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A Virtual Instrument for
Time-Frequency Analysis of Signals

with Highly Nonstationary
Instantaneous Frequency
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Abstract–The paper presents an open-source
virtual instrument for time-frequency analysis.
The purpose is to show the correct practical im-
plementation, and the performance, of a num-
ber of complex algorithms, and of a practical
criterion (the concentration measure) to select
the proper algorithm for a given signal. The
virtual instrument provides efficient solutions
for signals with highly nonstationary instan-
taneous frequency. Despite variations of sig-
nal phase function, a high concentration can
be achieved by a suitable choice of distribution
form. The distribution can be chosen manually,
or the instrument can perform the optimal dis-
tribution selection. Namely, a procedure for
automated selection of optimal distribution or-
der is provided. The concentration measure
is employed as a selection criterion. A vari-
ety of options provides different comparisons
for several distributions simultaneously. Effi-
ciency of the proposed instrument is demon-
strated on various examples. It is important to
emphasize that an extensive and complex the-
ory is implemented as a set of open-source algo-
rithms. All the algorithms can be used "as is",
or modified and upgraded (even separately) by
researchers and practitioners in the field. The
virtual instrument is available at http://www.
tfsa.ac.me/Open_source_codes.html, or upon
request to the authors.

I. INTRODUCTION

Time-frequency analysis has been a very at-
tractive research area in the last few decades.
As a result, various time-frequency distribu-
tions have been proposed [1]-[8]. They are
used in numerous practical applications in the
areas of biomedical signal analysis [9], [10],
radar signals [11], geosciences, communica-
tions, speech, image processing and multime-
dia applications [12], [13], etc. Depending on
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the nature of the signal phase function, dif-
ferent distributions are used, namely: linear
(spectrogram), quadratic (the Wigner distri-
bution [1], the distributions from the Cohen
class [1], [14], [15], and the S-method [16],
[17]), and higher order ones [18]-[24] (polyno-
mial distributions, distribution with complex-
lag argument, etc.). Time-frequency distrib-
utions with complex-lag argument have been
introduced to provide the efficient analysis
for signals with highly nonstationary instanta-
neous frequency (IF) [23]-[27]. An interesting
solution based on the complex-lag signal argu-
ment could be achieved in the ambiguity do-
main [28]. By employing various kernel func-
tions, the ambiguity domain implementation
results in a class of complex-lag time-frequency
distributions.

Here we propose a virtual instrument that
can be used for a large class of signals, in-
cluding highly nonstationary ones. The instru-
ment includes specific solutions for monocom-
ponent and multicomponent signals. A class
of complex-lag distributions with different or-
ders is implemented. Moreover, the concept
of L-Wigner distribution [29] is extended to
the L-form of complex-lag distributions. The
proposed instrument can be used either to cal-
culate each distribution separately or to com-
pare the respective results by using different
distributions. Note that the instrument for
time-frequency representations based on the S-
method realization has been already proposed
in [30]. However, not only the S-method, but
also the Cohen class can be obtained as special
cases of the implemented complex-lag distrib-
utions.
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Furthermore, it is important to emphasize
that the instrument offers an optimal distrib-
ution selection for signals with different rates
of IF variations. Namely, a procedure for an
automated choice of appropriate distribution
order is proposed. The concentration measure
is employed as a criterion that increments dis-
tribution order until an optimal IF represen-
tation is achieved.

Therefore, the proposed instrument can be
observed as a complex system that includes
various lower and higher order distributions,
for analytic and real signals (monocomponent
and multicomponent ones). It represents a
consistent set of algorithms that can be inter-
esting for researches and practitioners working
in this field. The instrument is available as
a completely open source code software, with
a number of subroutines (functions) that can
be used, modified or upgraded independently.
Finally, the paper combines various theoreti-
cal approaches, describes their application and
implementation within the virtual instrument,
which contributes to its educational dimension
as well.

The paper is organized as follows. A review
of time-frequency distributions within the vir-
tual instrument is given in Section II. Section
III describes the algorithm and GUI of the in-
strument. Various instrument applications are
presented within Section IV. Concluding re-
marks are given in Section V.

II. THEORETICAL BACKGROUND

A review of the time-frequency distributions
implemented in the proposed virtual instru-
ment is provided in this Section. Their ba-
sic properties, advantages, and constraints, are
analyzed and compared. A procedure for op-
timal distribution selection is provided.

For a signal in the form x(t) = Aejφ(t), the
time-frequency representation providing the
energy distribution along the IF can be, gen-
erally, written as follows:

TFR(t, ω) =

= 2πA2δ(ω−φ
′
(t))∗ω FT

{
ejQ(t,τ)

}
∗ωW (ω),

(1)

where the Fourier transform is denoted by FT,
while W (ω) is the Fourier transform of a win-
dow. The function Q(t, τ) is called a spread
factor defining the distribution spread around
the IF. It contains different higher order deriv-
atives of phase function φ(t) and depends on
the time-frequency distribution. The optimal
distribution for a certain signal should be con-
centrated along its IF with the smallest spread
factor.

Spectrogram

The spectrogram (square module of the
short time Fourier Transform - STFT) is the
simplest and the most commonly used time-
frequency representation. It is defined as:

SPEC(t, ω) = |STFT (t, ω)|2

=

∣∣∣∣∣∣

∞∫

−∞

x(t+ τ)w(τ)e−jωτdτ

∣∣∣∣∣∣

2

, (2)

where w(τ) is a window function. The main
drawback of this representation is a trade-off
between time and frequency resolution.

S-method

In order to improve distribution concentra-
tion, the S-method can be used [16]. It is de-
fined as:

SM(t, ω) =

∞∫

−∞

P (θ)STFT (t, ω + θ)×

×STFT ∗(t, ω − θ)dθ, (3)

where P(θ) is a finite frequency domain
window. Note that two special cases of
the S-method are the spectrogram and the
Wigner distribution. They are obtained for
P(θ)=πδ(θ) and P(θ)=1, respectively. The S-
method combines good properties of the spec-
trogram and the Wigner distribution. Namely,
the cross-terms are reduced or even completely
removed, keeping good auto-terms concentra-
tion as in the Wigner distribution. Note that,
unlike the Wigner distribution, the S-method
does not require oversampling of the signal.
The spread factor contains the same terms as
in the case of the Wigner distribution:



1274 TIME-FREQUENCY SIGNAL ANALYSIS

Q(t, τ) = φ(3)(t)
τ3

223!
+ φ(5)(t)

τ5

245!
+

+φ(7)(t)
τ7

267!
+ ... (4)

The S-method can provide an ideal represen-
tation for linear frequency-modulated signals.
However, for faster IF variations, the presence
of third and higher order phase derivatives
becomes significant, reducing the distribution
concentration.

Time-frequency distributions with complex-lag

argument

In the case of signals with highly nonstation-
ary signal phase, concentration in the time-
frequency domain depends on the rate of IF
variations, as well as on the distribution or-
der and form. Hence, to deal with signals
whose IF varies fast, even within a few sam-
ples, the complex-lag distributions have been
introduced [20]-[24].
The N -th order time-frequency distribution

with complex-lag argument has been defined
as [18]:

CTDN(t, ω) =

=

∞∫

−∞

N/2∏

i=1

x

(
t+

τ

N(ai + jbi)

)(ai+jbi)

×x
(
t− τ

N(ai + jbi)

)−(ai+jbi)
e−jωτdτ. (5)

where N is an even number representing the
distribution order. The signal with a complex-
lag argument is calculated by using the signal
with a real argument as follows:

x(t± (ai + jbi)τ) =

=
1

2π

∞∫

−∞

X(ω)ejω(t±(ai+jbi)τ)dω, (6)

where X(ω) is the Fourier transform of x(t).
The parameters ai and bi define the sym-
metrical complex points on the unit circle.
The presence of signal terms with symmetri-
cal points ±(ai+jbi) eliminates all even phase

derivatives from the spread factor. By a suit-
able choice of distribution order, some odd
phase derivatives can be removed as well.
Thus, the spread factor can be significantly
reduced providing high distribution concentra-
tion, as it will be shown through some special
cases in the sequel.
Case 1 : In the case N=2, a1=1, b1=0, we

obtain real-lag signal terms producing a form
of the Wigner distribution: CTD2(t, ω) =
∞∫

−∞

x(t+ τ
2 )x

−1(t− τ
2 )e

−jωτdτ, with the spread

factor defined by (4).
Case 2 : For N=4 and a1=1, b1=0, a2=0,

b2=1, the complex-lag distribution [14] fol-
lows:

CTD4(t, ω) =

=

∞∫

−∞

x(t+
τ

4
)x−1(t− τ

4
)×

×x−j(t+ j
τ

4
)xj(t− j

τ

4
)e−jωτdτ (7)

By applying the Taylor series expansion
to the phase of the complex-lag moment:
x(t+ τ

4 )x
−1(t− τ

4 )x
−j(t+ j τ4 )x

j(t− j τ4 ) =

ej(φ(t+
τ
4 )−φ(t−

τ
4 )−jφ(t+j

τ
4 )+jφ(t−

τ
4 ))

,

the spread factor is obtained as:

Q(t, τ) = φ(5)(t)
τ5

445!
+ φ(9)(t)

τ9

489!
+

+φ(11)(t)
τ11

41011!
+ ... (8)

Note that the distribution (7) provides signif-
icant concentration improvement with respect
to the quadratic distributions and even to the
polynomial distribution1 (of the same order
N=4). For instance, the dominant term in
the spread factor is of the fifth order which
assures an ideal concentration for signals with
polynomial phase up to the fourth-order.
The discrete form of the complex-lag distribu-
tion (7) is given by:

[CTD4(n, k) =

1The spread factor for the fourth-order polyno-
mial Wigner-Ville distribution is given by: Q(t, τ) =

−0.327φ(5)(t) τ
5

5!
− 0.386φ(7)(t) τ

7

7!
− ...
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=

Ns/2∑

m=−Ns/2

w(m)x(n+m)x−1(n−m)

×c(n,m)e−j 2πNs 4mk, (9)

where n, k and m are discrete time, fre-
quency and lag coordinate, respectively, while
Ns is the number of samples within the win-
dow w. The function c(n,m) is defined as:

c(n,m) = eln|
x(n−jm)
x(n+jm) |. The complex-lag dis-

tribution can be calculated as a corrected
form of the Wigner distribution: CTD4 =
2WD(n, k)∗kFTm{c(n,m)}, where *k denotes
the convolution in frequency domain.
The signal with complex-lag argument is ob-
tained as:

x(n± jm) =

=
1

Ns

Ns/2∑

k=−Ns/2

X(k)e∓
2π
Ns
mkej

2π
Ns
nk, (10)

where X (k) is the discrete Fourier transform
of x (n). Thus, the signal with complex-lag
argument is calculated as the inverse Fourier
transform of X (k)exp(-2πmk/Ns). Note that
in the numerical realizations, the exponential
term may exceed the computer precision for
large —mk, producing calculation errors.
Case 3 : Further concentration improvement

can be achieved by using the sixth-order dis-
tribution. For N=6 and (a1,b1,a2,b2,a3,b3)=
(1,0,1/2,

√
3/2,-1/2,

√
3/2), the time-frequency

distribution is defined as follows:

CTD6(t, ω) =

∞∫

−∞

x(t+
τ

6
)x−1(t− τ

6
)×

×
(

x(t+ (
1

2
+ j

√
3

2
)
τ

6
)

×x−1(t− (1
2
+ j

√
3

2
)
τ

6
)

) 1
2−j

√
3
2

×
(

x(t+ (−1
2
+ j

√
3

2
)
τ

6
)

× x−1(t− (−1
2
+ j

√
3

2
)
τ

6
)

)− 1
2−j

√
3
2

e−jωτdτ,

(11)

where x−1 denotes a signal x raised to the
power -1. The spread factor for this distribu-
tion is reduced in comparison with the fourth-
order distribution and it is given by:

Q(t, τ) = φ(7)(t)
τ7

667!
+ φ(13)(t)

τ13

61213!
+ ...

(12)
Case 4 : N equidistant points on the unit

circle are considered. Without loss of general-
ity the following modified form of complex-lag
time-frequency distribution is defined [24]:

CTDN(t, ω) =

=

∞∫

−∞

x(t+
τ

N
)x∗(t− τ

N
)c(t, τ)e−jωτdτ

=
N

2
WD(t,

N

2
ω)∗ωC(t, ω), (13)

where *ω denotes the convolution in the ana-
logue frequency domain, while: C(t, ω) =
FT{c(t, τ)}. The complex-lag concentration
function c(t,τ) of order N -2 is defined as [16],
[17]:

c(t, τ) =

=

N/2−1∏

p=1

xw
∗
N,p

(
t+wN,p

τ

N

)

×x−w∗N,p
(
t−wN,p

τ

N

)
, (14)

where wN,p = ej2πp/N . The spread factor for
this form is:

Q(t, τ) = φ(N+1)(t)
τN+1

NN(N + 1)!
+

+φ(2N+1)(t)
τ2N+1

N2N(2N + 1)!
+ ... (15)

Observe that the spread factor produced by
the higher order phase derivatives can be de-
creased arbitrarily by an appropriate choice of
N, which further leads to an arbitrarily high
distribution concentration.
In practical realizations, the discrete form of
(13) should be used:

CTDN(n, k) =
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=

Ns/2−1∑

m=−Ns/2

x(n+m)x∗(n−m)

×c(n,m)e−j 2πNsNmk

=

Ns/2−1∑

l=−Ns/2

WD(n, k + l)CF (n, k − l), (16)

where
CF (n, k) = FT{c(n,m)}

= FT






N/2−1∏

p=1

xw
∗
N,p (n+wN,pm)

× x−w
∗
N,p (n−wN,pm)

}
.

The signal with complex-lag argument can be
obtained in the discrete form as follows:

x(n±wN,pm) =

=

Ns/2−1∑

k=−Ns/2

X(k)ej
2π
Ns
(n±wN,pm)k

=

Ns/2−1∑

k=−Ns/2

X(k)e∓
2π
Ns
wipmkej

2π
Ns
(n±wrpm)k,

(17)
with wrp = Re {wN,p} , wip = Im {wN,p}.
Note that the coordinate m is multiplied by
wrp. The influence of this term can be such
that an additional oversampling (or interpola-
tions) of the signal x (n) is required.
The form (13) is suitable only for mono-

component signals. Namely, for the mul-
ticomponent signals, the distribution form
CTDN(t, ω) =

N
2 WD(t, N2 ω)∗ωC(t, ω), will

contain cross-terms. Thus, a more general
form suitable for multicomponent signals has
been introduced in [24]:

CTDN(t, ω) =

=

∞∫

−∞

P (θ)SM(t, ω + θ)C(t, ω − θ)dθ, (18)

where the cross-terms free S-method (SM) is
used instead of the Wigner distribution. Note
that the frequency window P(θ) is used to
avoid the cross-terms that appear due to the
convolution. Thus, it has the same purpose

and effects as the frequency window in the S-
method.
Furthermore, to calculate C (t,ω), the complex
roots are expressed as: wN,p = wrp + jwip.
Then the function c(t,τ) in (14) is calculated
separately for powers wrp and wip, resulting in
two functions crp(t, τ) and cip(t, τ). Hence, for
a signal with Q components, the concentration
function C (t,ω) is calculated according to:

C(t, ω) =

∞∫

−∞

P (θ)Cr(t, ω + θ)Ci(t, ω − θ)dθ,

(19)
where: equation (20)

Cr(t, ω) = FTτ






Q∑

q=1

N/2−1∏

p=1

crp(t, τ)q





=

=FTτ






Q∑

q=1

N
2−1∏

p=1

ejwrpangle(xq(t+wN,p
τ
N
)·x∗q(t−wN,p

τ
N
))






Ci(t, ω) = FTτ






Q∑

q=1

N/2−1∏

p=1

cip(t, τ)q





=

=FTτ






Q∑

q=1

N
2−1∏

p=1

e−jwip ln|xq(t+wN,p τ
N
)·x∗q(t−wN,p

τ
N
)|




.

(20)
In this case, the signal with a complex-lag

argument is calculated by separating compo-
nents using the STFT [24]:

x(t±wN,p
τ

N
)q =

=

Wq∫

−Wq

STFT (t, ω + ωq(t))e
j(t±τ

wN,p
N

)ωdω,

(21)

where ω
q
(t) = arg

{
max
ω

STFT (t, ω)
}

rep-

resents the position of the q-th component
maximum. It is assumed that the q-th sig-
nal component is within the region [ωq(t)-Wq,
ωq(t)+Wq]. The parameter Wq defines the
width of the q-th signal component in the
time-frequency plane. The cross-terms will be
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avoided if the assumed component width is
smaller than the distance between auto-terms.
The concentration functions Cr(t,ω) and

Ci(t,ω) for the sixth-order complex-lag distri-
bution is given by:

Cr(t, ω) =

=FTτ

{
Q∑

q=1

e
j
√
3
2 angle

{
xq
(
t+

√
3+j
2

τ
6

)
x∗q

(
t−

√
3+j
2

τ
6

)}

× e
j
√
3
2 angle

{
xq
(
t+

√
3−j
2

τ
6

)
x∗q

(
t−

√
3−j
2

τ
6

)}}

Ci(t, ω) =

=FTτ

{
Q∑

q=1

e
−j 12 ln

∣∣∣xq
(
t+

√
3+j
2

τ
6

)
x∗q

(
t−

√
3+j
2

τ
6

)∣∣∣

× e
−j 12 ln

∣∣∣xq
(
t+

√
3−j
2

τ
6

)
x∗q

(
t−

√
3−j
2

τ
6

)∣∣∣
}
. (22)

Class of complex-lag time-frequency distribu-

tions based on the ambiguity domain realiza-

tion

A class of complex-lag distributions can be
defined by using the ambiguity domain. Be-
side the reduction of cross-terms, the ambigu-
ity domain realization provides that the distur-
bances caused by the miscalculation of the sig-
nal with complex-lag argument are overcome
[28]. For this kind of realization different ker-
nels can be employed.
Two ambiguity functions are defined based

on (13), [28]. The real-lag ambiguity function
uses the real-lag signal moment, and it is de-
fined by:

AFrt(θ, τ) =

∞∫

−∞

x(t+
τ

N
)x∗(t− τ

N
)e−jθtdt.

(23)
The complex-lag ambiguity function is defined
by using the concentration function c(t, τ):

AFct(θ, τ) =

∞∫

−∞

c(t, τ)e−jθtdt

=

∞∫

−∞

N/2−1∏

p=1

xw
∗
N,p

(
t+wN,p

τ

N

)

×x−w∗N,p
(
t−wN,p

τ

N
e−jθtdt

)
. (24)

The real-lag ambiguity function contains
cross-terms in the case of multicomponent sig-
nals, while the complex-lag ambiguity function
may contain calculation errors. These distur-
bances can be filtered by using the kernel func-
tion C(θ, τ):

AF crt(θ, τ) = C(θ, τ)AFrt(θ, τ),

AF cct(θ, τ) = C(θ, τ)AFct(θ, τ). (25)

The filtered ambiguity functions AF crt(θ, τ)
and AF cct(θ, τ) are further convolved within
the window P(ξ) to obtain the resulting am-
biguity function as follows [28]:

AF (θ, τ) =

=

∞∫

−∞

∞∫

−∞

∞∫

−∞

P (ξ)e−jξτ1ejξ(τ−τ1)×

×AF crt(θ1, τ1)AF cct(θ − θ1, τ − τ1)dτ1dθ1dξ.
(26)

Finally, the class of complex-lag time-
frequency distributions is given by:

CTDAF (t, ω) =

=
1

2π

∞∫

−∞

∞∫

−∞

AF (θ, τ)ejθt−jωτdτdθ. (27)

The distributions properties will depend on
the properties of the kernel C (θ,τ). The
Gaussian, Choi-Williams, Cone, and Sinc ker-
nels are used in this instrument.
Note that this class of time-frequency distri-

butions contains a number of subclasses that
are assigned to each specific value of order N.
Thus, for example, for N=2, the resulting am-
biguity function reduces to real-lag ambiguity
function, and the Cohen class of quadratic dis-
tributions could be obtained. The higher order
subclasses are provided for N=4, 6, etc.

The L-form of complex-lag time-frequency dis-

tributions

As one may conclude, concentration is im-
proved by increasing distribution order but at
the expense of increased computational com-
plexity. Alternatively, the L-form of distribu-
tions can improve concentration. The L-form
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of the N -th order complex-lag distribution is
given by [25]:

CTDL
N(t, ω) =

=

∞∫

−∞

N/2∏

i=1

x

(
t+

τ

LN(ai + jbi)

)
±L(ai+jbi)e−jωτdτ.

(28)
For equidistant points on the unit circle:

(ai+jbi)=e
j2πk/N , k = 0, 1, ..., N − 1, the cor-

responding spread factor for the L-form is
given by:

Q(t, τ) = φ(N+1)(t)
τN+1

LNNN(N + 1)!
+

+φ(2N+1)(t)
τ2N+1

L2NN2N(2N + 1)!
+ ... (29)

Thus, each term in the spread factor will be
additionally reduced. The L-form can be easily
calculated by using the recursive realization as
follows:

CTDL
N(t, ω) =

=

∞∫

−∞

CTD
L/2
N (t, ω + θ)CTD

L/2
N (t, ω − θ)dθ,

(30)
and it can be used for each of the distrib-
ution forms defined by equations (13), (18),
and (27). For example, for L=2, it represents
a simple convolution of the basic distribution
form GCDN(t, ω).

A. Optimal distribution selection

The choice of distribution form will depend
on the nature of signal’s IF. Namely, faster
IF variations require higher distribution order.
Thus, in the case of analytical signals, the ap-
propriate form of distribution can be chosen
according to the mean squared error (MSE) of
the IF estimation:

MSE =
1

N

∑
(f(t)− f̂(t))2 < MSE0. (31)

The lowest order distribution providing an
MSE that is smaller than the predefined value
MSE0 will be chosen. Note that f(t) de-

notes the exact IF, while the estimated f̂(t)

is: f̂(t) = argmax
ω
{CTD(t, ω)}. However, in

the case of real signals, the exact IF is usu-
ally unknown. Thus, an alternative solution
for distribution selection can be provided by
using the concentration measure [31]-[33]. A
simple concentration measure can be defined
as [33]:

MN =

∞∫

−∞

∞∫

−∞

|TFDN(t, ω)|4 dωdτ
(

∞∫

−∞

∞∫

−∞

|TFDN(t, ω)|2 dωdτ
)2 ,

(32)
where TFDN denotes the N -th order time-
frequency distribution. The optimal distrib-
ution selection is performed through the fol-
lowing steps:
1. The concentration measure M 2 is calcu-
lated for N=2, i.e., for the Wigner distribu-
tion;
2. If MN ≥ M0, the N -th order distribution
is an optimal choice.
3. If MN < M0, set N=N+2;
4. Calculate MN and go to step 2.
Therefore, the lowest order distribution sat-
isfying MN ≥ M0 will be chosen as the op-
timal one. The threshold value M 0 is ob-
tained experimentally. Namely, a set of test
signals is considered. For all of them, the dif-
ferent order time-frequency distributions are
calculated (for N=2,4,6,...). Furthermore, for
each test signal, an optimal distribution is cho-
sen as the lowest Nth-order distribution pro-
viding satisfactory IF representation. Then,
the concentration measures for the chosen dis-
tributions are used to define M 0: M0 =
min(M1

N1
, ...,M i

Ni
, ..,MS

NS
) , where i indicates

the i-th signal, while S is the number of test
signals.

III. V������ I��������� D����������

A user-friendly virtual instrument for the
time-frequency analysis is presented in this
Section. The proposed virtual instrument is
implemented in Matlab 7. The outlook of the
instrument is shown in Fig. 1. The instru-
ment source code is available at http://www.
tfsa.ac.me/Open_source_codes.html.
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Fig. 1. The outlook of the proposed virtual instrument

The following time-frequency distributions
are included, namely: the spectrogram,
the Wigner distribution, the S-method, the
complex-lag distributions of various orders,
the class of ambiguity domain based complex-
lag distribution including the Cohen class,
as well as the L-forms of distributions.
The instrument provides realizations for both
monocomponent and multicomponent signals.
Some of the input and output fields and pan-
els, enumerated in Fig. 1, are described in the
sequel.
1. Input signal: The input signal can be cho-
sen from the list of Defined signals where sev-
eral illustrative examples are offered. Other-
wise, for an arbitrarily signal with nonlinear
phase function in the form:

f(t) =

= A ea1 cos(b1πt)+a2 cos(b2πt)+a3 cos(b3πt)

×ea4 sin(b4πt)+a5 sin(b5πt)+a6 sin(b6πt), (33)

the users should choose some real values for
the parameters A, a1, a2, a3, a4, a5, a6, b1, b2,

b3, b4, b5, b6. Also, the signal length should
be specified.
2. Window function: Various types of the
lag-window functions (rectangular, Gaussian,
Hanning, Hamming) can be chosen within the
Window properties panel.
3. Distribution choice (manually): The user
can choose a distribution within the Distri-
bution choice panel, where: SPEC is spec-
trogram, Wigner is the Wigner distribution,
S method is the S-method, Complex 4 stands
for the fourth-order complex-lag distribution,
and Complex 6 is the sixth-order complex-lag
distribution.
4. Input L for L-form of distribution: To im-
prove concentration, the L-form can be con-
sidered for each of the above mentioned distri-
bution, by setting L to a value greater than 1.
The default value is L=1, and it corresponds
to the basic distribution form. Input LL that
determines the frequency window width in the
S-method (the default values is 12).
5. Choose distribution according to the pre-
defined MSE: The automated selection of ap-
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propriate distribution for a considered analytic
signal is done according to the MSE of IF esti-
mation. Here, the MSE should be lower than
the predefined value that is the input of the
field: MSE <. This option is especially inter-
esting and useful for educational purposes.
6. Choose distribution according to the con-
centration measure: In the case of signal with
unknown phase function, the concentration
measure is used instead of MSE.
7. Main plotting window: By pressing Start
button, the chosen time-frequency distribution
will appear in the main plotting window (axes
1). Two additional windows are also available:
the first one (axes 2) is used to plot the input
signal, while the second (axes 3) plots its exact
IF.
8. Comparison of distributions: a compar-
ison of different distributions is provided
(Compare distributions option and Com-
pared graphics panel in Fig. 1). First the
user should select the check button Compare
distributions and enter the number of distri-
butions that will be compared. Further, the
distributions that should be compared are se-
lected from the drop down menu for each plot
window within the panel Compared graph-
ics (axes 4, axes 5, axes 6, axes 7).

The scheme of the algorithm for the pro-
posed virtual instrument is illustrated in Fig.
2. Depending on the number of compo-
nents, the algorithm performs the realization
for monocomponent or multicomponent sig-
nals.

Monocomponent signal : The user enters the
number of samples and/or length in seconds,
as well as the lag window parameters (the win-
dow width, i.e., the number of samples within
the window, and the type of window). Af-
terwards, if the concentration improvement
is required, the parameter L should be in-
creased to provide the L-form of a distribu-
tion. Otherwise, the basic distribution form
will be calculated (L=1). Furthermore, one
may select a certain distribution manually or
may start the procedure for optimal distribu-
tion search. When the distribution is selected
manually, there is a possibility to compare it
with four additional distributions which will be
displayed within the auxiliary windows (axes

4, axes 5, axes 6, axes 7) in the Compared
graphics panel of the virtual instrument. The
optimal distribution search procedure can be
performed by using the MSE of IF estimation
or by using the concentration measure. The
procedure starts with the second order distri-
bution form (N=2), i.e. the Wigner distribu-
tion, and iteratively increases the distribution
order until a given condition is satisfied.
Multicomponent signals: In this case there

are two realization possibilities. For the am-
biguity domain realization, the kernel should
be selected first. Thus, a whole class of distri-
butions is available in this case. The L-form
can be optionally used. The distribution se-
lection procedure is done in the same way as
for the monocomponent signal, but the distri-
bution calculation is different, since it is per-
formed in the ambiguity domain. On the other
hand, if ambiguity domain is not selected, after
the signal and window parameters are entered,
the STFT is calculated to separate signal com-
ponents. Afterwards, the previously described
procedure follows (Fig. 2).

IV. T���-F��!����" A���"��� #" U���$

�%� V������ I���������

A. Monocomponent signals

Example 1 : Consider the signal:

x(t) = ej(5/2 cos(2πt)+cos(6πt)).

Four auxiliary plotting windows are used to
compare the results obtained by the following:
the spectrogram, the Wigner distribution, the
fourth-order complex-lag distribution and the
sixth-order complex-lag distribution, respec-
tively (Fig. 3). The Gaussian window of the
width Nw=128 samples is used for the calcu-
lation of each distribution. It can be seen that
the distribution concentration for the spectro-
gram and the Wigner distributions are very
low due to the enhanced inner interferences.
The fourth-order complex-lag distribution pro-
vides significant improvement, while the sixth
order distribution provides good concentration
along the IF. The results could be even fur-
ther improved by calculating the L form of the
sixth-order distribution (Order L: 2), which
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Fig. 2. The flowchart for the virtual instrument realization
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is shown in the main plotting window. Note
that the small disturbances within the sixth-
order complex-lag distribution disappear in its
L-form.
Example 2 : In the previous example, the
suitable distribution form has been chosen
manually. However, the user can set the high-
est tolerable MSE of the IF estimation, and
the instrument will automatically choose the
distribution that meets the condition. For in-
stance, let us observe two signals:

y(t) = ej(7.5 cos(πt)+1/2 cos(6πt)),

z(t) = ej(2 cos(2πt)+1/2 cos(8πt)+1/2 cos(πt)).

The highest tolerable MSE is set to the value
0.015 (the fieldMSE <). The appropriate dis-
tributions for signals y(t) and z(t) are given
in Fig. 4.a and b, respectively. Note that, un-
like the Wigner distribution, the fourth-order
complex-lag distribution provides satisfactory
MSE for signal y(t). Thus, the fourth-order
complex-lag distribution is automatically plot-
ted in the main plotting window, while the
Wigner distribution is plotted, for the pur-
pose of comparison, in the auxiliary window
(Compared graphics panel). For the sig-
nal with faster variations of the IF, as it is
the case with z(t), the sixth-order complex-
lag distribution will be automatically selected
and plotted in the main plotting window, Fig.
4.b. The distributions of lower order that do
not provide suitable representation of IF vari-
ations are plotted in the auxiliary windows
(Compared graphics panel).
Example 3 : The mean square error (MSE)
can be used only for analytic signals. Thus, a
more efficient distribution selection criterion is
obtained by using the concentration measure.
The concentration measure MN , (32), is cal-
culated for different distribution orders N and
for a set of test signals. The results are given
in Table I (all values should be multiplied by
10−4). It has been shown experimentally that
for the observed set of signals, the measure
MN > 7 · 10−4 indicates a satisfactory con-
centration in the time-frequency plane and an
efficient IF representation. Several examples,
included within the instrument, are illustrated
in Fig. 5. The distribution with the lowest N

satisfying the criterion: MN > 7 · 10−4 will
be selected as an optimal distribution for the
observed signal (shaded fields in Table I).

B. Multicomponent signals

Example 1: In this example we observe a
multicomponent signal in the form:

s(t) = e4j cos(0.5πt)+
2
3 cos(5πt)−6.5πt

+e4j cos(
1
2πt)+

3
2 cos(

1
2πt)+

1
2 cos(5πt)+8.5πt,

which consists of two non-overlapping signals,
both with fast varying phase functions. The
number of samples used for the STFT calcula-
tion is Nw=128. A comparison of the Wigner
distribution, the fourth and the sixth-order
complex-lag distributions are given in Fig. 6
(auxiliary windows). Note that the Wigner
distribution is useless since it contains em-
phatic cross-terms.
The fourth-order complex-lag distribution pro-
vides satisfying concentration that is further
improved by using the sixth-order complex-lag
distribution.
Example 2: The proposed instrument al-

lows one to upload signals from a file. An
illustration for a real musical signal is given
in Fig. 7 (input option Upload a signal).
The real musical signal with fast varying IF is
considered. The fourth-order complex-lag dis-
tribution is calculated by using the ambiguity
domain approach, where the Gaussian kernel
is applied (main plotting window in Fig. 7).
Additionally, the fourth-order ambiguity do-

main based complex-lag distribution is com-
pared with the Wigner distribution filtered by
the same Gaussian kernel.
Example 3: The use of the instrument in
speech and biomedical (ECG) signals analy-
sis is illustrated in this example. Since speech
contains a large number of components, the
optimal time-frequency representation is ob-
tained by using the S-method, plotted in the
main window, Fig. 8. Although the spec-
trogram, as the simplest choice, is commonly
used for speech analysis, the S-method pro-
vides significant resolution improvement with
slightly higher calculation complexity. The
comparison of results is given within theCom-
pared graphics panel. Similarly, the results
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Fig. 3. Comparison of different time-frequency distributions

Fig. 4. Automatic selection of appropriate time-frequency distribution a) the fourth-order complex-lag distrib-
ution, b) the sixth-order time-frequency distribution
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TABLE I

M������� �' ������������ '�� (�''����� ��$���� ��( (�''����� ��(�� N

CONCENTRATION MEASURE MN

Signal WD (N=2) CTD4 (N=4) CTD6 (N=6)
1 4,4 4,6 8,62
2 5 8,26 13
3 4,31 7,33 12
4 3,6 5 9,96
5 3,23 4,1 8,17
6 5 5,85 11
7 3,93 4,89 8,3
8 4,98 8,6 13
9 6,39 8,86 13
10 7,3 8,67 13

Fig. 5. Illustrations of different order distributions and corresponding concentration measures for some test
signals
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Fig. 6. Multicomponent signals analysis

for ECG signal are given in Fig. 9, where again
the S-method is plotted in the main window.

V. CONCLUSION

An open-source virtual instrument for per-
formance testing and practical implementa-
tion of several complex algorithms for nonsta-
tionary signals analysis has been presented.
The instrument incorporates different Nth-
order time-frequency distributions, as well as
their ambiguity domain realizations. Thus,
it can provide an efficient IF analysis even
when it varies significantly within a few sam-
ples. Both the monocomponent and multicom-
ponent signals realizations are considered and
implemented. Additionally, the proposed vir-
tual instrument enables a comparison of var-
ious time-frequency distributions and allows
users to choose the most appropriate one for
a particular signal. The selection of appro-
priate distribution can be done either manu-
ally or by following the optimal distribution
selection procedure. Finally, it can be con-
cluded that this instrument represents a user-

friendly tool that can serve to the researchers
and practitioners in the area of time-frequency
signal analysis. The implemented open-source
algorithms can be modified and combined with
other algorithms, and thus, they could serve as
a basis to construct other application-related
instruments for solving specific problems.
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