1, · · · , t
,q/2

}
. The

multiple time instants may be different or iden-
tical to each other, depending on the problem
at hand. In particular, the GHPF employing
identical time instants reduces to the standard
HPF. Correspondingly, the IFR is extended to
the generalized IFR which admits the time sets
t
.

A. Definition

By introducing multiple time instants, the
GHPF can be defined as the output of the
quadratic phase filter with input (nonlinear

kernel)KG
q (t;d) =

q/2∏

l=1

[s(tl+dlτ )s(tl−dlτ )]
rl ,

or, equivalently,

Sq(t,ω) =

+∞∫

−∞

K
G
q (t;d)e

−jωτ 2
dτ , (4)

where t denotes the set of t1, t2, · · · , tq/2, and
ω represents the generalized IFR spectrum.
Correspondingly, we generalize the IFR

which admits multiple time instants:

ω(t) =

p∑

i=2

i(i− 1)ai

q/2∑

l=1

rld
2
l t
i−2
l . (5)

Compared to the IFR, the generalized IFR
replaces the time instant t with a time sets

weighted by lag-coefficients
∑q/2
l=1 rld

2
l t
i−2
l . By

setting t1 = t2 = · · · = tq/2, the general-
ized IFR reduces to the standard IFR with a
scale factor

∑q/2
l=1 rld

2
l . In order to represent

the pth-order PPS as a delta function around
the generalized IFR, it is required that the
lag-coefficients and time instants should sat-
isfy the following proposition.
Proposition 2: Given a pth-order PPS, the

lag-coefficients for the GHPF should be chosen
from the real solutions of the following equa-
tions:

q/2∑

l=1

rld
m
l t

i−m
l = 0, for even value of m,

where 4 ≤ m ≤ p, and m ≤ i ≤ p.
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TABLE I

T
� ����� �� ����
����
�� ��� �
������� p’�

p 2 3 4 5

HAF 2 4 8 16

PWVD 2 6 6 8

GHPF 2 2 4 6

Given that the lag-coefficients and time in-
stants satisfy the Proposition 2, the GHPF
can be computed with the help of (3) as

|Sq(t,ω)| = A
q
√

π
|ω(t)−ω | . The point of ex-

treme is the generalized IFR of a pth-order
PPS.

Remark 1: For a pth-order PPS, the best
GHPF, under the terms of MSE or SNR
threshold, performs at least as well as the best
standard HPF. Obviously, the best standard
HPF or the best GHPF must be one of the
solutions of the Proposition 1 or the Proposi-
tion 2, respectively. Moreover, the solutions of
Proposition 1 are always solutions of Proposi-
tion 2 for identical time instants. Therefore,
the best GHPF can always duplicate when the
best solutions in both cases are identical, or
outperform the best standard HPF otherwise.

Remark 2: For a pth-order PPS, there al-
ways exists a GHPF with nonlinearity order
less than or equal to the order of the the HAF
and PWVD. We first examine this property by
enumerating a number of cases that mostly oc-
cur, i.e., the PPS with p ≤ 5 that is adequate
to model the most frequently occurring signals
in practical applications [1—4]. As shown in
Table I, the order of nonlinear transform in
HAF for a pth-order PPS is 2p−1 [3]. It is
shown that the HAF has much higher order of
nonlinearity than the PWVD and the GHPF,
when the order of PPS is higher. Meanwhile,
the order of nonlinearity in the PWVD is
generally larger than the GHPF, except the
second-order case. For a larger p, this property
can be proven in a similar manner. Therefore,
we expect that the GHPF provides a lower
order nonlinear transform than the HAF and
PWVD for the PPS.

B. Estimation Algorithm

The parameter estimation of a PPS using
the GHPF can be performed similarly to the
procedure of the HPF in Section II. For a PPS
with a known order p, the estimation proce-
dure can be specified as follows:
• Initialize the iteration index as � = 1, and
search the grid maximizing the GHPF for a
given t
;
• Repeat the above procedure and set � = �+1
until � = p− 1;
• Estimate the corresponding parameters by
simultaneously solving the resulting equations;
• Demodulate the observed signal with the es-
timated parameters:

x(t) = x(t)e−j(âpt
p+···+â2t

2);

• Estimate the remaining parameters, i.e., a1,
a0 and A by using spectral analysis techniques.
In the presence of multicomponent signals,

the GHPF has cross-terms due to inherent
nonlinear transform. According to Remark 2,
the GHPF may produce less cross-terms be-
cause of its lower order of nonlinearity than
the HAF and PWVD. Furthermore, motivated
by the PHAF [12] which utilizes additional lag
redundancy in the standard HAF for multi-
component PPS, the GHPF could have extra
performance gain for multicomponent signals
by properly designing. For multicomponent
second- and third-order PPSs, two algorithms
based on the GHPF are suggested in [13] and
[14] by adopting a similar idea of PHAF and
the spectral scaling technique.

C. Examples

From Table I, it is shown that, for the third-
, fourth-, and fifth-order PPSs, the GHPF has
the lowest order of nonlinearity. This is the im-
portant property since it assures better perfor-
mance of the corresponding estimator. In this
part, we specify two examples of p = 3 and
p = 4 and present the relationship between
the GHPF and the proposed methods in [10]
and [14].
Specifically, the third- and fourth-order

PPSs can be found in many practical appli-
cations. While the third-order PPS can be
detected in the passive radar surveillance and
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modeling of echoes from bats [10], the fourth-
order PPS can be found in the underwater
field, i.e., the receiving signal is a fourth-order
PPS if the transmitter sends a linear FM sig-
nal to detect a moving source [15]. In addition,
signals produced by underwater mammals and
signals from Diesel engines can be modeled as
the fourth-order PPS [15].
For a third-order PPS, two GHPF-based

methods can be used to estimate the parame-
ters. The first one is the CPF, which is a mem-
ber of the second-order GHPF with d1 = 1 and
r1 = 1 [10]:

S2(t, ω) =

+∞∫

−∞

s(t+ τ)s(t− τ)e−jωτ
2

dτ. (6)

The order of inherent nonlinearity is only
2 and hence the SNR threshold is much lower
than the HAF and the PWVD. See [10] for the
detail. The other method is the generalized
CPF, which is an example of the fourth-order
GHPF with coefficient t1 = −t2 = t, d1 =
d2 = 1 and r1 = −r2 = 1 [14]:

S4(t,−t, ω) =

+∞∫

−∞

s(t+ τ)s(t− τ)

×s∗(−t+ τ)s∗(−t− τ)e−jωτ
2

dτ. (7)

In [14], the above estimator exhibits lower
MSE than the CPF and HAF at high SNR.
For a fourth-order PPS, we could find a

fourth-order GHPF to estimate the parame-
ters. This fourth-order GHPF can be spec-
ified with lag coefficients d1 = d2 = 1 and
r1 = −r2 = 1:

S4(t1, t2, ω) =

+∞∫

−∞

s(t1 + τ)s(t1 − τ)

×s∗(t2 + τ)s∗(t2 − τ)e−jωτ
2

dτ. (8)

As a result of low order of nonlinearity,
the fourth-order GHPF provides a lower SNR
threshold than the HAF and PWVD as shown
in Section V. To the best of our knowledge
the GHPF has the lowest nonlinearity for the
fourth-order PPS.

IV. S���
��
	�� A�����
�

The considered estimators are compared
here in terms of the asymptotic MSE and
SNR threshold. The asymptotic MSE is de-
termined by using the first-order perturbation
method [16], which is assumed valid for high
SNR and for sufficiently large discrete samples.
The perturbation method is described in Ap-
pendix II, where it is applied to the second-,
third- and fourth-order cases. For simplicity,
theoretical results are listed only for the pth-
or (p − 1)st-order phase parameters. Herein,
in the first-order perturbation analysis, the
continuous notation will be changed to corre-
sponding discrete notation, i.e., the integral in
(8) is replaced with corresponding summation.

As the main results we have found that
the proposed estimator is asymptotically un-
biased. The asymptotic MSEs are presented
in Appendix. To compare the derived asymp-
totic MSE with corresponding CRB [17], we
use the asymptotic efficiency ratio (AER), κ,
defined as the ratio between the asymptotic
MSE and corresponding CRB. In particular,
the AER in the second-order case is

κa2 = 1 +
0.5

SNR
.

For the third-order PPS, the AERs are

κe
a3 = 1.1307 +

2.0212

SNR
,

κc
a3 = 1.4557 +

1.3247

SNR
,

κc
a2 = 1 +

0.5

SNR
.

where superscripts c and e denote the CPF
and the generalized CPF in (7), respectively.
Finally, the AERs for the fourth-order PPS are

κa4 = 1.8786 +
3.9536

SNR
,

κa3 = 1.1307 +
2.0212

SNR
.

It is obvious that the GHPF provides lower
MSE than the HAF-based method (Table I in

[7] lists the [ARE]0.5 for the HAF). To com-
pare the proposed method with the PWVD, we
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TABLE II

T
� SNR �
���
��� ��� �
������� p’�

p 2 3 4 5

γHAF
p (dB) -3 3 10 16

γPWVD
p (dB) −3∗ 7∗ 7∗ 11∗

γGHPF
p (dB) -3 -3 3 5∗

would like to employ the Monte-Carlo simula-
tions, since the theoretical result is not avail-
able for the PWVD-based method that is orig-
inally proposed for the IF estimate.
On the other hand, it is meaningful to

compare the performance in terms of the
SNR threshold with respect to the HAF and
PWVD. In general, nonlinear estimators al-
ways exhibit the threshold effect [18]. That
is, at the SNR below this threshold, the first-
order perturbation is not valid due to the as-
sumption of high SNR. One possible way to
explicitly approximate the SNR threshold is
presented in [7]. Following the main deriva-
tions in [7], we define here the SNR threshold
γp as

γp = min {10 log10 SNR
ρ
t } , (9)

where SNRρt satisfies

κaρ(SNR = SNRρt ) = 2κaρ(SNR =∞), (10)

and 1 ≤ ρ ≤ p. As an example of p = 4,
SNR4t ≈ 2.11, SNR3t ≈ 1.79, and inserting 1.79
to (9) approximates the threshold at SNR ≈
2.53 dB. Table II presents the round-up SNR
thresholds of the HAF, the PWVD and the
GHPF for a PPS with p ≤ 5, where ∗ denotes
that the threshold obtained in simulations.
As stated above, the theoretical results on

asymptotic efficiency ratio of the PWVD is
not available, and hence it is difficult to explic-
itly express its SNR threshold using (9). This
problem can be considered in an alternative
way. At low SNR (i.e., below the SNR thresh-
old), the asymptotic MSE of the PWVD-based
estimator contains higher power of the SNR
than the GHPF [7]. In particular, for p = 4,

the asymptotic MSEs of the GHPF should
vary in proportion to SNR−4 (see Sect. III
and IV in [7] and Sect. III in [10]), whereas
the MSEs of the PWVD and HAF vary with
SNR−6 and SNR−8, respectively. Therefore,
it can be assumed that the SNR threshold of
the PWVD falls between the thresholds of the
HAF at SNR ≈ 10 dB and that of the GHPF
at SNR ≈ 3 dB. Indeed, the Monte-Carlo sim-
ulation shows a threshold at SNR ≈ 7 dB of
the PWVD for p = 4.

V. N� ��
	�� S
 ����
���

To evaluate the performance of the GHPF-
based estimator, we present the Monte-Carlo
simulation results in terms of MSE as a func-
tion of SNR for the fourth- and fifth-order
PPSs. For a third-order PPS, the perfor-
mance corresponding to the CPF and the gen-
eralized CPF can be found in [10] and [14].
Meanwhile, the performance of the HAF and
PWVD will be demonstrated and compared
with the GHPF. The simulated MSEs are com-
puted with 200 runs at each SNR and com-
pared with corresponding CRB. Signal embed-
ded in the additive, complex, white Gaussian
noise with zero mean is considered. The SNR
is incremented in 1-dB interval between -5 and
20 dB, the sampling interval is 1, and the num-
ber of samples is N = 257.
In Figs. 1 and 2, the performance of the

considered methods in estimation of a3 and
a4 parameters for a fourth-order PPS is pre-
sented. The parameters of the fourth-order
PPS are chosen to be A = 1, a4 = 0.4π10−8,
a3 = 0.2π10−5, a2 = −0.2π10−3, a1 =
0.4π, and a0 = 0. Specifically, the time in-
stants in the GHPF are (0.229N,−0.229N)
and (0.276N,−0.098N), whereas the HAF em-
ploys the lag set as (N/2P ) with P = 4 for
the a4 estimate and P = 3 for the a3 esti-
mate, and the PWVD uses the following time
sets: (−3/8N,−1/4N, 0, 1/4N). Note that,
in this case, the PWVD is implemented with
the eighth-order interpolation due to its lag-
coefficients, whereas the GHPF and HAF are
used without interpolation. As the figures
shown, the GHPF provides marginally lower
MSE than the HAF and PWVD with respect
to the CRB. Furthermore, the SNR threshold
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Fig. 1. MSEs of the a4 estimate using the HAF,
PWVD and GHPF for a fourth-order PPS
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Fig. 2. MSEs of the a3 estimate using the HAF,
PWVD and GHPF for a fourth-order PPS

for the GHPF is about 3 dB, approaching the
SNR threshold in Table II. The threshold in
the GHPF is smaller for 4 dB and 7 dB than
the corresponding thresholds in the PWVD
and HAF. For the SNR above this threshold,
the theoretical MSE is accurate approximation
of the simulated MSE.

Fig. 3 presents the simulation results for
a fifth-order PPS. The corresponding para-
meters are chosen to be A = 1, a5 =
0.4π10−10, a4 = 0.4π10−8, a3 = π10−5, a2 =
−π10−3, a1 = 0.2π, and a0 = 0. The lag-
coefficients of the sixth-order GHPF are cho-
sen as d = (0.707,0.760,0.527), r1 = r3 =
−r2 = 1, and t1 = 2t2 = −t3. Specifically,
four time instants of t1 in discrete time are
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Fig. 3. MSEs of the a5 estimate using the HAF,
PWVD and GHPF for a fifth-order PPS

(−N/8,−N/4, N/8, N/4), whereas the HAF
employs the lag set as (N/2P ) with P = 5
and the PWVD uses the following time sets:
(−3/8N,−1/4N, 0, 1/4N, 3/8N). Due to the
lag-coefficients, both GHPF and PWVD are
implemented with the eighth-order interpola-
tion, while the HAF is evaluated without in-
terpolation. As shown in Fig. 3, the SNR
thresholds of the PWVD and HAF are 11 and
16 dB, which are 6 and 11 dB higher than
that of the sixth-order GHPF. Marginally, the
MSEs of the GHPF are lower than the HAF
and PWVD, especially at the SNR below 11
dB.

VI. C��	���
��

The GHPF has been presented by introduc-
ing multiple time instants. Key properties of
the GHPF are given. Moreover, we have elab-
orated the cases of p = 3 and p = 4 to illus-
trate that the GHPF can employ lower order
nonlinearity than other considered transforms.
The statistical analysis via the first-order per-
turbation principle and the Monte-Carlo sim-
ulation present the advantages with respect to
conventional methods in terms of lower MSE
and smaller SNR threshold.

A""���
#

I. T
�����
	�� MSE �� �
� E��
 ����

The basic principle of the first-order pertur-
bation method is shown as follows [16]. As-



1066 TIME-FREQUENCY SIGNAL ANALYSIS

sume that gN(ω) is a complex function de-
pending on a real variable ω and on an integer
N , with a global maximum at ω = ω0. A ran-
dom function δgN(ω) moves the global max-
imum for δω. The first-order approximation
for δω is

δω ≈ −
β

α
(11)

where

α = 2�

{
gN(ω0)

∂2g∗N(ω0)

∂ω2
+

+
∂gN(ω0)

∂ω

∂g∗N(ω0)

∂ω

}
, (12)

and

β = 2�

{
gN(ω0)

∂δg∗N(ω0)

∂ω
+

+
∂gN(ω0)

∂ω
δg∗N(ω0)

}
, (13)

where �(·) represents the real part of (·). The
mean-square value of δω is given by

E{(δω)2} ≈
E{β2}

α2
, (14)

where E{·} denotes the expectation.

A. The Second-order PPS

It can be easy to obtain the asymptotic MSE
in the second-order case. For a given SNR de-
fined as A2/σ2 and N , the asymptotic MSE
for the a2 estimate minimizes at n = 0:

E{(δa2)
2} ≈

90(1 + 1
2SNR )

SNRN5
. (15)

B. The Third-order PPS

For the third-order PPS, two GHPF-based
methods are available: the CPF and general-
ized CPF. For the CPF, the point of global
maximum is ω0 = 2a2 + 6a3n and the asymp-
totic MSEs of the a3 and a2 estimates are [10]

E
{
(δa3)

2
}
=
2038

(
1 + 0.91

SNR

)

N7SNR
, (16)

E
{
(δa2)

2
}
=
90
(
1 + 0.5

SNR

)

N5SNR
. (17)

For the generalized CPF, the global maxi-
mum is ω0 = 12a3n and the asymptotic MSE
of the a3 estimate is [14]

E
{
(δa3)

2
}
=
1583

(
1 + 1.93

SNR

)

N7SNR
. (18)

Moreover, both estimators are asymptotically
unbiased [10], [14].

C. The Fourth-order PPS

For a fourth-order PPS, the fourth-order
GHPF in (8) is employed. For simplicity
of notation, let us define the following vari-
ables: s1 = s(n1 + m), s2 = s(n1 −m), s3 =
s(n2+m), s4 = s(n2−m), v1 = v(n1+m), v2 =
v(n1 −m), v3 = v(n2 + m) and v4 = v(n2 −
m). According to the first-order perturbation
method, we approximate a complex function
depending on variable ω and its perturbation
under assumption of high SNR:

gN(ω) =
N1∑

m=0

s1s2s
∗
3s
∗
4e
−jωm2

, (19)

δgN(ω) ≈
N1∑

m=0

zsv(n1, n2,m)e
−jωm2

, (20)

where N1 = N/2 − max {|n1|, |n2|}, and
zsv(n1, n2,m) approximates the interference
terms containing not more than two noise fac-
tors:

zsv(n1, n2,m) =

= s1s2s
∗
3v
∗
4 + s1s2s

∗
4v
∗
3 + s1s2v

∗
3v
∗
4 + s1s

∗
3s
∗
4v2

+s1s
∗
3v2v

∗
4 + s1s

∗
4v2v

∗
3 + s2s

∗
3s
∗
4v1

+s2s
∗
3v1v

∗
4 + s2s

∗
4v1v

∗
3 + s∗3s

∗
4v1v2. (21)

The functions gN(ω), δgN(ω), and their
derivatives, evaluated at the global maximum
ω0 = 6[a3(n1 − n2) + 2a4(n21 − n22)], are given
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by

gN(ω0) ≈ A4ϕN1,

∂gN(ω0)

∂ω
≈ −jA4ϕ

N3
1

3
,

∂2gN(ω0)

∂ω2
≈ −A4ϕ

N5
1

5
,

δgN(ω0) ≈
N1∑

m=0

zsv(n1, n2,m)e
−jω0m

2

,

∂δgN(ω0)

∂ω
≈ −j

N1∑

m=0

m2zsv(n1, n2,m)e
−jω0m

2

,

where ϕ = ej
∑

4

i=1 ai(n
i
1
−ni

2
). Using (12) and

(13), we derive

α ≈
−8A8N6

1

45
, (22)

β ≈ −2A4N1[
{Γ}], (23)

where

Γ ≈ ϕ
N1∑

m=0

(
m2 −

N2
1

3

)
z∗sv(n1, n2,m)e

jω0m
2

.

The first-order approximation of δω using
(11) is given as:

δω ≈ −
45 · 
{Γ}

4A4N5
1

. (24)

Its expectation, which is the first-order ap-
proximation of the estimate bias, is approxi-
mately zero.
With the following intermediate results,

E{ΓΓ∗} ≈ (4A6δ2 + 6A4δ4)
4N5

1

45
,

E{ΓΓ} ≈ (2A6δ2 +A4δ4)η1u(2N1 − d),

where d = n1 − n2 (assuming n1 > n2),
u(·) denotes the unit step function and η1 =
8
45N

5
1 −

4
9dN

4
1 +

2
9d
3N2

1 −
1
30d

5, the MSE can
be expressed by

E{(δω)2} ≈
45

8SNR ·N5
1

[(
4 +

6

SNR

)

−45

(
2 +

1

SNR

)
η1 · u(2N1 − d)

4N5
1

]

. (25)

Specifically, if n1 = −n2 with assumption
of n1 ≥ 0, we have N1 = N/2 − n1, d = 2n1
and ω0 = 12a3n1. Consequently, the MSE of
the a3 estimate can be derived if n1 = −n2
and scaled by 1/(12n1). The result is found to
minimizes at n1 ≈ 0.229N :

E{(δa3)
2} ≈

1582.5 + 2829.7
SNR

N7SNR
. (26)

Given the asymptotic MSE of the a3 esti-
mate, it is required to determine another time
pair to estimate the a4. The estimates of a3
and a4 can be rewritten in a compact form:

[a] = [ρ]−1 [ω] , (27)

where [a] = [a3, a4]
T , [ω] = [ω1, ω2]

T , and

[ρ] =
[
6(n1 − n2), 12(n

2
1 − n22);

6(n3 − n4), 12(n
2
3 − n24)

]
.

According to (27), the covariance matrix
of [a] can be determined as [10] Ca =(
[ρ]T [Cω ]

−1 [ρ]
)−1

, where Cω is the covari-

ance matrix for the generalized IFR estimate
vector ω defined as [Cω ]ij = E {δω1 · δω2} .
With a tedious and straightforward deduc-

tion similar as (25), E {δω1 · δω2} can be de-
termined given n3/N, n4/N , and SNR. Fur-
thermore, the variance of δa4 can be cor-
respondingly determined using above results.
For a given n1 = −n2 = 0.229N , minimum
variance of the a4 estimate is obtained for
n3 ≈ 0.276N and n4 ≈ −0.098N . In deriva-
tion we used MATLAB. The minimum MSE
of the a4 is

E{(δa4)
2} ≈

41424 + 87176
SNR

N9SNR
. (28)
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