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Integrated Cubic Phase Function for
Linear FM Signal Analysis

Pu Wang,Hongbin Li, Igor Djurović and Braham Himed

Abstract– In this paper, an integrated cu-
bic phase function (ICPF) is introduced for the
estimation and detection of linear frequency-
modulated (LFM) signals. The ICPF extends
the standard cubic phase function (CPF) to
handle cases involving low signal-to-noise ra-
tio (SNR) and multi-component LFM signals.
The asymptotic mean squared error (MSE) of
an ICPF-based estimator as well as the out-
put SNR of an ICPF-based detector are de-
rived in closed-form and verified by computer
simulation. Comparison with several existing
approaches is also included, which shows that
the ICPF serves as a good candidate for LFM
signal analysis.

I. I������	�
��

Frequency-modulated (FM) signals have
many applications in radar, sonar, communi-
cations, and seismic analysis [1—4]. One im-
portant class of such signals are linear FM
(LFM) signals frequently encountered in mod-
ern radar systems [3,4]. Due to target motion,
radar return signals can be modeled as LFM
signals whose parameters, e.g., initial frequen-
cies and chirp-rates, reveal useful information
about the target, i.e., its velocity and acceler-
ation.
Detection and parameter estimation of LFM

signals have received considerable attention
in recent years [5—17]. Early efforts were
focused on the analysis of single-component
LFM signal. The maximum likelihood esti-
mator (MLE), which is also called the gen-
eralized chirp transform (GCT) in [18], was
examined in [5]. Although statistically op-
timal, the MLE requires a two-dimensional
(2-D) joint maximization over the initial fre-
quency and chirp-rate parameters and is com-
putationally demanding. The MLE also re-
quires accurate initial parameter estimates to
avoid local maxima and a numerical search
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is performed by utilizing a Newton algorithm
[5]. Suboptimal techniques are therefore de-
sired for practical implementation. In [6], a
phase unwrapping algorithm followed by least-
square fitting was proposed, which is suitable
for single-component LFM signal estimation
at high signal-to-noise ratio (SNR). The dis-
crete polynomial transform (DPT) was em-
ployed to reduce the 2-D maximization prob-
lem in the MLE to a one-dimensional (1-D)
problem [7]. Time-frequency analysis was also
studied for LFM signal estimation. For exam-
ple, the Wigner-Ville distribution (WVD) can
be used to track the time-varying frequency of
the LFM signal. In general, these techniques
can produce good results for single-component
LFM signal at moderate to high SNR.
For multi-component LFM signals which

arise in many applications, a number of tech-
niques were proposed in [8—13, 16, 17]. The
Cramér-Rao bound (CRB) andMLE for multi-
component LFM signals were investigated in
[10] and [17]. A combined Radon-WVD trans-
form (RWT) was proposed to turn the task
of tracking straight lines in the time-frequency
domain into one of locating the maxima in a 2-
D domain [8,9], which is still computationally
complex due to the 2-D optimization. To re-
duce the 2-D problem into a 1-D problem, the
Radon-Ambiguity transform (RAT) was pro-
posed by exploiting the property that auto-
terms in the ambiguity function pass through
the origin of the ambiguity domain (also see
Section III) [13]. It was shown that, compared
with the RWT, the RAT provides comparable
performance with reduced computation, espe-
cially in cases where the chirp-rate is the only
parameter of interest. Nevertheless, the com-
putational complexity remains high since the
RAT requires an additional Cartesian-to-Polar
coordinate transformation and interpolations.
Recently, an instantaneous frequency rate
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(IFR) estimator, using the cubic phase func-
tion (CPF), was proposed for FM signal es-
timation [19]. The CPF-based approach is
asymptotically efficient for single-component
LFM signals [20]. However, for multi-
component LFM signals, the CPF exhibits
spurious peaks that cause an identifiability
problem. The more the LFM components, the
higher the occurrence probability of spurious
peaks [16]. Hence, there is a need to develop
robust techniques for the estimation and de-
tection of multi-component LFM signals.

In this paper, an integrated cubic phase
function (ICPF) is proposed for LFM sig-
nal estimation and detection. The ICPF ex-
ploits the property that the auto-terms in the
CPF are distributed along straight lines par-
allel to the time axis in the time-“frequency
rate” domain, and hence integrates over these
lines to enhance the auto-terms (see Section
II for an illustration of the auto-terms and
spurious peaks). It is shown that, compared
with the CPF, the ICPF can provide consider-
ably lower mean squared error (MSE) at low
SNR, lower SNR threshold, and better rejec-
tion of spurious peaks or cross-terms for multi-
component LFM signals. Additionally, the
ICPF is computationally more efficient than
the RWT since the former involves a 1-D op-
timization, as opposed to a 2-D optimization
used in the RWT. It is also more efficient than
the RAT since the ICPF does not require the
computationally expensive Cartesian-to-Polar
coordinate transformation. The performance
of the ICPF is examined in terms of the as-
ymptotic MSE and output SNR.

The paper is organized as follows. The prob-
lem formulation is described in Section II. Sec-
tion III introduces the definition of the ICPF.
An ICPF-based parameter estimation for the
LFM signal is proposed in Section IV. The as-
ymptotic MSE of the ICPF-based estimates is
also included in this Section. Section V pro-
poses an ICPF-based detector and its perfor-
mance is characterized in terms of the output
SNR and the SNR threshold. Numerical ex-
amples are provided in Section VI. Finally,
conclusions are drawn in Section VII.

II. P����� F������
��

Consider noise-contaminated observations
of a K-component LFM signal:

x(n) =
K∑

k=1

sk(n) + v(n)

=
K∑

k=1

Ak exp
{
j(ak,0 + ak,1n+ ak,2n

2)
}
+v(n),

n ∈ Z � {�� ,�� +�, · · · ,�� +N−�} ,
(1)

where Ak, ak,0, ak,1, and ak,2 denote the un-
known amplitude, phase parameter, frequency
parameter, and chirp-rate parameter for the
kth component, respectively, which are to be
estimated, n0 is the initial time index, N
is the number of temporal samples, and the
noise v(n) is assumed to be a complex white
Gaussian noise with zero-mean and variance
σ2. Historically, two cases have been consid-
ered for the initial time index n0, i.e., n0 = 0
and n0 = −(N − 1)/2 (assume N is odd), re-
spectively. Note that the two choices lead to
different LFM signals since the instantaneous
frequencies are different. Here, we do no fix
the value of n0 so that we can address both
cases. To avoid ambiguities arising from the
cyclic nature of spectral transforms of sampled
signals, it is assumed that [21,22]

|a1| ≤ π,

|a2| ≤ π/N. (2)

The CPF, which was introduced to extract
the IFR [19], is defined as

CPF(n,Ω) =
∑

m

x(n+m)x(n−m)e−jΩm
2

,

m ∈ L � {λ : n+ λ ∈ Z,n− λ ∈ Z} , (3)

where Ω represents the IFR index for the spec-
trum of the CPF. It is noted that the CPF con-
centrates the LFM signal energy along straight
lines Ω = 2ak,2 in the (n−Ω) (time-“frequency
rate”) domain. For comparison, Fig. 1 (a)-
(c) plot the Wigner-Ville distribution, Ambi-
guity Function and CPF, respectively, of a 2-
component LFM signal with parameters A1 =
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Fig. 1. The Wigner-Ville distribution (WVD), Ambiguity Function (AF) and Cubic Phase Function (CPF) of
a 2-component LFM signals.

A2 = 1, a1,0 = a2,0 = 0, a2,1 = −a1,1 = 0.1π,
a1,2 = −a2,2 = 0.4π/N , and N = 257.

The CPF is asymptotically efficient for pa-
rameter estimate of a single-component LFM
signal estimation [20]. However, an identi-
fiability problem occurs due to cross-terms
and spurious peaks when dealing with multi-
component LFM signals [16]. For example,
consider a 2-component LFM signal

x(n) = A1 exp{j(a1,0 + a1,1n+ a1,2n
2

︸ ︷︷ ︸
φ
1
(n)

)}

+A2 exp{j(a2,0 + a2,1n+ a2,2n
2

︸ ︷︷ ︸
φ
2
(n)

)}, (4)

where the observation noise is ignored for sim-
plicity. The bilinear transform in the CPF re-
sults in

x(t+m)x(t−m) =

= A21e
j2φ

1
(n)ej2a1,2m

2

+A22e
j2φ

2
(n)ej2a2,2m

2

︸ ︷︷ ︸
auto-terms

+A1A2e
j(φ

1
(n)+φ

2
(n))ej[(a1,2+a2,2)m

2+ρ(n)m]
︸ ︷︷ ︸

cross-term 1
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+A1A2e
j(φ

1
(n)+φ

2
(n))ej[(a1,2+a2,2)m

2−ρ(n)m]
︸ ︷︷ ︸

cross-term 2

,

(5)

where

ρ(n) = (a1,1 − a2,1) + 2 (a1,2 − a2,2)n. (6)

The auto-terms in (5) exhibit a quadratic
phase in m, whereas the cross-terms have
both linear and quadratic phases in m with
coefficient related to the time index n. By
applying the quadratic phase filtering, i.e.,∑
m(·)e

−jΩm2

, the auto-terms are localized
along two straight lines independent of the
time index, i.e., Ω = 2a1,2 and Ω = 2a2,2, while
the cross-terms are distributed along trajecto-
ries varying with time (see Fig. 1(c)).
However, when ρ(n) = 0 (see (6)), the two

hybrid phase terms in m reduce to a quadratic
phase terms in m, and (5) reduces to

x(n+m)x(n−m) =

= A21e
j2φ

1
(n)ej2a1,2m

2

+A22e
j2φ

2
(n)ej2a2,2m

2

︸ ︷︷ ︸
auto-terms

+2A1A2e
j(φ

1
(n)+φ

2
(n))ej(a1,2+a2,2)m

2

︸ ︷︷ ︸
spurious peak

. (7)

After the quadratic phase filtering, the two
cross-terms converge into a single peak at the
time index ns such that ρ(ns) = 0. For the 2-
component LFM signal in Fig. 1(c), ns ≈ 32.
Fig. 1(d) shows a slice of the CPF at ns = 32.
It is observed that the highest peak is the spu-
rious peak at Ω = a1,2 + a2,2. The situation
becomes worse in dense LFM signal environ-
ments. Specifically, for a K-component LFM
signal, there are (K2 −K) cross-terms which
may lead to up to (K2 −K)/2 spurious peaks
[16].

III. T�� I��������� C��
	 P����

F��	�
��

To address the above identifiability prob-
lem of the CPF, it is desirable to separate the
auto-terms from the cross-terms and spurious
peaks. By reviewing (5) and (7), we observe
that the auto-terms of the CPF are distrib-
uted over straight lines parallel to the time

axis, whereas the locations of the cross-terms
vary with time and the spurious peaks occur at
discrete locations that are subject to the con-
straint (6). This property motivates us to in-
tegrate along straight lines parallel to the time
to enhance the energy of the auto-terms. Once
the integral path matches the location of an
auto-term, the integral adds up the energy of
the auto-terms, thus forming a peak that can
be exploited to simplify the detection and es-
timation of LFM signals.
Specifically, the integral path for the CPF

is shown in Fig. 2 (c). For comparison, Fig. 2
includes the integral path for the RWT [8] and
RAT [13], respectively, where the dash line
shows the integral path that is uniquely de-
termined by the rotation angle θ, or the in-
tegral radius r, or both. In particular, the
RWT needs to integrate all straight lines in
the time-frequency domain by varying the val-
ues of both θ and r, while the RAT just inte-
grates straight lines passing through the origin
of the ambiguity domain (delay-“Doppler fre-
quency" domain, equivalently) by fixing r = 0
and varying θ.
In this paper, the integrated cubic phase

function (ICPF) is defined as follows

ICPF(Ω) =
∑

n

|CPF(n,Ω)|2

=
∑

n

∑

m

∑

l

x(n+m)x(n−m)

×x∗(n+ l)x∗(n− l)e−jΩ(m
2−l2), (8)

where m and l are drawn from the set L de-
fined in (3). By direct substitution of an LFM
signal into the above equation, the ICPF ex-
hibits a peak at Ω = 2a2. This implies that
the detection and parameter estimation of a
noisy LFM signal can be performed through a
1-D search of the IFR spectrum. For multi-
component LFM signals, the ICPF presents
multiple peaks for the auto-terms and sup-
presses the cross-terms and spurious peaks.
The ICPF for the 2-component LFM signal of
Fig. 1(c) is shown in Fig. 1(d) in dotted line.
It is observed that two distinct peaks corre-
sponding to the auto-terms are shown, and the
spurious peak is suppressed.
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Fig. 2. The integral path for the RWT, RAT and ICPF over different 2-D domains, where θ and r denote the
rotation angle and integral radius, respectively.

IV. A� ICPF-B���� P��������

E��
���
��

As shown in Fig. 1(d), the locations of the
spectrum peaks is proportional to the chirp-
rate parameters. Therefore, an ICPF-based
estimator for the LFM parameters is intro-
duced in the following.

A. Estimation Algorithm

By searching for peaks in the IFR spectrum,
the chirp-rate parameters for the LFM signal
can be estimated. For multi-component LFM
signals, we can estimate one chirp-rate para-
meter at a time. Once an estimate of ak,2
is obtained, a dechirping technique is used to
convert the observations x(n) to a sinusoidal
signal, and the remaining parameters for the
estimated LFM signal are obtained using the
following procedure:
1) Dechirp: xd(n) = x(n)e−jâk,2n

2

;
2) Estimate ak,1 by DFT:

âk,1 = argmax
ω
Xd(ω), (9)

where Xd(ω) =

∣∣∣∣
∑

n
xd(n)e

−jωn

∣∣∣∣
2

.

3) Estimate ak,0 and Ak by least-square: let
yd(n) = xd(n)e

−jâk,1n,

âk,0 = angle

[
1

N

∑

n

yd(n)

]

= 


{

log

[
1

N

∑

n

yd(n)

]}

, (10)

Âk =
1

N

∑

n

yd(n)e
−jâk,0 = e

�

{
log

[
1

N

∑

n

yd(n)

]}

,

(11)

where 
{·} and �{·} denote the imaginary
and real parts of {·}, respectively. The second
equality in (10) and (11) shown in [7] will be
used in Appendix I for performance analysis.
4) Cancel out the estimated LFM signal using

x(n) = x(n)− Âke
j(âk,0+âk,1n+âk,2n

2), set k =
k + 1, and repeat steps 1)-4) until k = K.
To further improve the estimates, a refin-

ing step is helpful to reduce the estimation
error caused by interference among different
components of the LFM signal. An approach
suggested in [11] is adopted here. Specifically,
when all parameter estimates are obtained us-
ing the above procedure, we re-estimate the
parameters of each LFM component by can-
celing out all LFM components other than the
one to be estimated and repeating (8) and
steps 1)-3).

B. Accuracy of The Estimation

In this section, the ICPF-based estimator is
examined in terms of its asymptotic bias and
MSE. In addition to the chirp-rate parameter
estimate, we also study the accuracy of the
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other parameter estimates, i.e., phase parame-
ter a0, frequency parameter a1 and amplitude
A, which are affected by the a2 estimate error
when the dechirping technique is used.
An exact analysis of the proposed ICPF-

based LFM signal estimator for the multi-
component case is difficult due to the interfer-
ence among different LFM components caused
by the non-linear operation of the ICPF. Note
that by estimating one component at a time
and interference cancelation (as described in
Section III), our estimator effectively converts
the problem into a series of single-component
LFM signal estimation. In the sequel, we
present an analysis for the single-component
case, which provides a lower bound on the
achievable performance of our estimator, sub-
ject to residual interference and imperfect can-
celation. Computer simulation shows that the
analysis is accurate even for relatively small
values of N .
We employ a first-order perturbation analy-

sis similar to the one of [7] for LFM signal es-
timation. This method is valid for high SNR
and for a large number of samples. A SNR
threshold effect usually occurs when the high
SNR assumption is not met, and the Monte-
Carlo simulation can be utilized to verify the
theoretical analysis. For the ICPF estimate of
the chirp-rate parameter, the first-order per-
turbation analysis is presented in Appendix
A-A. The results show that the a2 estimate
is asymptotically unbiased, i.e., E {δa2} = 0,
where δa2 denotes the estimation error, and
the corresponding asymptotic MSE is

E
{
(δa2)

2
}
=
90

N5

(
1.008

SNR
+

7.433

SNR2N

)
.

(12)

Once we have obtained the estimate of the
chirp-rate parameter, according to the estima-
tion procedure in Section III, the dechirping
technique is applied and the remaining para-
meters are estimated using (9), (10) and (11).
During this procedure, the error in the a2 es-
timate may propagate to the other estimates,
i.e., â1, â0 and Â. The error propagation ef-
fect is considered here. The derivation of the
asymptotic bias and MSE of these estimates is
presented in detail in Appendix A-B and A-C.

It is shown that all estimates are asymptot-
ically unbiased. Table I summarizes the as-
ymptotic MSE of these estimates and the cor-
responding CRBs, which shows that the ICPF-
based estimation is asymptotically efficient for
the a1 and A estimates, and approximately ef-
ficient for the a2 and a0 estimates at high SNR.
We note that similar observations, i.e., some

parameters associated with the LFM signal are
asymptotically efficient while the others are
not, have been made in other non-linear LFM
signal estimators (see, e.g., [7,23,24]). We also
note that the MSE of different parameters de-
creases with N in different orders. For exam-
ple, the MSE of â2 decreases as 1/N

5 while
the MSE of â1 decreases as 1/N3. Only the
highest order of N is counted in each case for
the asymptotic analysis.

V. T�� ICPF-B���� D���	�
��

LFM signal detection in the presence of
noise using the proposed ICPF is considered
in this section. Performance analysis of the
ICPF-based detector is examined in terms of
output SNR as well as the computational com-
plexity.

A. ICPF-Based Detector

Consider the following binary hypothesis
testing problem:

H0 : x(n) = v(n),

H1 : x(n) = s(n) + v(n)

= Aej(a0+a1n+a2n
2) + v(n),

(13)

where the LFM signal under H1 has unknown
parameters A, a0, a1, and a2, and v(n) is again
white Gaussian noise with mean zero and
known variance σ2. A well-known detector for
this problem is the generalized likelihood ra-
tio test (GLRT) which substitutes the MLE of
the unknown parameters under the alternative
hypothesis into the likelihood ratio test [7]

TGLR = (14)

=

∣∣∣∣∣
1

N

∑

n

x(n)e−jâ1 , M Ln−jâ2 , M L n
2

∣∣∣∣∣
H1

≷
H0

γGLR ,
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TABLE I

ASYMPTOTIC MSE AND CRB

The Asymptotic MSE CRB

estimates

â2
90

N5SNR

(
1.008 + 7.433

NSNR

)
90

N5SNR

â1
6

N3SNR

(
1 + 4

NSNR

)
6

N3SNR

â0
1.125
NSNR

(
1.004 + 4.133

NSNR

)
1.125
NSNR

Â σ2

2N
σ2

2N

where â1, ML and â2, ML denote the MLE of
the a1 and a2, respectively, and γGLR is the
detection threshold which is subject to a spec-
ified probability of false alarm. As stated in
Section I, the MLE of the a1 and a2 requires a
2-D grid search and is also subject to local con-
vergence problem. In [25], it is shown that the
GLRT is equivalent to the RWT-based detec-
tion, which computes 2-D polar line integrals
of the WVD

TRWT = max
{ω0,ρ}

∑

n

W (n, ω0 + ρn)
H1

≷
H0

γRWT ,

(15)

where W(n,ω) denotes the WVD of x(n) and
γRWT is the RWT-based test threshold.
In practice, it is often the case that the chirp

rate is the only parameter of interest e.g., de-
tection of a small fast moving missile launched
from a relatively slow moving aircraft [13]. In
these cases, the 2-D approach still needs to
perform a 2-D search. To simplify the 2-D de-
tection approach, the RAT-based test realizes
that the ambiguity function of x(n) is distrib-
uted along a line going through the origin of
the ambiguity plan and, therefore, computes
only a 1-D Polar line integral

TRAT = max
{ρ}

∑

τ

|Q(τ , ρτ)|
2
H1

≷
H0

γRAT , (16)

where Q(n, ω) denotes the ambiguity func-
tion of x(n) and γRAT is the RAT-based
test threshold. Although the RAT-based test
is a 1-D approach, the computation of the
RAT still remains high due to the inherent

Cartesian-to-Polar coordinate transformation
and the 2-D interpolation.
In the following, an LFM signal detector,

which is computationally more efficient than
the above detectors, is introduced by using the
proposed ICPF. By recalling that the ICPF
concentrates the LFM signal to a peak in the
IFR spectrum, we can decide the presence of
the LFM signal by searching for peaks in the
IFR spectrum exceeding a certain threshold.
An ICPF-based detector is thus introduced by
simply computing the ICPF and comparing
the highest peak with a threshold:

TICPF = max
{Ω}

∑

n

|CPF(n,Ω)|2
H1

≷
H0

γICPF ,

(17)

where γICPF is the corresponding detection
threshold. From (17), the ICPF-based test is
a 1-D approach, as opposed to the 2-D nature
of the GLRT/RWT-based test, and involves
only a 1-D Cartesian line integral, which does
not require the Cartesian-to-Polar coordinate
transformation and the 2-D interpolation of
the RAT-based test. As a result, the ICPF-
based test appears to be the most computa-
tionally efficient approach to detect an LFM
signal (see Section V-C for more details).

B. Performance Metrics For Detection

In general, the distribution of the test sta-
tistic TICPF cannot be obtained in closed form
due to the non-linear operation involved. For
practical applications, the histogram of TICPF
needs to be estimated from either experimen-
tal or simulated data to set the test threshold
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γICPF . Similarly, the probability of detection
cannot be analytically expressed due to the
non-linear transformation. Alternatively, the
performance in terms of the probability of de-
tection for a given probability of false alarm
is determined by Monte-Carlo simulations and
the results are shown in Section VI.
Another quantity used to characterize the

performance of a detector is the output SNR,
which is the ratio of the output signal power
to the output noise power. In the absence of
noise, i.e., x(n) = s(n), the test statistic of the
ICPF-based detector at the maximum point
Ω0 = 2a2 is denoted by ICPFs(Ω0). In the
presence of noise, x(n) = s(n) + v(n), the test
statistic at Ω0 is a random variable and is de-
noted as ICPFx(Ω0). As a result, the SNR
output is defined as [9]

SNRout =
|ICPFs(Ω0)|

2

var {ICPFx(Ω0)}
, (18)

where var {·} denotes the variance of its ar-
gument. Here, the input SNR is defined as
SNRin = A2/σ2. The output SNR for the
ICPF-based detector is derived in Appendix
B:

SNRout =

=
SNR3inN

3

8.1SNR2inN
2 + 70.5NSNRin + 192 + 36SNR

−1
in

.

(19)

At high input SNR, the above output SNR can
be approximated by SNRout = SNRinN/8.1.
For comparison, the output SNR of the
squared form of the RWT-based and RAT-
based detectors were shown in (47) of [13].

C. Computational Complexity

The computational complexity of the RWT-
based, RAT-based and ICPF-based detectors
is examined here. Let N be the number of
temporal samples and M the number of sam-
ples in the transformation domain, where M
is generally chosen larger than N to help lo-
cate the peak [8, 13]. The computational cost
of the three detectors is listed in Table II,
where RWT1 denotes the RWT with direct
implementation and RWT2 the one using a
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Fig. 3. MSE for the CPF and the ICPF versus SNR,
when N = 256.

dechirping-based implementation [8]. From
Table II, the ICPF is seen to be more efficient
than the RWT1 and the RAT since the ICPF
avoids the non-linear Cartesian-to-Polar coor-
dinate transformation and the 2-D interpola-
tion which is required in the RWT1 and RAT.
The RWT2 and ICPF require a similar number
of multiplications and additions. However, the
ICPF requires only a 1-D maximization, com-
pared with the 2-D maximization used by the
RWT2. Note that even if the chirp-rate pa-
rameter is the only parameter of interest, the
RWT2 still needs to search a 2-D (chirp-rate
and frequency parameters) domain to find the
peaks, while the ICPF implements only a 1-D
search over the chirp-rate parameter.

D. Threshold Analysis

Based on the output SNR, we can determine
the input SNR threshold for the ICPF-based
approach. In general, non-linear estimators of-
ten exhibit a threshold effect [26]. That is, at
an SNR below a certain threshold, the first-
order perturbation analysis, which is based on
the assumption of high SNR, is no longer accu-
rate. There are a number of ways to define the
SNR threshold (see [7, 23, 24]). From a detec-
tion point of view, we define the SNR threshold
as the input SNR which results in an output
SNR exceeding a preset threshold (e.g., about
13-14 dB for high-resolution radars [1]). With
the availability of the output SNR, the SNR
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TABLE II

C��#��
��� �$ C��#����
��� C��#�%
�&

Operation RWT1 RWT2 RAT ICPF
Multiplications C1 C2 C2 C2
Additions C1 C2 C2 C2
Coordinate C1 0 C1 0
Trans.

Interpolation Yes No Yes No
Maximization 2-D 2-D 1-D 1-D

C1 : O(MN
2).

C2 : O(MN log2N).
The computational complexity of the CPF is O(N log2N) [19].
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Fig. 4. MSE versus N for the a2 estimate, when
SNR = −2 dB.

threshold of the ICPF-based approach is given
by (assuming a preset threshold of 14 dB):

SNRICPFt = 10 log10

(
45

N

)
. (20)

For a given input SNR, the SNR threshold
for the ICPF-based approach decreases as the
number of samples increases. The theoretical
output SNR in (20) will be examined in a num-
ber of examples in Section VI.

VI. N����
	� E%��#��

In this section, numerical examples are pro-
vided to illutrate the performance of the pro-
posed methods and verify the theoretical re-
sults.

A. Single-Component LFM Signal Estimation

For a single-component LFM signal em-
bedded in white Gaussian noise, the ICPF-
based estimates have a lower SNR threshold
and smaller MSE than those of the CPF-
based estimates. To show this, a single-
component LFM signal with parameters A1 =
1, (a1,0, a1,1, a1,2) = (0, 0.2π, 0.22π/N), n0 =
−(N−1)/2, and N = 256 is considered. Fig. 3
shows the Monte-Carlo simulation results for
the a2 estimate using the CPF-based estima-
tor, ICPF-based estimator, and the MLE. In
simulations, the MLE is implemented in two
steps: a coarse 2-D grid search followed by
the Newton algorithm [5]. It is seen that
the simulated MSE conforms to the theoretical
MSE for the ICPF-based estimator. Moreover,
the ICPF-based estimate produces lower MSE
than the CPF-based estimates at low SNR, es-
pecially below −3 dB. The SNR threshold for
the ICPF-based estimator is around −8 dB,
as predicted by (20), which is 5 dB lower than
that of the CPF-based estimator around −3
dB. In addition, it is shown that the ICPF-
based estimator has almost identical perfor-
mance with the MLE above the ICPF-based
SNR threshold.

Fig. 4 shows the MSE of the a2 estimate
with the corresponding CRB [27] as the num-
ber of samplesN increases. The other parame-
ters are the same as in the previous example.
At SNR = −2 dB, the CPF-based estimator
works only when N is fairly large, while the
ICPF-based estimator and the MLE provides



1094 TIME-FREQUENCY SIGNAL ANALYSIS

lower MSE at smaller N . Moreover, it is seen
that the ICPF estimate of a2 is nearly efficient
for most values of N considered here, whereas
the CPF-based estimator has a noticeable gap
to the CRB even after the threshold effect dis-
appears.
With a similar performance as the MLE,

the ICPF-based estimator is beneficial from
the viewpoint of complexity. In implement-
ing the MLE, a brute force 2-D grid search
is required to locate the convergence region
around the optimum. As opposed to the 2-
D maximization and search of the MLE, the
ICPF-based estimator needs only a 1-D search
to estimate the chirp-rate parameter. In addi-
tion, as shown in the Figs. 3 and 4, once the
initial estimate of the MLE is out of the con-
vergence region, the MLE converges to local
maxima and achieves worse performance.

B. Multi-Component LFM Signals Estimation

A 2-component LFM signal embedded in
complex white Gaussian noise is considered.
The parameters of the 2-component LFM sig-
nal are A1 = A2 = 1, (a1,0, a1,1, a1,2) =
(0, 0.2π, 0.22π/N), (a2,0, a2,1, a2,2) = (0, 0.8π,
−0.31π/N), n0 = 0, and N = 64 [17]. To re-
duce estimation bias, as we mentioned in Sec-
tion III, a refining estimation step is performed
by canceling out all other components except
the one to be estimated. The MSE of the
ICPF-based estimates is seen to match well
by the theoretical MSE obtained in Section
IV. The MSE is also compared with the CRB
corresponding to the case of multi-component
LFM signal [10, 17]. The performance of the
multi-component MLE was shown in [17].
Fig. 5(a) shows the MSE for the first compo-

nent of the LFM signal, using the CPF-based
and ICPF-based estimators, respectively. It is
shown that the SNR threshold of the ICPF-
based estimate is around −1 dB, which agrees
with the analytical result in (20). At an SNR
above the threshold, the MSE for the ICPF-
based estimate is close to the theoretical MSE.
For the CPF-based estimation, the time index
is chosen at n = 36, where spurious peaks ap-
pear according to ρ(n) = 0 in (6). Compared
with the ICPF-based estimate, the CPF-based
estimate is worse due to interference, including

cross-terms and spurious peaks, even at high
SNR.
A more challenging case involving a 5-

component LFM signal with varying SNRs and
close chirp-rates is considered next. Specif-
ically, the ith component SNR is defined
as A2i /σ

2. The LFM signal parameters
are (A1, a1,0, a1,1, a1,2) = (1, 0, 0.2π, 0.4π/N),
(A2, a2,0, a2,1, a2,2) = (0.5, 0, 0.1π, 0.1π/N),
(A3, a3,0, a3,1, a3,2) = (0.25, 0, 0.4π, 0.3π/N),
(A4, a4,0, a4,1, a4,2) = (0.125, 0, 0.6π,−0.3π/N),
(A5, a5,0, a5,1, a5,2) = (0.0625, 0, 0.3π,−0.2π/N),
respectively.
Figs. 6(a) and 6(b) show the MSE of the

chirp-rate estimates for the first and second
LFM components, using the CPF-based, the
ICPF-based estimators, and the MLE, respec-
tively, together with the multi-component can-
celation procedure. The SNR shown is the first
component’s SNR. For the CPF-based estima-
tion, the time index is chosen at the middle
point of observations where no spurious peaks
appear. As seen from these figures, the ICPF-
based estimator achieves similar performance
as the MLE and outperforms the CPF-based
estimator. The latter approaches the CRB
only at high SNRs.

C. LFM Signal Detection

To compare the performance of the
GLRT/RWT-based, RAT-based and ICPF-
based detectors, an LFM signal is generated
using parameters a0 = 0.1π, a1 = 0.2π,
a2 = 0.1π/N and n0 = 0. Due to the non-
linear transformation, analytical expressions
of the probability of detection and probabil-
ity of false alarm cannot be derived in closed
form. Here, the simulated probability of de-
tection versus SNR for a given probability of
false alarm is shown in Fig. 7, where N = 64.
It is shown that the ICPF-based detector pro-
vides a close detection performance as the
GLRT/RWT-based detector, while the RAT-
based detector provides worse results which
may be attributed to the coordinate trans-
formation and Polar line integrals. Specifi-
cally, compared to the GLRT/RWT-based de-
tector, the ICPF-based detector shows about
0.5 dB performance loss, but saves in compu-
tational complexity from the 2-D searchto the
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Fig. 5. MSE for the a2 estimate of a 2-component LFM signal, (a) the first component; (b) the second
component, when N = 64.
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Fig. 6. MSE for the a2 estimate of a 5-component LFM signal with varying component SNRs, (a) the first
component; (b) the second component, when N = 64.

1-D search.

To verify the theoretical output SNR of the
ICPF-based detector, an LFM signal with the
same parameters as in the above example is
simulated, except that N = 256. Fig. 8 shows
the output SNR obtained from the Monte-
Carlo simulation for the three squared-form
detectors as well as their theoretical output
SNR. It is observed that the simulated output
SNR for the ICPF-based detector conforms to
the theoretical expression in (19). Moreover,

the detection performance for the three detec-
tors are almost the same in terms of the output
SNR.

VII. C��	��
��

The ICPF has been proposed for LFM sig-
nal analysis. For either single- or multi-
component LFM signals, the ICPF-based ap-
proach provides improved estimation accuracy
and better capability of rejecting the interfer-
ence than the CPF-based approach. Perfor-
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mance analysis has been carried out in terms
of the asymptotic bias and MSE for the esti-
mation problem and the output SNR and SNR
threshold for the detection problem. Compar-
ison with other approaches including the MLE
for the estimation and the GLRT for the de-
tection shows the ICPF provides a reliable and
computationally efficient tool for LFM signal
detection and estimation.

A##���
	��

I. A�&�#���
	 B
�� ��� MSE

A. Chirp-Rate Parameter Estimate

We follow a first-order perturbation analysis
as used in [7] for LFM signal estimation. Let
gN(Ω) be a noise-free function depending on Ω
and N . A random perturbation δgN(Ω) moves
the global maximum Ω0 of the gN(Ω) to the
point Ω0+δΩ. For the ICPF-based parameter
estimator, the random perturbation is due to
interference including cross-terms and noise-
related terms. To derive the MSE of the ICPF-
based estimates, let gN(Ω) and δgN(Ω) be

gN(Ω) =
∑

n

∑

m

∑

l

s1s2s
∗
3s
∗
4e
−jΩ(m2−l2),

(21)

δgN(Ω) ≈
∑

n

∑

m

∑

l

zvse
−jΩ(m2−l2), (22)
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Fig. 8. The output SNR for the squared RAT, RWT
and ICPF when N = 256.

where s1 = s(n + m), s2 = s(n − m), s3 =
s(n+ l), s4 = s(n− l) for notation simplicity,
and zvs includes the interference with no more
than two noise terms due to the high SNR as-
sumption:

zvs ≈ s1s2s
∗
3v
∗
4 + s1s2s

∗
4v
∗
3 + s1s

∗
3s
∗
4v2

+s2s
∗
3s
∗
4v1 + s1s2v

∗
3v
∗
4 + s1s

∗
3v2v

∗
4

+s1s
∗
4v2v

∗
3 + s2s

∗
3v1v

∗
4 + s2s

∗
4v1v

∗
3 + s

∗
3s
∗
4v1v2,
(23)

where {vi}
4
i=1 are defined similarly as {si}

4
i=1

from the noise samples.
By definition of the maximum, we have

∂ [gN(Ω) + δgN(Ω)]

∂Ω

∣∣∣
Ω0+δΩ

= 0. (24)

By using a first-order approximation, the
above equation can be approximated as:

∂gN(Ω0)

∂Ω
+
∂δgN(Ω0)

∂Ω
+
∂2gN(Ω0)

∂Ω2
δΩ ≈ 0.

(25)

The first term is zero since Ω0 maximizes
gN(Ω). Therefore, the estimation error δΩ can
be expressed as

δΩ = −
α

β
, (26)
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where α = ∂δgN (Ω0)
∂Ω and β = ∂2gN (Ω0)

∂Ω2 . By
using the derivatives of (21) and (22) in the
above equation, we have

α =
∑

n

∑

m

∑

l

(
m2 − l2

)
zvse

−jΩ0(m2−l2−π/2),

(27)

β ≈ −A4
N7

630
. (28)

Taking the expectation on (26) yields

E {δΩ} = −
E {α}

β
= 0, (29)

due to the fact that

E {α} ≈ −2A2σ2

{
∑

n

∑

m

∑

l

(
m2 − l2

)

[δ(m− l) + δ(m+ l)]} = 0, (30)

where δ(n) indicates the Kronecker delta func-
tion. Hence, the chirp-rate estimate is asymp-
totically unbiased as a first-order approxima-
tion.
According to (26), the variance of δΩ can be

expressed as

E
{
|δΩ|2

}
=
E {αα∗}

β2
. (31)

Based on the high-order moment properties of
the Gaussian random variable [28], we have the
following types of intermediate results

s1s2s
∗
3s
∗
5s
∗
6s7E {v

∗
4v8} e

jΩ0[(m2

2
−l2

2)−(m2−l2)]

= A6σ2δ (n− l − n2 + l2) ,

s1s2s
∗
5s
∗
6E {v

∗
3v
∗
4v7v8} e

jΩ0[(m2

2
−l2

2)−(m2−l2)]

= A4σ4δ (n+ l − n2 − l2) δ (n− l − n2 + l2)

+A4σ4δ (n+ l − n2 + l2) δ (n− l − n2 − l2) ,
(32)

where s5 = s(n2 +m2), s6 = s(n2 −m2), s7 =

s(n2 + l2), s8 = s(n2 − l2) and {vi}
8
i=5 are

similarly defined. Based on the above results

and (27), E {αα∗} can be computed as multi-
ple summations of the delta functions in (32)
and the results are approximated as

E {αα∗} ≈ A6σ2
(
8N9

8744

)
+

+A4σ4
(
4N8

1440
+
16N8

4033

)
. (33)

Using the above equation in (31), we have

E
{
|δΩ|2

}
≈

363

SNRN5
+

2677

SNR2N6
. (34)

Since Ω = 2a2, the mean-square value of δa2
is

E
{
(δa2)

2
}
=
90

N5

(
1.008

SNR
+

7.433

SNR2N

)
.

(35)

B. Frequency Parameter Estimate

The dechirped signal can be expressed as

xd (n) = x (n) e
−jâ2n

2

= x (n) e−j(a2+δa2)n
2

= [s (n) + v (n)] e−j(a2+δa2)n
2

=
[
Aej(a0+a1n) + v (n) e−ja2n

2
]
e−jδa2n

2

.

(36)

Since δa2 is of order N
−5/2 (see (35)) and

δa2n
2 is of order N−1/2 for all n, the following

approximation holds for large N [7]

e−jδa2n
2

≈ 1− j (δa2)n
2. (37)

By using (37), the dechirped signal can be ap-
proximated as

xd (n) =Ae
j(a0+a1n)+

[
v (n)

(
1− j (δa2)n

2
)
e−ja2n

2

−Aej(a0+a1n)j (δa2)n
2
]
. (38)

Once again, we apply a first-order perturba-
tion analysis to the a1 estimate, which is the
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frequency location maximizing the magnitude
squared DFT of xd(n):

gN (ω) =
∑

n

Aej(a0+a1n)e−jωn, (39)

δgN (ω) =
∑

n

[
v (n)

(
1− j (δa2)n

2
)
e−ja2n

2

−Aej(a0+a1n)j (δa2)n
2
]
e−jωn,

(40)

The functions gN (ω), δgN (ω), and their
derivatives at the point of the global maximum
ω0 = a1, are given by

gN (ω0) = Ae
ja0N,

∂gN (ω0)

∂ω
= −jAeja0

∑

n

n ≈ 0,

∂2gN (ω0)

∂ω2
=−Aeja0

∑

n

n2 ≈ −Aeja0
N3

12
,

(41)

δgN (ω0) =

=
∑

n

[
v (n)

(
1− j (δa2)n

2
)
e−j(a1n+a2n

2)

− jAeja0 (δa2)n
2
]

≈
∑

n

v (n)
(
1− j (δa2)n

2
)
e−j(a1n+a2n

2)

− jAeja0 (δa2)
N3

12
, (42)

∂δgN (ω0)

∂ω
=

= −j
∑

n

n
[
v (n)

(
1− j (δa2)n

2
)
e−j(a1n+a2n

2)

−Aeja0j (δa2)n
2
]

≈ −j
∑

n

nv (n)
(
1− j (δa2)n

2
)
e−j(a1n+a2n

2).

(43)

By utilizing the first-order analysis for the
complex sinusoid signal in [7] along with the

above equations, we obtain

α = 2�

{
gN (ω0)

∂2g∗N (ω0)

∂ω2

}

+ 2�

{
+
∂gN (ω0)

∂ω

∂g∗N (ω0)

∂ω

}

= −A2
N4

6
, (44)

β =2�

{
gN (ω0)

∂δg∗N (ω0)

∂ω

}

+ 2�

{
∂gN (ω0)

∂ω
δg∗N (ω0)

}

≈ 2N�

{

− j

(
∑

n

ns (n) v∗ (n)

+
∑

n

n3s (n) v∗ (n) j (δa2)

)}

=2N (
{η}+
{γ}) , (45)

where η and γ represent the first and second
summations in (45), respectively.
Substituting (26) into the above equations

yields the following results:

E
{
(
 [η])

2
}
≈
A2σ2N3

24
, (46)

E {η∗γ} =2E {ηγ} ≈ σ4, (47)

E {γγ} =0, (48)

E {γγ∗} ≈
σ4N2

3
. (49)

Hence,

E
{
β2
}
=4N2

[

E
(

 [η]2

)
+E (
 [η]
{γ})

+E
(

{γ}2

)]

≈4N2
[
A2σ2N3

24
+
σ4N2

6

]
. (50)

Finally, the asymptotic MSE of the a1 estimate
is

E
{
(δa1)

2
}
=
E
{
β2
}

α2

≈
6

N3SNR

(
1 +

4

NSNR

)
. (51)
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C. Phase and Amplitude Parameter Estimates

We now derive the asymptotic MSE of the
a0 and A estimates using the estimation pro-
cedure described in Section III. According to
(10) and (11), the dechirping technique is used
again. Similar to the approximation used in
(37), the dechirped signal can be expressed as

xd2 (n) =Ae
ja0
[
1 +A−2s∗ (n) v (n)

]

×
(
1− j (δa1)n− j (δa2)n

2
)

≈Aeja0
[
1 +A−2s∗ (n) v (n)

− j (δa1)n− j (δa2)n
2
]
. (52)

Let ϑ = 1
N

∑

n
xd2 . We have

log ϑ =log

{

Aeja0
[
1 +

1

A2N

∑

n

s∗ (n) v (n)

− j (δa2)
N2

12

]}

≈ logA+ ja0+

+
1

A2N

∑

n

s∗ (n) v (n)− j
δa2N

2

12
.

(53)

Using Â = e�{log(ϑ)} in (11) yields

log Â = logA+�

{
1

A2N

∑

n

s∗ (n) v (n)

}

.

(54)

Since log Â = log [A(1 + δA/A)] ≈ logA +
δA/A [7], the estimation error of A can be ex-
pressed as

δA ≈
1

NA
�

{
∑

n

s∗ (n) v (n)

}

. (55)

Then the MSE of the amplitude estimate is

E
{
(δA)2

}
=

1

N2A2
A2σ2N

2
=
σ2

2N
. (56)

Meanwhile, the estimate of a0 can be expressed
as

â0 = 
{log ϑ}

= a0 +
1

NA2



{
∑

n

s∗ (n) v (n)

}

−
δa2N

2

12
.

(57)

Therefore, the MSE of the a0 estimate is

E
{
(δa0)

2
}
≈

1

2NSNR
+

1

144
N4E

{
(δa2)

2
}
− 0

≈
1.13

NSNR
+

4.65

N2SNR2
. (58)

II. O��#�� SNR A��&�
�

With signal only, the test statistic in (17) at
the maximum point Ω0 = 2a2 is

ICPFs (Ω0) =

A4
∑

n

∑

m

∑

l

s1s2s
∗
3s
∗
4e
−jΩ0(m

2−l2)

=A4
N−1∑

n=0

∑

m

∑

l

1

=A4
N3 + 2N

3
≈ A4

N3

3
, (59)

where we consider the case where the observa-
tion time is n = 0, 1, · · · ,N−1 in order to com-
pare with the output SNR results of the RWT
and RAT [9,13],m and l are subject to the con-
straint accordingly, and the last approxima-
tion is valid for N � 1. The output SNR for
the case n = −(N−1)/1, · · · , 0, · · · , (N−1)/2
can be similarly obtained. When the sig-
nal is corrupted by noise, the expectation of
ICPFx (Ω0) can be expressed by exploiting the
moment properties of a complex Gaussian ran-
dom variable [28]

E {ICPFx(Ω0)}

=
∑

n

∑

m

∑

l

{
s1s2s

∗
3s
∗
4 + s1s

∗
3E {v2v

∗
4}

+ s1s
∗
4E {v2v

∗
3}+ s2s

∗
3E {v1v

∗
4}+ s2s

∗
4E {v1v

∗
3}

+E {v1v2v
∗
3v
∗
4}
}
e−jΩ0(m

2−l2). (60)
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Using the following results,

s1s2s
∗
3s
∗
4e
−jΩ0(m2−l2) = A4

s1s
∗
3E {v2v

∗
4} e

−jΩ0(m2−l2) = A2σ2δ (m− l)

s1s
∗
4E {v2v

∗
3} e

−jΩ0(m2−l2) = A2σ2δ (m+ l)

s2s
∗
3E {v1v

∗
4} e

−jΩ0(m2−l2) = A2σ2δ (m+ l)

s2s
∗
4E {v1v

∗
3} e

−jΩ0(m2−l2) = A2σ2δ (m− l)

E {v1v2v
∗
3v
∗
4} e

−jΩ0(m2−l2) = σ4 [δ (m− l)]

+ σ4 [δ (m+ l)] ,
(61)

we can express (60) as

E {ICPFx(Ω0)} =

=
∑

n

∑

m

∑

l

{
A4 +

(
2A2σ2 + σ4

)

× [δ(m+ l) + δ(m− l)]
}

≈A4
N3

3
+ 2A2σ2N2 + σ4N2. (62)

The second-order moment is

E
{
|ICPFx (Ω0)|

2
}

=
∑

n

∑

m

∑

l

∑

n2

∑

m2

∑

l2

E
{
(s1 + v1) (s2 + v2)

(s∗3 + v
∗
3) (s

∗
4 + v

∗
4) (s

∗
5 + v

∗
5) (s

∗
6 + v

∗
6)

(s7 + v7) (s8 + v8)
}
ejΩ0[(m

2

2
−l2

2)−(m2−l2)].

(63)

By using the properties shown in (61), (63) can
be simplified as multiple summations of delta
functions and the results are

E
{
|ICPFx (Ω0)|

2
}

=A8
N6

9
+A6σ2

(
67

30
N5

)
+

+A4σ4
(
2

3
N5 +

71

6
N4

)

+A2σ6
(
4N4 +

64

3
N3

)
+ σ8

(
N4 + 4N3

)
.

(64)

Combining (60) and (64), the variance can be

obtained as

var {ICPFx(Ω0)} =
9

10
A6σ2N5 +

47

6
A4σ4N4

+
64

3
A2σ6N3 + 4σ8N3.

(65)

Substituting (59) and (65) in (18) yields (19).
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