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Abstract– The adaptive local polynomial

Fourier transform is employed for improvement

of the ISAR images in complex reflector geom-

etry cases, as well as in cases of fast maneuver-

ing targets. It has been shown that this simple

technique can produce significantly improved

results with a relatively modest calculation bur-

den. Two forms of the adaptive LPFT are pro-

posed. Adaptive parameter in the first form

is calculated for each radar chirp. Additional

refinement is performed by using information

from the adjacent chirps. The second tech-

niques is based on determination of the adap-

tive parameter for different parts of the radar

image. Numerical analysis demonstrates accu-

racy of the proposed techniques.

I. I������	�
��

The inverse synthetic aperture radar (ISAR)
has attracted wide interest within scientific
and military community. Some ISAR appli-
cations are already well known and studied.
However, many important issues remain to be
addressed. For example, suitable enhancement
technique for the fast maneuvering radar tar-
gets or targets with fast moving parts is not
yet known. Also, standard approaches based
on the Fourier transform (FT) fail to resolve
influence of close reflectors. There are several
techniques for improvement of the ISAR radar
image in the case of fast maneuvering targets
or in the case of objects with complex reflector
geometry. Here we mention only two groups of
such enhancement techniques:

• techniques that adopt transform parameters
for assumed parametric target motion model
[1];
• techniques where reflection signal compo-
nents are parametrized, while the signal com-
ponents caused by reflectors are estimated by
using some of well developed parametric spec-
tral estimation tools [2, 3].
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Both of these techniques have some advan-
tages, but also some drawbacks for specific
applications. The first group of techniques
is strongly based on radar target geometry
with assumed motion model. These techniques
could become inaccurate in the case of a chang-
ing motion model. The second group of tech-
niques is tested on simulated examples. How-
ever, its application in real scenarios, where
signal components are caused by numerous
scatterers, could be very difficult. Namely,
there are no appropriate methods for para-
meters estimation of signals with a very large
number of components.
In this paper we propose a modification of

the first group of research techniques. The
adaptive local polynomial Fourier transform
(LPFT) is used. Adaptive coefficients are cal-
culated for each considered chirp in the radar
signal mixture. It is important to note that
the proposed technique does not assume any
particular model of radar target motion. The
adaptive parameters are estimated for each
scattering point independently. Based on the
analysis of the signal obtained from the tar-
get we consider some simplifications in the
process of calculation of the adaptive trans-
form. In this way we keep the calculation bur-
den within reasonable limits. Two techniques
for enhancement of the radar image by using
the LPFT are considered. The first one is
based on information obtained from each chirp
separately and on possible refinement by com-
bining results from various chirps. The second
technique is based on detection of regions-of-
interest in the range/cross-range plane and on
determination of the optimal LPFT for each
detected region.
The paper is organized as follows. The tar-

get and radar signal modeling is discussed in
Section II. The proposed methods are intro-
duced in Section III. Simulation study is given
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in Section IV.

II. R���� S
���� M����

Consider a radar signal consisting of M con-
tinuous wave coherent pulses:

vM(t) =
M−1∑

m=0

v0(t−mTr), (1)

where v0(t) is basic impulse limited within
the interval −Tr/2 ≤ t < Tr/2. The linear
frequency modulated (FM) signal is used in
our simulations as a basic impulse: v0(t) =
exp(jπBt2/Tr), where B is bandwidth control
parameter while Tr is pulse repetition time.
Alternative radar model used in practice has
radar pulses with stepped frequencies. Defo-
cusing effect considered in this paper and time-
frequency (TF) signatures of obtained radar
signals have similar behavior for these two
forms of radar signals [4,5].
Signal emitted toward radar target can be

written as:

u(t) = ej2πf0tvM(t), (2)

where f0 is radar operating frequency. Re-
ceived signal, reflected from single reflector
target at distance d(t), is delayed for 2d(t)/c,
with c being propagation rate:

uR(t) = σu (t− 2d(t)/c) . (3)

Demodulation of received signal can be per-
formed by multiplying received with transmit-
ted signal u(t):

q(t) = σu∗(t− 2d(t)/c)u(t)

= σ exp(j4πf0d(t)/c)
M−1∑

m=0

v∗0(t−2d(t)/c−mTr)

×
M−1∑

m=0

v0(t−mTr − T0). (4)

Parameter T0 is used in radar imaging for com-
pensation of target distance. For properly se-
lected T0 and after highpass filtering, the sig-
nal q(t) can be approximately written as:

q(t) ≈ σ exp(j4πf0d(t)/c)

×
M−1∑

m=0

v∗0(t− 2d(t)/c−mTr)

×v0(t−mTr) =
M−1∑

m=0

q(m, t), (5)

where

q(m, t) = σ exp(j4πf0d(t)/c)

×v∗0(t− 2d(t)/c−mTr)v0(t−mTr),

t ∈ [(m− 1/2)Tr, (m+ 1/2)Tr), (6)

= σ exp(j4πf0d(t)/c)

× exp(j4πBd(t)(t−mTr)/(cTr))

× exp(−jπB(2d(t)/c)2/Tr). (7)

Keeping in mind that B � f0, we can neglect
exp(−jπB(2d(t)/c)2/Tr) with respect to other
two components. The value of q(m, t) can ap-
proximately be written as:

q(m, t) ≈ σ exp(j4πf0d(t)/c)

× exp(j4πBd(t)(t−mTr)/(cTr)). (8)

This signal is commonly given in the form:

q(m, τ) ≈ σ exp(j4πf0d(τ +mTr)/c)

× exp(j4πBd(τ +mTr)τ/(cTr)), (9)

where t = τ + mTr. Parameter τ ∈
[−Tr/2, Tr/2) is referred to as fast-time, while
m = 0, 1, ...,M − 1, is called slow-time coor-
dinate. Commonly, in actual radar systems,
signals are discretized in fast-time coordinate
with sampling rate Ts = Tr/N , τ = nTs,
where n ∈ [−N/2, N/2). However, due to
notational simplicity we will keep continuous
fast-time coordinate. Classical radar setup as-
sumes that the radar target position is a linear
function of time d(t) = D0 + V t. Then the
radar model produces:

q(m, τ) ≈ σ exp(j4πf0[D0 + V (τ +mTr)]/c)

× exp(j4πB[d0 + V (τ +mTr)]τ/(cTr)) =

= σ exp(j4πf0(D0 + V τ)/c)

× exp(j4πVm(f0Tr +Bτ)/c)

× exp(j4πτB(D0 + V τ)/(cTr)). (10)
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Since f0 � B, Tr > |τ |, and D0 � V τ, signal
q(m,τ) can be further simplified to:

q(m, τ) ≈ σ exp(j4πf0D0/c)

× exp(j4πVmf0Tr/c) exp(j4πτBD0/(cTr)).
(11)

A two-dimensional (2D) FT of this signal over
m and τ is approximately:

Q(ωτ , ωm) =

∫

τ

M−1∑

m=0

q(m,τ)e−jωττ−jωmmdτ

≈ (2π)σ exp(j4πf0D0/c)δ(ωτ−4πBD0/(cTr))

×
sin((ωm − 4πV f0Tr/c)M/2)

sin((ωm − 4πV f0Tr/c)/2)

×e−j(ωm−4πV f0Tr/c)(M−1)/2. (12)

For large M we can write the magnitude of
Q(ωτ , ωm) as:

|Q(ωτ , ωm)| ≈ (2π)σδ(ωτ − 4πBD0/(cTr))

×Mδ(ωm − 2V f0Tr/c). (13)

For rotating scatterer given in Fig. 1 dis-
tance can approximately be written as d(t) ≈
R(t) + xp cos(θ(t)) + yp sin(θ(t)), where R(t)
is distance of the target rotation center from
the radar, where coordinates of the scatterer,
for τ = 0, are (xp, yp). Coordinate system is
formed in such a way that the coordinate x
is the line of sight. Assume constant rotation
velocity θ(t) = ωRt, with relatively small an-
gular movement of the target |ωRTr| � 1 (it
implies that cos(θ(t)) ≈ 1 and sin(θ(t)) ≈ 0).
According to the introduced conditions d(t) ≈
xp and v(t) = d′(t) = −xpθ

′(t) sin(θ(t)) +
ypθ

′(t) cos(θ(t)) ≈ ypθ
′(t) cos(θ(t)) ≈ ypωR.

Commonly, it is assumed that R(t) is compen-
sated by adjusting T0 in (4). Thus, we will not
consider it in our algorithm. Then |Q(ωτ , ωm)|
can be written as:

|Q(ωτ , ωm)| ≈ (2π)σMδ(ωτ − 4πBxp/(cTr))

×δ(ωm − 4πypωRf0Tr/c)

= (2π)σMδ(ωτ − c1xp)δ(ωm − c2yp). (14)

It represents the ISAR image of scatterer
(xp, yp) for a given instant under introduced

assumptions. Note that the constants that de-
termine resolution of the radar image are given
by c1 = 4πB/(cTr) and c2 = 4πωRf0Tr/c.
The radar image is formed as superposition
of radar images of all scatterers (xp, yp), p =
1, 2, ..., P . It is approximately given as:

|Q(ωτ , ωm)| =
P∑

p=1

(2π)σp

×δ(ωτ − c1xp)δ(ωm − c2yp), (15)

where σp is the reflection coefficient that cor-
responds to the p-th scatterer point.
In numerous cases we cannot assume that

the radar model can be simplified in the pre-
viously described manner. For example, radar
target can be very fast, or model of radar tar-
get motion can be more complicated (for ex-
ample 3D motion). Then, instead of complex
sinusoids given by (11) we will get that com-
ponents corresponding to particular scatterers
are polynomial phase signals:

q(m, τ) = σpe(
j
∑

L
l=0

am,lτ
l/l!), (16)

where parameters am,l depend on the con-
sidered chirp and scatterer motion. For ex-
ample, for the target motion model d(t) =
D0+V0t+At2/2, whereA is acceleration of tar-
get, coefficients am,l are approximately equal
to:

am,0 =
4π

c
f0(D0 +mTr +

m2T 2r
2
),

am,1 =
4π

c

(
f0V0 + f0AmTr +

BD0

Tr

+BV0m+
BAm2Tr

2

)
,

am,2 =
8π

c

(
f0

A

2
+B

V0
Tr
+Am

)
,

am,3 =
12πBA

cTr
, (17)

and am,l = 0 for l > 3. Some terms of these co-
efficients can be neglected, but in general it is
not simple as in the case when we can assume
that the scatterer position is a linear function.
Situation becomes even more difficult in the
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Fig. 1. Illustration of the radar target geometry.

case when target model is not a simple ro-
tating model. Then, very complicated rela-
tionship between position of scatterers (xp, yp)
and coefficients of the polynomial in the sig-
nal phase can be established. Also, polyno-
mial that should be used to accurately esti-
mate signal phase is of very high order. Radar
image obtained by using the 2D FT of signal
with higher order polynomial becomes spread
(defocused) in the range/cross-range domain
(ωτ , ωm). The goal of ISAR signals processing
is to obtain a focused radar image, i.e., to re-
move influence of the higher order polynomial
in signal phase of each component.

Usually, it is assumed that modeling of coef-
ficients is possible based on the target motion
model. In that case, instead of all possible pa-
rameters, only parameters of the motion model
should be used in order to perform enhance-
ment of the radar image.

The first group of techniques for enhance-
ment of radar images is based on this concept.
One such approach is described in [6] where
it is assumed that radar scatter can be mod-
eled with relative simple motion model which
assumes that velocity increases or decreases
linearly (or that angular velocity changes in
linear manner) within repetition time. After

estimating acceleration of target, variation in
the velocity is compensated from signal and fi-
nally focused radar image is obtained. It cor-
responds to removing influence of acceleration
from (16). However, these techniques are very
sensitive to any variations from assumed mo-
tion model. They cannot be used for 3D mo-
tion models.

Alternative techniques are based on estima-
tion of all coefficients in the polynomial of
all components in the received signal [2, 3].
These technique are usually based on iterative
removing of the lower order coefficients from
signal phase in order to estimate the highest
order coefficient. Then, estimation of lower
order coefficients is performed by using the
same procedure but for dechirped signal. It
means that error in estimation of the highest
order coefficient propagates toward lower or-
der coefficients. Furthermore, it has recently
been shown that these procedures are biased
for multicomponent signals and that dechirp-
ing procedure used to produce signal suitable
for estimation of lower order coefficients intro-
duces additional source of errors for multicom-
ponent signals. These techniques are also time
consuming and, as far as we know, never ap-
plied on signals with large number of compo-



1302 TIME-FREQUENCY SIGNAL ANALYSIS

nents. Numerous components caused by target
scatterers could appear in radar signal.
A novel technique for enhancement of radar

images, that introduces just one new adaptive
parameter in the FT expression for each re-
ceived signal, is introduced in the next sec-
tion. For each chirp only one parameter of the
transform should be estimated. The second
important property of this technique is in the
fact that we do not assume any particular mo-
tion model. It can be applied for any realistic
motion of targets.

III. A����
�� L�	�� P������
�� FT

In this section we introduce the LPFT as
a tool for the ISAR image autofocusing. Two
forms of the adaptive LPFT are proposed. The
first form can be applied to each chirp compo-
nent separately with possible refinement by us-
ing information from the adjacent chirps (Sec-
tion III.A). The second form performs evalu-
ation of the adaptive LPFT for each detected
region-of-interest in the radar image (Section
III.B).

A. First form: Adaptive LPFT for radar sig-

nals

In order to develop this approach we will go
through several typical cases of signals, start-
ing from a very simple and going toward more
complicated ones. Improvement in signal com-
ponents concentration (focusing radar image)
is performed by estimation of signal parame-
ters without assuming any particular motion
model. This is quite different approach com-
paring to the methods with predefined motion
model or to the methods where estimation is
performed for each parameter am,l.

A.1 Linear FM signal case

The simplest case of monocomponent linear
FM signal

q(m, τ) = σe(j[am,0+am,1τ+am,2τ
2/2]) (18)

is considered first. In this case, dependence on
m in parameter indices will be removed for the
sake of notation brevity. Then, the signal can
be written as:

q(m, τ) = σe(j[a0+a1τ+a2τ
2/2]) (19)

For analysis of this kind of signals we can use
the LPFT [7], [8]:

F (ωτ ,m;α) =

∞∫

−∞

q(m, τ)w(τ)

×e(−jατ2/2)e(−jωττ)dτ, (20)

where w(τ) is a window function of the width
Tw, w(τ) = 0 for |τ | ≥ Tw/2.
The LPFT is ideally concentrated along the

instantaneous frequency for α = a2:

F (ωτ ,m; a2) = σ

∞∫

−∞

w(τ)

×e(j[a0+a1τ+a2τ
2/2])e(−jωτ τ−ja2τ

2/2)dτ =

= σeja0
∞∫

−∞

w(τ)e(−j(ωτ−a1))dτ

= σeja0W (ωτ − a1) (21)

where W (ωτ ) = FT{w(τ)}. Function
F (ωτ ,m;a2) is highly concentrated around
ωτ = a1, since the FT of common wide win-
dow functions (rectangular, Hamming, Han-
ning, Gauss) is highly concentrated around the
origin (in our experiments window width is
equal to the repetition rate Tw = Tr). Radar
image can be obtained from F (ωτ ,m; a2) for
considered a2 by evaluating 1D FT along the
m−coordinate:

Q(ωτ , ωm; a2) =
M−1∑

m=0

F (ωτ ,m; a2)e
−jωmm.

(22)

A.2 Higher order polynomial FM signal

For higher order polynomial signal:

q(m,τ) = σe(jφm(τ)) = σe(jφ(τ)) (23)

the LPFT can be written as:

F (ωτ ,m;α) =

∞∫

−∞

σe(jφ(τ))

×w(τ)e(−jατ2/2)e(−jωτ τ)dτ =
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= σ

∞∫

−∞

exp(jφ(0) + jφ′(0)τ

+jφ′′(0)τ2/2 + jφ′′′(0)τ3/3! + ...

+jφ(n)(0)τn/n! + ...− jατ2/2− jωττ)w(τ)dτ.
(24)

For φ(n)(0) = 0 for n > 2 we obtain highly
concentrated the LPFT for α = φ′′(0):

F (ωτ ,m;φ
′′(0)) = σ exp(jφ(0))W(ωτ−φ′(0)).

(25)
The second derivative of the signal phase is
commonly called chirp-rate parameter.
In the case when higher order derivatives are

non-zero the LPFT will not be ideally concen-
trated and we will have some spread in the
frequency domain caused by the FT of terms
exp(jφ′′′(0)τ3/3! + ... + jφ(n)(0)τn/n! + ...).
The LPFT forms that can be used to remove
effects of the higher order derivatives from sig-
nal phase are introduced in [7], [8]. These tech-
niques are computationally demanding and
difficult for application in the ISAR imaging
in the real-time.
Alternative technique is proposed in [9]. It

is so-called order adaptive LPFT. The width
of the signal’s FT is used as indicator of the
polynomial phase order. Namely, proper order
and parameters of the LPFT are applied if its
width in the frequency domain is close to the
width of considered window function W (ωτ ).
The algorithm for the order adaptive LPFT

determination can be summarized as follows:
• It begins with the ordinary FT calculation
(zero-order LPFT) in the first step. If the
width of this transform in the frequency do-
main is equal to the window width, it means
that the image is already focused and there is
no need for the LPFT order increase. Other-
wise go to the next step.
• Use the first order LPFT form considered in
this paper, eq.(20). If the width of the this
transform in the frequency domain is equal to
the window width, it means that the image is
focused. If the LPFT still have some spread
we should introduce new parameter β in the
transform (next coefficient in the LPFT phase
will be −βτ3/3!) and repeat operation.
This very simple idea could be used for sig-

nals with one or at most few components. In

complex multicomponent signal cases, more
sophisticated technique, based on the concen-
tration measures, will be introduced in the
next section.

A.3 Concentration measure

From derivations given above it can be con-
cluded that for a known chirp-rate parameter
we can obtain a focused radar image (highly
concentrated TF representation). Also, it can
be seen that the ISAR imaging based on the
LPFT for a known chirp-rate parameter is
slightly more demanding than the standard
ISAR imaging since in addition to the stan-
dard procedure it requires multiplication with
the term exp(−jατ2/2). The next question
is how to determine a value of the parame-
ter α which will produce highly concentrated
images. There are several methods in open
literature. Here, the concentration measures
will be used [10—12]. Before we propose our
concentration measure, some properties of the
LPFT will be reviewed. The LPFT satisfies
energy conservation property:

∞∫

−∞

|F (ωτ ,m;α)|
2dωτ =

=

∞∫

−∞

F (ωτ ,m;α)F
∗(ωτ ,m;α)dωτ =

∞∫

−∞

∞∫

−∞

∞∫

−∞

q(m, τa)w(τa)e
(−jατ2a/2)e(−jωτ τa)

×q∗(m, τ b)w(τb)e
(jατ2b/2)e(jωττb)dτadτ bdωτ

=

∞∫

−∞

∞∫

−∞

q(m,τa)w(τa)e
(−jατ2a/2)

×q∗(m, τb)w(τ b)e
(jατ2b/2)δ(τa − τ b)dτadτ b

=

∞∫

−∞

|q(m, τ)|2w2(τ)dτ. (26)

Consider now the measure
∫
∞

−∞
|F (ωτ ,m;α)|

γ

dωτ for γ → 0. Assume that F (ωτ ,m;α) is
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concentrated in a narrow region around the
origin in the frequency domain:

|F (ωτ ,m;α)| = 0 for ωτ ≥ Ω/2. (27)

Then, we obtain:

lim γ→0

∞∫

−∞

|F (ωτ ,m;α)|
γdωτ = Ω. (28)

We can see that the considered measure is
smaller in the case of signals concentrated in
narrower intervals in the TF plane. Therefore,
this type of measure can be used to indicate
concentration of the TF representation. In a
realistic scenario, where signal side lobes and
noise exist within the entire interval, this mea-
sure with γ = 0 cannot be used, since it will
produce approximately constant value. In or-
der to handle this issue, we can use 0 < γ < 2
instead of γ = 0. As a good empirical value
in our analysis we adopted γ = 1. Accurate
results can be achieved for a wider region of
γ ∈ [0.5, 1.5].
The concentration measure based on the

above analysis can be written as:

H(m,α;γ) =
1∫

∞

−∞
|F (ωτ ,m;α)|γdωτ

. (29)

Higher concentrated signal will be represented
by a higher value of concentration measure
(29). This concentration measure has been
proposed [11] where it is analyzed in details
and compared with other concentration mea-
sures. This concentration measure produces
accurate results for multicomponent signals, as
well.

A.4 Estimation of the chirp rate based on the
concentration measure

Determination of the optimal chirp rate pa-
rameter α can be performed by a direct search
on the assumed set of α values:

α̂opt(m) = argmax
α∈Λ

H(m,α; γ) (30)

over the parameter space Λ = [0, αmax]
where αmax is the chirp-rate that corre-
sponds to the TF plane diagonal: αmax =

2π(1/2Ts)/(NTs/2) = 2π/(NT 2s ), where
1/2Ts is the maximal frequency that can be
achieved with sampling rate Ts within repeti-
tion time Tr, Ts = Tr/N . Direct search over a
single parameter is nowadays considered as an
acceptable computational burden. However,
in the case when calculation time is critical,
faster procedures should be used. For exam-
ple, in the case of monocomponent signals em-
bedded in a moderate noise, the LMS style al-
gorithm can be employed. The optimal value
of the chirp-rate parameter can be evaluated
as:

αi+1(m) = αi(m)

−µ
H(t, αi(m); γ)−H(t, αi−1(m); γ)

αi(m)− αi−1(m)
(31)

where [H(m,αi(m);γ)−H(m,αi−1(m);γ)]
[αi(m)−αi−1(m)]

is used to

estimate gradient of concentration measure
and µ is the predefined step. This form of the
algorithm has been implemented and applied
for TF representations in [11]. A very fast (but
sensitive to noise influence) technique for esti-
mation of the chirp-rate parameters has been
proposed in [13].

A.5 Multicomponent signals

Previously described procedure for determi-
nation of the adaptive chirp-rate parameter
can be applied when reflected chirp can be rep-
resented as a monocomponent FM signal. Fur-
thermore, the same procedure can be applied
for multicomponent signals with the same or
similar second derivatives of the signal phase
since search for just one chirp-rate parameter
should be performed. This situation corre-
sponds to close scatterer points in the radar
image with similar motion trajectories.
However, a modification is required in the

case of several components, with different
chirp-rates. Namely, the previously described
algorithm in this case would produce high
concentration of dominant signal component,
while the remaining components would be
spread in the TF plane. The method proposed
in [14] is based on calculation of an adaptive
transform, as a weighted sum of the LPFTs:

FAD(ωτ ,m) =
1∫∞

−∞
H(m,α; γ)dα
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×

∞∫

−∞

F (ωτ ,m;α)H(m,α; γ)dα (32)

where weighted coefficients are proportional to
the concentration measure. In our previous re-
search this method had produced good results
for signals with components of similar mag-
nitudes. However, if signal components sig-
nificantly differ in amplitude, the results are
not satisfactory. Namely, signal components
with smaller amplitude would be additionally
attenuated. In order to avoid this drawback,
we will use the following adaptive local poly-
nomial FT:

FAD(ωτ ,m) =
P∑

i=1

F (ωτ ,m;αi(m)) (33)

where the first adaptive frequency is estimated
as:

α1(m) = argmax
α

H(0)(m,α; γ) (34)

with H(0)(m,α; γ) = H(m,α; γ), given with
(29) and set i = 1. After detection of the first
component’s chirp-rate, values of H(m,α; γ)
in a narrow zone around α1(m) are neglected,
and the search for the next maximum is per-
formed. Each iteration in this procedure could
be described into two steps:

H(i)(m,α; γ)

=

{
H(i−1)(m,α; γ) |α− αi(m)| ≥ ∆

0 otherwise
(35)

αi+1(m) = argmax
α

H(i)(m,α; γ), i = i+ 1.

(36)
This procedure should be stopped after
the maximal value of argmaxαH(i)(m,α; γ)
becomes smaller than an assumed thresh-
old. We set that the threshold is 25% of
maxαH(0)(m,α; γ), i.e., 25% of concentration
measure before we start with peeling of com-
ponents. Note that the parameter ∆ should
be selected carefully so that the next recog-
nized component is not just a “side lobe” of
the previous strong component. In the case
when components have chirp-rates close to
each other, it is enough to recognize single

chirp-rate, since the proposed approach will
improve concentration of all the components
with similar chirp-rates. In our experiments
we assumed that the number of components
with different chirp-rates for considered radar
chirp cannot be larger than 8 and we selected
that ∆ = αmax/16 = π/(8NT 2s ). It produces
accurate results in all of our experiments. Note
that an alternative method for evaluation of
the LPFT is proposed in [15].

A.6 Combination of the results from various
radar chirps

In the case of radar signals we can as-
sume that scatterers at close positions in the
range/cross-range plane have similar motion
parameters. It means that for chirps with sim-
ilar chirp number we can take similar value
of chirp-rate parameter. The chirp-rate esti-
mated for the m-th chirp can be used with
a small error for the next chirp signal, with-
out recalculating concentration measure. This
simplified technique was accurate in simple
simulated reflector geometry. In the case of
complex reflector geometry, with numerous
close components, inaccurate chirp-rate para-
meter estimates are obtained in several per-
cents of chirps. Usage of one chirp-rate for the
next chirps causes the error propagation effect.
Therefore, the concentration measure is calcu-
lated and chirp-rate parameter should be es-
timated for each chirp. In order to refine the
results further, non-linear filtering of the ob-
tained chirp-rates is performed. Assume that
the chirp-rate parameter α(m) is estimated for
each chirp. The nonlinear median filter can be
calculated as:

α̂(m) = median{α(m+ i), i ∈ [−r, r]} (37)

where 2r + 1 is the width of the used median
filter. Note that other filters with ability to
remove impulse noise can be used here instead
of the median filter like for example the α-
trimmed mean filters [16,17].

B. Second form: Adaptive LPFT for regions

of the radar image

Methods for adaptive calculation of the
radar image described so far propose evalua-
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tion of the adaptive parameter for each con-
sidered chirp and possible refinement by com-
bining results obtained on close sensors. The
implicit assumption was that the close points
in the range/cross-range domain have similar
chirp-rate parameters. In order to have more
robust technique, that is able to deal with
more challenging motion models, we propose
alternative form of the adaptive LPFT with
2D optimization of chirp parameters. In defin-
ing this procedure, we keep in mind that rel-
atively small portion of the radar image is re-
lated to the target. Consider just a part of the
radar image above a threshold:

Iε(ωτ , ωm)

=

{
1 |Q(ωτ , ωm)| > εmax{|Q(ωτ , ωm)|}
0 otherwise.

(38)
The region Iε(ωτ , ωm) can be separated into
non-overlapping regions:

Iε(ωτ , ωm) =

pε⋃

i=1

Ii(ωτ , ωm) (39)

where Ii(ωτ , ωm) ∩ Ij(ωτ , ωm) = ∅ for i �= j.
We assume that each region Ii(ωτ , ωm) is the
largest one so that between any two points that
belong to the same region Ii(ωτ , ωm) there ex-
ists a path that passes through points that
belong to the region. Note that the number
of separated regions pε depends on selected
threshold ε. By using the inverse 2D FT we
can calculate signals associated with the region
Ii(ωτ , ωm)

qi(m, τ) = IFT{Q(ωτ , ωm)Ii(ωτ , ωm)},

i = 1, 2, ..., pε. (40)

Now, we can assume that signal qi(m, τ) is
generated by a single reflector. Then, we can
perform optimization of each signal qi(m,τ).
Since this signal is already localized in the
range/cross-range domain, we will not perform
optimization for each τ or m, but only opti-
mization with a single chirp function for each
region Ii(ωτ , ωm):

Fi(ωτ , ωm; α̂i) =

∞∫

−∞

M−1∑

m=0

qi(m,τ)

×e(−jα̂iτ
2/2−jωττ−jωmm)dτ (41)

where

α̂i = argmax
α

1
∫
∞

−∞

∑M−1
m=0 |Fi(ωτ , ωm;α)|γdωτ

.

(42)
The radar image is calculated as a sum of the
adaptive LPFT Fi(ωτ , ωm; α̂i):

Fε,AD(ωτ , ωm) =

pε∑

i=1

Fi(ωτ , ωm; α̂i). (43)

In our experiments we obtain very good results
for ε in a relatively wide range for numerous
radar images.
However, additional optimization can be

done based on the threshold ε. Here, a three-
step technique for threshold selection is con-
sidered. In the first stage we consider various
thresholds ε ∈ Ξ and calculate Fε,AD(ωτ , ωm)
for each threshold from the set. Then, we
calculate the optimal LPFT as Fε,AD(ωτ , ωm)
that achieves the best concentration over ε ∈
Ξ. Since, by introducing the threshold value,
we remove a part of the range/cross-range
plane (see (38)) the energy of Fε,AD(ωτ , ωm)
should be normalized to the energy of signal
above the specific threshold:

F ′ε,AD(ωτ , ωm)

=
Fε,AD(ωτ , ωm)√∫∞

−∞

∑M−1
m=0 |Q(ωτ , ωm)|2Iε(ωω, ωm)dωt

,

(44)

ε̂ = argmax
ε∈Ξ

1
∫∞
−∞

∑M−1
m=0 |F

′

ε,AD(ωτ , ωm)|γdωt

.

(45)
In this procedure the transforms Fε,AD(ωτ , ωm),
ε ∈ Ξ, are compared under unequal conditions
since they are obtained with various thresh-
olds ε and they could have different number
of recognized components. Obtained adap-
tive transform Fε,AD(ωτ , ωm) could be worse
concentrated than a particular F ′ε,AD(ωτ , ωm)
from the considered set of ε values. However,
this radar image is close to the best one and
a small additional manual adaptation around
the estimated ε̂ could be performed in the
third stage of this procedure. In our exper-
iments we obtain that ε̂ is underestimated.
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Fig. 2. Spectral analysis of the linear FM signal: (a) FT with a wide window; (b) FT with a narrow window;
(c) Concentration measure; (d) Adaptive LPFT.

Thus, additional search could be performed
over higher values of ε.

IV. N����
	�� E�������

Several numerical examples will be pre-
sented here to justify the presented approach.
Examples 1-4 are generic signals representing
one received radar chirp that prove that the
adaptive LPFT can be used to produce highly
concentrated TF representation for following
1D signals: linear FM, sinusoidal FM, multi-
component signal with similar chirp-rates and
multicomponent signal with different chirp-
rates. Examples 5 and 6 demonstrate that the
adaptive LPFT optimized for each chirp sig-
nal with filtering data produced by adjacent
radar chirps gives accurate results. Example
7 illustrates the second adaptive LPFT algo-
rithm with optimization for detected regions
of interest in radar image.

Example 1. The first signal that will
be considered is a linear FM signal f(t) =
exp(j64πt2/2) embedded in Gaussian noise

with variance σ2 = 1. The signal is sampled
with ∆t = 1/128sec. The FT of the windowed
signal with a Hanning window of the width
T = 2 sec is shown in Fig. 2a. It can be seen
that the FT is spread. Thus, if this signal is
a part of the received signals reflected from a
target, we will obtain a defocused radar im-
age. Results obtained with narrower Hanning
windows are given in Fig. 2b. Improvement
could be observed from this figure, but gener-
ally speaking it is slight. The concentration
measure (29) for γ = 1 is presented in Fig.2
c, with marked detected chirp-rate parameter.
Finally, adaptive LPFT is given in Fig. 2d
calculated for parameter α for which the con-
centration measure given in Fig. 2c is max-
imized. Significant improvement achieved by
the LPFT is obvious.

Example 2. The second signal is a
more complex sinusoidal FM signal: f(t) =
exp(j16 sin(2πt)). Signal sampling and noise
environment are the same as in Example 1.
The FTs with a wide and a narrow windows
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Fig. 3. Time-frequency analysis of the sinusoidal FM signal: (a) STFT with a wide window; (b) STFT with a
narrow window; (c) Adaptive LPFT; (d) Adaptive chirp-rate parameter.

around a given time instant (STFT), [18], are
depicted in Figs. 3a, b. This STFT illustra-
tion for fixed instant corresponds to the radar
image for considered m. It can be used to
estimate radar image depending on different
chirp-rates. Again we can see that for each in-
stant this representation is spread in frequency
domain. It means that the radar image ob-
tained based on the FT for signal of this form
will be defocused. Adaptive LPFT with a sin-
gle chirp-rate, calculated for each instant, is
given in Fig. 3c. A significant improvement
is achieved. Also, it can be noticed that the
representation is not ideal in the region with
higher order derivatives. These derivatives can
be removed by employing higher order LPFT
form [7]- [9]. Adaptive chirp rate is given in
Fig. 3d.

Example 3. A three component signal:
f(t) = exp(j22πt2 + j48πt) + exp(j32πt2) +
exp(j42πt2 − j48πt) is considered next. The
STFT with a wide and a narrow window is
given in Fig. 4a, b. The adaptive LPFT calcu-
lated as in the case of monocomponent signal
is given in Fig. 4c. It can be seen that the
concentration is improved for all three compo-
nents. Component in the middle is enhanced
the best, but other components with similar
chirp rates are also improved. The adaptive

parameter is given in Fig. 4d. This case
corresponds to a signal obtained from several
scatterers in the same cross-range with similar
chirp-rates. Difference in chirp-rates of these
components in fact is not so small, it is 30% of
the chirp-rate of middle component. It is real-
istic case for numerous targets in practice. We
can see that concentration of all components
is satisfactory. It can also be seen that accu-
racy of this procedure is not affected by the
distance between scatterers points. The same
accuracy is achieved for the left part of Fig.
4c, where we assume that scatterers are far
from each other, as well as in the right part of
this illustration, where it can be assumed that
scatterers are close to each other.

Example 4. Three component signal:
f(t) = exp(j11πt2 + j48πt) + exp(j32πt2) +
exp(j67πt2 − j48πt) is considered. However,
in this case the chirp-rates of components are
quite different (difference between chirp-rates
is more than 60% of chirp-rate of middle com-
ponent). The STFT is given in Fig. 5a, while
the “adaptive” transform, assuming that sig-
nal has single chirp-rate, is given in Fig. 5b.
It can be seen that in each instant, the trans-
form is adjusted to one component, while other
components remain spread. For t < 0.3 the
LPFT is highly concentrated for middle com-
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Fig. 4. Time-frequency analysis of multicomponent signal: (a) STFT with a wide window; (b) STFT with a
narrow window; (c) Adaptive LPFT; (d) Adaptive chirp-rate parameter.

Fig. 5. Time-frequency analysis of multicomponent signal: (a) STFT with a wide window; (b) LPFT with a
single chirp rate parameter estimated in each instant; (c) Weighted adaptive LPFT; (d) Estimated chirp-
rates.
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Fig. 6. Simulated radar image: (a) Results obtained by the FT; (b) Adaptive chirp-rate parameter as function
of m (thick line is linear approximation); (c) Radar image based on the adaptive LPFT.

ponent, but when components are close to each
other (it corresponds to close scatterers) the
adaptive chirp-rate several times switches be-
tween components. The adaptive weighted
LPFT (33) is given in Fig. 5c. It can be
seen that all components have improved con-
centration and that concentration is not in-
fluenced by distance between scatterers. De-
tected adaptive chirp-rates are given in Fig.
5d.

Example 5. Simulated radar target setup
according to the experiment in [4] is con-
sidered. The reflectors are at the positions
(x, y) = {(−2.5, 1.44), (0, 1.44), (2.5, 1.44),
(1.25,−0.72), (0, 2.88), (−1.25, 0.72)} in me-
ters. High resolution radar operates at the
frequency f0 = 10.1GHz, with a bandwidth
of linear FM chirps B = 300MHz and pulse
chirp repetition time Tr = 15.6ms. The tar-
get is at 2km distance from the radar, and
rotates at ωR = 40/ sec . The nonlinear ro-
tation with frequency Ω = 0.5Hz and ampli-
tude A = 1.250/ sec is superimposed, ωR(t) =
ωR + A sin(2πΩt). The FT based image of

radar target is depicted in Fig. 6a. The
radar image obtained by using the adaptive
LPFT calculated for each chirp separately is
presented in Fig. 6c, while the adaptive pa-
rameter for each chirp-signal is given in Fig.
6b. It can be seen that the adaptive parameter
linearly varies between the limits of the target.
However, the impulse like errors in estimation
of the chirp-rate can be observed from Fig. 6b.
It suggests that improvement of the results can
be achieved by filtering chirp-rate parameters.

Example 6. In this example we consider a
B727 radar data. The FT based image is pre-
sented in Fig. 7a. It can be seen that the radar
image is defocused, thus causing the problem
to extract the target. However, radar imag-
ing based on the adaptive LPFT determined
for each radar chirp produces a significant im-
provement in the signal representation, Fig.
7b. In order to obtain better results for close
reflectors, we consider the adaptive chirp-rate
parameter depicted in Fig. 7c as a dotted line.
We expected that removing impulse like dis-
turbances will produce better results. To this
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Fig. 7. B727 radar image: (a) Results obtained by the FT based method; (b) Adaptive LPFT method; (c)
Adaptive chirp-rate - dotted line; Filtered adaptive chirp-rate - dashed line; Linear interpolation of filtered
data - solid line; (d) Adaptive LPFT with interpolated data.

aim median filtering of the adaptive parameter
is performed. In addition, the linear interpola-
tion of estimated chirp-rates is performed (lin-
ear interpolation is depicted with thick line in
Fig. 7c). The result obtained with these pa-
rameters is depicted in Fig. 7d. It is better
than its counterpart in Fig. 7b except for nose
reflectors. A possible reason is fact that the re-
ceived signal corresponding to these scatterers
can have higher order polynomial in the signal
phase. The higher order LPFT forms [7]- [9]
could be used for these scatterers points (see
Section III.A.2).

Example 7. In this example we consider
the same target as in Example 5. The main
difference in this example is in complex motion
pattern that cannot be modeled with just a
rotation. The radar image calculated by using
the 2D FT is presented in Fig. 8a. Region-of-
interest Iε(ωτ , ωm) is determined by (38) with
the threshold set to ε = 0.05. Three separated
regions are detected in radar image denoted
in Fig. 8b in different shades of gray. The re-
gion denoted with 1 corresponds to three radar
scatterers. Since these three scatterers move
in a similar manner, concentration of these
components is significantly improved (see Fig.
8c) with respect to the radar image calculated

with 2D FT. Region denoted with number 3
corresponds to two radar scatterers. In this
case concentration of one of components from
the region is improved, while other component
remains spread. The reason is in fact that
these close scatterers move in a quite different
manner. When we apply threshold ε = 0.2, we
obtain 6 regions of interest that correspond to
6 radar scatterers (Fig. 8d). The resulting
radar image is focused for all scatterers (Fig.
8e). The threshold ε could be set in empiri-
cal manner. However, a procedure for thresh-
old optimization could be very helpful. Con-
centration measure of adaptive LPFT for var-
ious threshold levels is depicted in Fig. 9a and
obtained value in the optimization procedure
is ε̂ ≈ 0.155. The LPFT form with adaptive
threshold is shown in Fig. 9b. It can be seen
that radar image obtained in Fig. 9a is slightly
worse than radar image with additionally ad-
justed threshold Fig. 8e.

V. C��	���
��

The adaptive local polynomial Fourier
transform based method for enhancement of
defocused radar images has been proposed.
Adaptive parameters in the transform are ob-
tained by using a simple concentration mea-
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Fig. 8. Simulated radar image with complicated motion pattern: (a) Results obtained by the FT; (b) Regions
of interest Iε=0.05(ωt, ωm) with three recognized separated regions; (c) Adaptive LPFT based on region
optimization with ε = 0.05, Fε=0.05(ωt, ωm); (d) Regions of interest Iε=0.20(ωt, ωm) with six recognized
separated regions; (e) Adaptive LPFT based on region optimization with ε = 0.20, Fε=0.20(ωt, ωm).

Fig. 9. Adaptive LPFT with adaptive threshold: (a) Concentration measure for various threshold levels.
Optimal threshold value is depicted with dashed line. (b) Adaptive LPFT with adaptive threshold.
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sure. For monocomponent and multicompo-
nent signals with similar chirp-rates, a sin-
gle chirp-rate parameter is estimated for each
chirp. For multicomponent signals with dif-
ferent chirp-rates an adaptive weighted local
polynomial FT should be employed. It has
been shown that the ISAR images could be
improved by combining results achieved from
various chirps. For targets with very complex
motion pattern, separation of the radar image
in regions-of-interests and optimization of the
radar signal within regions is proposed.
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