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Abstract– The high-order phase function
(HPF) is a useful tool to estimate the instan-
taneous frequency rate (IFR) of a signal with
a polynomial phase. In this paper, the as-
ymptotic bias and variance of the IFR esti-
mate using the HPF are derived in closed-forms
for the polynomial phase signal with an arbi-
trary order. The Cramér-Rao bounds (CRBs)
for IFR estimation, in both exact and asymp-
totic forms, are obtained and compared with
the asymptotic mean-square error (MSE) of
the HPF-based IFR estimator. Simulations are
provided to verify our theoretical results.

I. I������	�
��

Polynomial phase structure has been widely
used to model nonstationary signals appearing
in radar, sonar, communications, and passive
acoustic applications [1, 2]. A pth-order poly-
nomial phase signal (PPS) is given by

s(t) = Ae{jφ(t)} = Ae

{
j

p∑

i=0

ait
i

}

, (1)

where A is the constant amplitude, φ(t) is the
instantaneous phase (IP) and {ai}pi=0 are un-
known phase parameters, respectively. While
the instantaneous frequency (IF) is the first
derivative of the IP, the instantaneous fre-
quency rate (IFR) is defined as the second
derivative of the IP [3], i.e.,

Ω(t) =
d2φ(t)

dt2
=

p∑

i=2

i(i− 1)aiti−2, (2)

where Ω(t) denotes the IFR of the signal in
(1). When p = 2, i.e., a linear FM signal,
the IFR reduces to the well known chirp-rate,
i.e., Ω(t) = 2a2 [4]. In practice, the IFR could
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reveal the rate-of-change of the velocity, i.e.,
acceleration, of a moving target.

IFR estimation is a frequently encountered
task in radar applications. In synthetic aper-
ture radar (SAR), echoes are often modeled by
incorporating time-varying acceleration [5, 6].
Target acceleration was shown to affect the
SAR ground moving-target indication in [7]
and [8], where compensation techniques were
also examined. IFR can be estimated by using
a polynomial Fourier transform [9]. The re-
sulting estimator, however, requires a compu-
tationally intensive multi-dimensional search
[9]. This motivated later efforts to search for
more efficient solutions. A notable example is
the cubic phase function (CPF) based estima-
tor [3], which requires only a one-dimensional
search. The CPF was originally introduced
to estimate the IFR of a quadratic FM sig-
nal. Extension of the CPF led to the high-
order phase function (HPF) [10], which can
be used to estimate the IFR of a high-order
PPS. The asymptotic performance of the CPF-
based IFR estimate for the quadratic FM sig-
nal was derived in [10]. However, similar
analysis for the HPF-based IFR estimator of a
general PPS is unavailable.

In this paper, a unified analysis of the HPF-
based IFR estimator for a PPS with an ar-
bitrary order is presented. The asymptotic
bias and variance of the HPF-based IFR esti-
mate are derived in closed-form at high Sig-
nal to Noise Ratio (SNR) by using a first-
order perturbation analysis. It is shown that
the HPF-based IFR estimator is asymptoti-
cally unbiased and its asymptotic variance is
a function of the SNR, time and the HPF co-
efficients (see Section III for an explanation).
Our results are consistent with that derived in
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[3] and [10] for the case of p = 3. Further-
more, since multiple forms of the HPF exist
for the analysis of a given PPS, our results can
be used to predict their performance and pro-
vide guideline on how to choose a proper HPF
for the problem at hand. On the other hand,
to establish a performance benchmark for all
(asymptotically) unbiased IFR estimators, the
Cramér-Rao bounds (CRBs) for IFR estima-
tion, in both exact and asymptotic forms, are
presented in closed-form. The CRB shows
a dependence on the PPS order, the num-
ber of samples, time and SNR. Performance
comparison between the HPF-based estima-
tors and the high-order ambiguity function
(HAF)-based method [11] is also presented.
The rest of this paper is organized as fol-

lows. The HPF is first reviewed in Section II.
Section III outlines the derived expressions for
the asymptotic bias and mean-squared error
(MSE). The CRB for IFR estimation is also
derived. Section IV provides simulation results
to verify our theoretical analysis. Finally, con-
clusions are provided in Section V.

II. H
�
-����� P
��� F��	�
��

For a pth-order PPS defined in (1), the HPF,
specified by Hq(t, ω), was defined by using a
high-order nonlinear kernel Kq(t, τ) as [10]

Kq(t, τ) =

q/2∏

l=1

[s(t+ dlτ)s(t− dlτ)]
(rl) ,

Hq(t, ω) =

+∞∫

−∞

Kq(t, τ)e
−jωτ2dτ, (3)

where d �
{
d1,d2, · · · ,dq/2

}
denotes a set of

lag-coefficients, r �
{
r1, r2, · · · , rq/2

}
is used

to impose complex conjugation if ri = 1, and
ω denotes the index in the IFR domain. From
(3), it is seen that the HPF has a qth-order
nonlinearity due to the q/2 consecutive bilin-
ear transformations. If q = 2, d1 = 1 and
r1 = 1, the H2(t, ω) reduces to the CPF in
[3].
In the noisy-free case, assume the kernel is

selected such that

Kq(t, τ) = Aqejτ
2Ω(t)+jς , (4)

where ς is a term independent of τ , the squared
magnitude of the HPF is centered on the IFR
due to the match filtering in (3). To meet (4),
the HPF coefficients should satisfy [12]

q/2∑

l=1

rld
2
l = 1,

q/2∑

l=1

rld
m
l =0, for even values of m: 4 ≤m ≤ p.

(5)

Therefore, for any given time, e.g., t = ts, the
IFR Ω(ts) can be estimated by searching for

the maximum of |Hq(ts, ω)|2 over ω.
For a given PPS, there may exist more than

one real solution to the set of equations in (5).
For example of a quadratic FM signal (p = 3),
we have at least two choices satisfying (5)

H2(t, ω) =

+∞∫

−∞

s(t+ τ)s(t− τ)e−jωτ
2

dτ, (6)

H4(t, ω) =

=

+∞∫

−∞

s2

(

t+

√
2

2
τ

)

s2

(

t−
√
2

2
τ

)

e−jωτ
2

dτ.

(7)

One immediate question arising from the
above discussion is the choice of the solution
for the problem at hand. A natural choice
to select a proper form of HPF is the perfor-
mance of the estimator including the bias, the
MSE, and the SNR threshold, which will be
discussed later.

III. P��������	� �� �
� HPF-�����

IFR E��
�����

Consider a noise-corrupted PPS

x(n) = Ae
j

p∑

i=0

ain
i

+ v(n), n = 0, 1, ..., N − 1,
(8)

where x(n) denotes the nth sample of the
noisy observations, v(n) is an additive com-
plex white Gaussian noise with zero mean and
variance σ2, and N is the number of samples.
It should be noted that, while condition (5)
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ensures the unbiased IFR estimate in the ab-
sence of noise, the unbiased property does not
automatically carry over the case with obser-
vation noise.
The discrete HPF (c.f. (3)) for the noisy

PPS can be decoupled to

Hx(n, ω) =
M∑

m=−M

[Ks(n,m) +Kv(n,m)] e
−jωm2

,

(9)

where Ks(n,m) and Kv(n,m) represent the
signal and noise components, respectively,
2M + 1 is the length of a two-sided window.
For simplicity, we use ω in both continuous
and discrete cases.
Appendix A shows that, at high SNR, the

signal componentKs(n,m) and the noise com-
ponent Kv(n,m) can be approximated by ig-
noring the high-order noise terms [13]

Ks (n,m) =
L∏

i=1

[s(n+ dim)s(n− dim)]
(ri)ki ,

Kv (n,m) ≈Ks (n,m)

(
L∑

i=1

ki

[
v(ri)(n+ dim)

s(ri)(n+ dim)

+
v(ri)(n− dim)

s(ri)(n− dim)

])
. (10)

where L is the number of distinct HPF coeffi-
cient pairs (di, ri), ki is the multiplicity of the

ith HPF coefficient pair (di, ri), and
∑L
i=1 ki =

q/2. From (10), it is seen that Ks (n,m) con-
tains only signal-related terms and therefore
is deterministic, whereas Kv (n,m) includes
interacting signal-and-noise terms which are
random. More specifically, Kv(n,m) acts like
a random perturbation which moves the max-
imum of the HPF, denoted as ω0 = Ω(n), by a
random amount δω, which results in a deviated
IFR estimate ω̂ = ω0 + δω. The performance
analysis is to quantify the first- and second-
order statistics, i.e., the bias and variance, of
the random error δω. A first-order perturba-
tion analysis [14], which is repeated in Appen-
dix B, is utilized. A detailed analysis of the
random estimate error δω using the first-order
perturbation is presented in Appendix C, and
the results are summarized as follows.

A. Asymptotic Bias and Variance of the HPF-

based Estimator

Proposition 1 : For a pth-order noisy PPS,
the asymptotic bias and variance of the HPF-
based IFR estimator at high SNR are given
by:

E {δω} = 0,

E
{
(δω)

2
}
=

=

90
L∑

i=1
ki
2

SNRM (M + 1) (2M + 3) (4M2 − 1) ,
(11)

where the SNR is defined as A2/σ2.
From Proposition 1, the HPF-based IFR es-

timator is asymptotically unbiased, and the
variance of the estimation error, which is also
the MSE in this case, is independent of the
phase parameter {ai}pi=0. On one hand, the
MSE is proportional to the sum of the squared
multiplicity of the HPF coefficients. On the
other hand, the asymptotic MSE is inversely
proportional to the SNR and M5. The larger
the window length, the lower the MSE. As
such, for a given SNR and time n, the min-
imum MSE is achieved by using the maximum
window length, which leads to the following
proposition.

Proposition 2 : For a fixed SNR and N , the
minimum MSE of the HPF-based IFR estima-
tor at time n is given by

E
{
(δω)2

}
≈

45
L∑

i=1
ki
2

4SNRM5
max(n,N,d)

, (12)

where the maximum window length at time n
is given by

Mmax(n,N,d) =

⌊
min {n,N− 1− n}

max {d}

⌋
,

(13)

with ⌊·⌋ denotes the floor function, since 0 ≤
n±max {d}Mmax ≤ N −1. From Proposition

2, the minimum MSE of the IFR estimator at
time n is determined by the SNR, the number
of samples, time instant, and the HPF coeffi-
cients d. Note that the MSE is also a function
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of the HPF order q through L and ki since∑L
i=1 ki = q/2, and is further dependent on

the PPS order p due to (5).

B. Cramér-Rao Bounds for IFR Estimation

The achievable accuracy of any (asymptoti-
cally) unbiased IFR estimator can be identified
by means of the CRB. To this end, we derive
the CRBs for IFR estimation in both exact
and asymptotic forms.

B.1 Exact CRB

The CRB for estimating the phase parame-
ter a � [a0,a1, · · · ,ap]T was carried out in
[15]. Of interest to us is the CRB for IFR esti-
mation, not for the phase parameter a. Note,
however, that the IFR of the PPS is a func-
tion of a and time n as Ω(n) = aTt, where

t �
[
0,0,2, · · · ,p (p− 1)np−2

]T
. By ap-

plying the transformation rule for the CRB
(see Appendix 3B of [16]) and noting that
the above function is a (p + 1)-dimensional-
to-scalar transformation, we have

var (ω̂) ≥ σ2

2A2
tH−1

p+1t
T. (14)

where Hp+1 is defined in (18) of [15]. With
results on the inverse of Hp+1 (see (22)-(33)
of [15]), (14) can further be expressed

var (ω̂) ≥ σ2

2A2N
tE−1p+1Bp+1E

−1
p+1t

T, (15)

where Ep+1 and Bp+1 are defined in (24) and
(32) of [15]. From (15), it is not clear how the
coefficients (e.g., p, n,N) affect the CRB. In
the following, we show how the CRB depends
on these coefficients under the assumption of
large samples.

B.2 Asymptotic CRB for Large N

For large N (i.e., N ≫ p), noting that

1

ι+ κ+ 1
≫ (p+ 1)2

2N(ι+ 1)(κ+ 1)
− 1

2N
,

2 ≤ ι, κ ≤ p,N ≫ p,

in the expression of Bp+1, we derive an as-
ymptotic CRB.

Proposition 3 : For a noisy pth-order PPS,
the asymptotic variance of any unbiased IFR
estimator is bounded by

var (ω̂) ≥ 1

2SNR

2p−4∑

k=0

Cp(k)
nk

N (k+5)
, (16)

where

Cp(k) =
∑

2 ≤ ι, κ ≤ p
ι+ κ− 4 = k

cp(ι, κ) (17)

with

cp(ι, κ) =

=(−1)ι+κ ικ(ι− 1)(κ− 1)(p+ ι+ 1)(p+ κ+ 1)

ι+ κ+ 1

×
(

p+ ι
ι

)(
p
ι

)(
p+ κ
κ

)(
p
κ

)
.

Remark: The above CRB is for the asym-
metric sampling case n = 0, · · · , N − 1. It can
be extended to the symmetric sampling case
n = −(N − 1)/2, · · · , (N − 1)/2. According to
[17], it can be shown that the asymptotic CRB
for IFR estimation in the asymmetric sampling
case is

var (ω̂) ≥ 1

2SNR

2p−4∑

k=0

Cp(k)

(
n+ N−1

2

)k

N(k+5)
.

(18)

Note that the coefficients Cp(k) are a func-
tion of p only and hence can be computed in
advance for any given PPS order. Table I
shows the values of Cp(k) for the PPS with
order p ≤ 4. Moreover, the asymptotic CRB
in (16) is a (2p − 4)th-order polynomial in n
with coefficient Cp(k)/

(
2SNRNk+5

)
for the

kth item in n. This polynomial phenomenon
is analogous to the polynomial structure of the
IFR in n (see (2)) where the kth term nk is
associated with ak+2 whose CRB is inversely
proportional to the SNR and N2k+5.
The accuracy of approximating (15) with

(16) is examined at the middle point of obser-
vations in the cases of p = 4 and p = 6 when
SNR = 10 dB in Figure 1. It is seen that our
large sample approximation works fine even for
small N . For N ≥ 100, the approximation
makes no difference between the two CRBs.
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Fig. 1. Exact and asymptotic CRBs versus the number of samples N .

TABLE I

VALUES OF Cp(k) FOR THE PPS WITH ORDER p ≤ 4

p k = 0 k = 1 k = 2 k = 3 k = 4

2 720

3 25920 -100800 100800

4 317520 -2822400 9172800 -12700800 6350400

C. Examples

In general, the above results on the variance
of the HPF-based IFR estimate and the CRB
for IFR estimation are valid for any PPS with
an order p. Nevertheless, links to two simple
cases of p = 2 and p = 3 are useful to illustrate
our analytical results.
Linear FM Signal (p = 2): The IFR reduces

to Ω(n) = 2a2, and the CRB for IFR estima-
tion is

CRB {Ω} = 360

N5SNR
. (19)

Using the transformation rule of the CRB [16,
Section 3.6], this result is effectively the same
as the CRB for a2 of the linear FM signal (see
(33) of [14]) by a factor of 4 since Ω(n) = 2a2.

When H2 in (6) is used, the MSE of the IFR
estimate in (11) at the middle point from (12)
is

E
{
(δω)2

}
≈ 360

N5SNR
, (20)

which is consistent with the MSE of the H2-
based a2 estimate at the middle point by a
factor of 4 [12, Appendix-A].
Quadratic FM Signal (p = 3): From (16),

the CRB for IFR estimation is a function of n,
SNR, and N :

CRB {Ω} = 12960

N5SNR
− 50400

N6SNR
n+

50400

N7SNR
n2.

(21)

As discussed above, the CRB is a second-order
polynomial in n.
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As shown in [10],H2 can be used to estimate
the IFR of the quadratic FM signal. In this
case, the MSE in (11) reduces to

E
{
(δω)2

}
≈ 45

4M5SNR
. (22)

To connect our results to [10], we notice that
the maximum window length of H2 at time
n is Mmax = N/2 − |n| for the case −(N −
1)/2 ≤ n ±m ≤ (N − 1)/2, as considered in
[10]. Therefore, the minimum MSE of the H2-
based IFR estimate at n is

E
{
(δω)

2
}
≈ 45

4
(
N
2 − |n|

)5
SNR

, (23)

which coincides with (40) of [10] at high SNR.

IV. S
��"��
�� R���"��

In the following, we consider two numeri-
cal examples to verify our analytical results.
All simulated results are based on 300 Monte-
Carlo simulations. For the HPF-based meth-
ods, interpolation is used whenever the lag-
coefficient is not an integer.

A. Quadratic FM Signal

For a quadratic FM signal, both H2 and H4

can be applied to estimate the IFR. Accord-
ing to Proposition 1, the asymptotic MSEs for
both estimates are

E
{
(δω)2

}

H2

≈ 45

4M5SNR
,

E
{
(δω)2

}

H4

≈ 45

M5SNR
.

To verify our analytical results, a quadratic
FM signal with parameters A = 1,
(a0, a1, a2, a3) =

(
1, π/8, 5× 10−3, 10−5

)
, and

N = 129 is generated. Fig. 2 shows the sim-
ulated MSE at n = 64 (i.e., the middle point
of observations) by using H2, H4 and the HAF
when the SNR varies from -5 dB to 15 dB. The
length of window is M = 64. From this figure,
we have the following observations:

1. At high SNR, the simulated MSEs for both
H2 andH4 agree with their own theoretical re-
sults. Note that the theoretical and simulated
MSEs of theH2 attain the CRB when the SNR

is above 1 dB. The MSEs of the H4-based esti-
mate are about four times higher than the H2-
based and HAF-based MSEs when the SNR is
greater than 6 dB.
2. The H4 and the HAF show a higher SNR
threshold than the H2 because the former two
involve a fourth-order nonlinearity while the
H2-based method has only a second-order non-
linearity. In this example, the SNR threshold
for theH4 and the HAF is about 6 dB, whereas
the H2 exhibits a threshold at around 2 dB.
Note that nonlinear estimators usually exhibit
a threshold effect (see Chapter 7 of [16]).

The variation of the MSE as a function of n
is shown in Fig. 3 when N = 129 and SNR =
10 dB. At each time point n, we use the win-
dow length M = min {n,N − 1− n}. Both
the MSE and CRB are seen to be symmetric
with respect to the middle point n = 64. The
numerical results are seen to agree with the
theoretical results. Again, the H2-based esti-
mator shows lower MSEs than those of theH4-
based estimator. In general, for a quadratic
FM signal, the H2-based estimator provides
the best performance in terms of MSEs and
the SNR threshold among various HPFs.

B. Cubic FM Signal

For a cubic FM signal (p = 4), the min-
imum HPF order is q = 6 due to (5). By
minimizing the theoretical MSE in Proposi-
tion 2 with subject to (5), we can numeri-
cally determine the sixth-order HPF with the
minimum MSE as H6 with r = (1,1,−1)
and d = (1.2646,1.3544,1.5600). For
comparison purposes, we also consider two
other HPFs: (1) H′

6 with r = (1,1,−1)
and d = (1.0875,1.9333,1.9800), and (2)
H8 with r = (1,1,−1,−1) and d =
(1.4759,2.9432,2.9800,0.9800). Their the-
oretical MSEs can easily be obtained from
Proposition 2 and will be compared in the fol-
lowing simulations.
To verify our analytical results, a cu-

bic FM signal with parameters A = 1,
(a0, a1, a2, a3, a4) =(
1, π/8, 3× 10−4, 2.5× 10−7, 10−10

)
, and N =

129 is generated. Fig. 4 shows the theoreti-
cal and simulated MSEs for the three HPFs
and the HAF as a function of the SNR when
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Fig. 2. MSEs of the H2, H4 and the HAF versus SNR for a quadratic FM signal.
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the IFR is estimated at n = 64. The results
verify again that our theoretical MSEs agree
well with the simulations for the H6, H

′
6 and

H8-based methods at high SNR. We note that
the H6-based estimator provides the minimum
MSE among the three. Moreover, the two
sixth-order HPFH6 andH

′
6 show a lower SNR

threshold than that of the eighth-order HPF
H8. Comparison with the HAF-based estima-
tor shows that the HAF-based estimator can
generate good performance at SNRs above 11
dB, but its SNR threshold is higher than the
HPF-based methods.
Fig. 5 plots the MSEs of the three HPF-

based estimators with the maximum window
length Mmax in (13) versus time n when
SNR = 15 dB. It is observed that, even at the
middle point, the MSE of the three IFR esti-
mators cannot reach the CRB. Once again, the
simulated MSEs match the theoretical results.
From Figs. 4 and 5, it is seen that the best
HPF for the cubic FM signal is H6 in terms of
either the MSEs or the SNR threshold.

V. C��	"��
��

This paper has presented a generalized per-
formance analysis of the HPF-based IFR esti-
mators in terms of their asymptotic bias and
MSE for the estimation of polynomial phase
signals with an arbitrary order. The results
show that the MSE of the IFR estimate is
proportional to the sum of squared multiplic-
ity of the HPF coefficients, and inversely pro-
portional to the SNR and the window length.
Both exact and asymptotic CRBs for the IFR
estimation have been established. Two exam-
ples have been provided to show that our re-
sults are consistent with the existing results for
the cases of p = 2 and p = 3. Numerical ex-
amples have been given to verify the analytical
results.

A$$���
	��

I. A$$��%
���
�� �� Kx(n,m) �� H
�

SNR

By applying the HPF to the above noisy
PPS signal, the nonlinear kernel of the HPF
in discrete form can be expressed as

Kx (n,m) =

=
L∏

i=1

[s(n+ dim) + v(n+ dim)]
(ri)ki

× [s(n− dim) + v(n− dim)]
(ri)ki , (24)

where L is the number of different coefficients
di and ri, ki, is the multiplicity of the coeffi-
cients di and ri, and

∑L
i=1 ki = q/2.

Using the binomial expansion

[s(n+ dim) + v(n+ dim)]
(ri)ki

=
ki∑

ℓ=0

(
ki
ℓ

)
v(ri)ℓ(n+ dim)s

(ri)[ki−ℓ](n+ dim)

(25)

and a similar expansion for

[s(n− dim) + v(n− dim)]
(ri)ki , we can rewrite

(24) as follows

Kx (n,m) =

=
L∏

i=1

s(ri)ki(n+ dim)s
(ri)ki(n− dim)

×
[

ki∑

ℓ1=0

ki∑

ℓ2=0

(
ki
ℓ1

)(
ki
ℓ2

)
vℓ1(n+ dim)

vℓ2(n− dim)s
−ℓ1(n+ dim)s

−ℓ2(n− dim)
](ri)

≈
L∏

i=1

s(ri)ki(n+ dim)s
(ri)ki(n− dim)

×
[
1 + kiv(n− dim)s

−1(n− dim)

+ kiv(n+ dim)s
−1(n+ dim)

](ri)
, (26)

where the approximation is due to the high
SNR assumption which allows us to ignore the
high-order noise terms. Decomposing (26) into
signal-only terms and noise-related terms, we
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have

Kx (n,m) ≈

≈
{

L∏

i=1

[
ski(t+ diτ)s

ki(t− diτ)
](ri)

}

×
{

1 +
L∑

i=1

ki
[
v(n− dim)s

−1(n− dim)

+v(n+ dim)s
−1(n+ dim)

](ri)}

= Ks (n,m) +Ks (n,m)

×
L∑

i=1

ki
[
v(n+ dim)s

−1(n+ dim)

+v(n− dim)s
−1(n− dim)

](ri)
,

which is (10).

II. F
���-O���� P��������
�� M��
��

The basic principle of the first-order permu-
tation method is shown as follows. Assume
that gN(ω) is a complex function depending
on a real variable ω and on an integer N . The
squared-magnitude of gN(ω) has a global max-
imum at ω = ω0. Suppose a random function
δgN(ω) moves the global maximum of gN(ω)
from the nominal ω0 by δω, the first-order ap-
proximation for δω is δω ≈ −β/α [14], where

α = 2ℜ
{
gN(ω0)

∂2g∗N(ω0)

∂ω2

}
+

+ 2ℜ
{
∂gN(ω0)

∂ω

∂g∗N(ω0)

∂ω

}
, (27)

and

β = 2ℜ
{
gN(ω0)

∂δg∗N(ω0)

∂ω

}
+

+ 2ℜ
{
∂gN(ω0)

∂ω
δg∗N(ω0)

}
, (28)

where ℜ(·) represents the real part of (·). The
mean-square value of δω is given by

E{(δω)2} ≈ E{β2}
α2

, (29)

where E{·} denotes the expectation.

III. A�(�$���
	 A��"(�
� �� �
�

HPF-����� E��
�����

The HPF of a noise-free PPS s(n) is

Hs(n, ω) =
M∑

m=−M

Ks(n,m)e
−jωm2

. (30)

By choosing the HPF coefficients according to
Proposition 1, the HPF attains the maximum
at ω0 = Ω(n).
To derive its asymptotic MSE of the HPF-

based IFR estimate, we first determine the
complex function gN (ω) and its random per-
turbation δgN (ω) for a specific n. Accord-
ing to the results in Appendix A, gN (ω) and
δgN (ω) can be expressed as

gN (ω) =
M∑

m=−M

Ks (n,m)e
−jωm2

,

δgN (ω) =
M∑

m=−M

Kv (n,m)e
−jωm2

, (31)

where Kv (n,m) is given in (10). For simplic-
ity, we drop the index n in the above functions.
Since

Ks (n,m) = Aqej(ω0m
2+ς), (32)

the functions gN(ω), δgN(ω), and their deriva-
tives, evaluated at the global maximum ω0 =
Ω(n), are given by

gN (ω0) =A
qejς (2M + 1)

∂gN (ω0)

∂ω
=− j

Aqejς

3
M (M + 1) (2M + 1) ,

∂2gN (ω0)

∂ω2
=− Aqejς

15
M (M + 1)

× (2M + 1)
(
3M2 + 3M − 1

)
,

δg∗N (ω0) =A
qe−jς

∑

m

zvs(n,m),

∂δg∗N (ω0)

∂ω
=jAqe−jς

∑

m

m2zvs (n,m) ,

where

zvs(n,m) =
L∑

i=1

ki
[
v(n+ dim)s

−1(n+ dim)

+v(n− dim)s
−1(n− dim)

](−ri)
,

(33)
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and (·)(−ri) means the conjugate of (·)(ri).
By inserting the above intermediate results

into (27) and (28), we obtain

α = −2A
2q

45
M (M + 1) (2M − 1)

× (2M + 1)2 (2M + 3) ,

β = 2A2q (2M + 1)ℑ [Γ] , (34)

where ℑ[·] represents the imaginary part of [·]
and

Γ =
∑

m

(
m2 − M (M + 1)

3

)
zvs (n,m).

(35)

Therefore, the first-order approximation of
the perturbation on the maximum point δω is

δω =
45ℑ [Γ]

M (M + 1) (2M − 1) (2M + 1) (2M + 3)
.

(36)
Taking the expectation of (36) with respect to
v(n), we can verify, from (33) and (36), that
E {zvs (n,m)} = 0, and, hence,

E {δω} = 0. (37)

In other words, the estimator is asymptotically
unbiased.

According to (29), we need to compute
E
{
β2
}
in order to find the asymptotic vari-

ance. From (34),

E
{
β2
}
=2A4q (2M + 1)

2ℜ
× [E {ΓΓ∗} −E {ΓΓ}] , (38)

where we use the fact that

E {ℑ [x]ℑ [y]} = 0.5ℜ [E {xy∗} −E {xy}] .

From (35), we have

E {ΓΓ∗} =
∑

m1

∑

m2

(
m2
1 −

M (M + 1)

3

)

×
(
m2
2 −

M (M + 1)

3

)

×E {zvs (n,m1) z
∗
vs (n,m2)}

(39)

E {ΓΓ} =
∑

m1

∑

m2

(
m2
1 −

M (M + 1)

3

)

×
(
m2
2 −

M (M + 1)

3

)

×E {zvs (n,m1) zvs (n,m2)} .
(40)

Using (41) to evaluateE{zvs (n,m1)z
∗
vs (n,m2)}

and E {zvs (n,m1) zvs (n,m2)} results in

E {zvs (n,m1) z
∗
vs (n,m2)} ≈

≈ 2σ2A−2
L∑

i=1

(ki)
2 δ (m1 ±m2) ,

E {zvs (n,m1) zvs (n,m2)} ≈ 0,

where we used the fact that di �= dj and ri �= rj
if i �= j. Inserting these intermediate results
into (38), (39) and (40) yields

E
{
β2
}
=

8A4q−2σ2
n1∑

i=1
(ki)

2

45
M (M + 1)

× (2M − 1) (2M + 1)3 (2M + 3) .
(41)

Combining (29), (34) and (41), the variance of
δω is given by eq. 42, where SNR = A2/σ2.
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