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SAR Imaging of Moving Targets using
Polynomial F'T

Igor Djurovié¢, Thayananthan Thayaparan, LJubisa Stankovié

Abstract— The polynomial Fourier transform
is employed as a tool for the SAR imaging
of moving targets. An efficient algorithm is
proposed that can be used for radar images
containing both moving and stationary targets.
The proposed algorithm can be used in a form
of the second order polynomial FT, but it can
also be extended to higher order and order
adaptive polynomial FT forms.

I. INTRODUCTION

SAR imaging in the case of both moving
and non-moving components within the same
radar image is a challenging problem. Non-
moving targets are well focused in the Fourier
domain after compensation of the second-order
term in the signal phase caused by the radar
(platform) motion. However, radar images of
moving targets could be spread (defocused)
and dislocated from the true positions [1].
At the same time, focusing of moving tar-
gets in the radar image implies defocusing of
non-moving targets. Several techniques are
employed in the open literature to treat the
problem of defocusing both moving and non-
moving targets in SAR images.

Different tools are used for SAR imaging in
this case:

- Phase differentiation techniques are the
simplest in the field and very accurate for
monocomponent signals [2]. The discrete poly-
nomial transforms belong to this group of tech-
niques [2]-[4]. However, they cannot be accu-
rately used for multicomponent signals due to
interferences between signal components;

- Polynomial higher order ambiguity func-
tions (PHAF) remove cross-terms but they
could introduce spurious components. In ad-
dition they can have problems with unknown
number of signals and /or model of phase of the
signal of interest [5];
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- Integrated generalized ambiguity functions
(IGAF) remove the cross-terms but they are
very demanding due to the employed 2D
search. Also, this technique could suffer from
the unknown order of polynomial in signal
phase [6];

- Improvement in the time-frequency or joint
space/spatial frequency domain by using time-
frequency representations [7]. This could be
very useful for numerous radar images. How-
ever, due to the smoothing of cross-terms
the desired signal components would also be
smoothed. Then, it would be very difficult to
distinguish close reflectors.

In this paper, we will consider a technique
that can be used for radar signals where a sin-
gle return contains information on several tar-
gets, some of them are moving (with different
parameters) and some are non-moving. First,
we will perform the standard radar imaging (8]
based on the Fourier transform (FT) of the re-
ceived signal. Then, all the components that
are well-focused in the FT domain will be sep-
arated from the non-focused ones. For non-
focused components in the FT domain we ap-
ply the polynomial FT (PFT) of the second
order. Focused components from this domain
are removed and the procedure is repeated un-
til all signal components are recognized. Even-
tually, if we detect that the radar return con-
tains signal component of significant energy
that it is not focused yet with the PFT of the
second order, we can proceed with the PFT of
higher order. Similar technique is proposed in
[9]. It is called the order-adaptive PFT. The
proposed technique is based on linear trans-
form with respect to the signal. Tt can produce
the same or similar resolution in radar imaging
as the resolution of the FT based techniques
but with improved concentration of compo-
nents. However, due to the motion caused ef-
fect, the problem of dislocating the radar tar-
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gets from proper positions remains. This ef-
fect is studied in details in [10] with several
approaches for its reduction.

The manuscript is organized as follows. Af-
ter review of the radar signal model in Section
IT and PFT in Section III, an algorithm for
focusing radar images containing both moving
and stationary targets is described in Section
IV. Numerical examples are given in Section
V. Concluding remarks and possible extension
of the approach are discussed in Section VI.

II. MODEL OF RADAR SYSTEM

In order to describe the SAR imaging prob-
lem for images containing both moving and
stationary targets, we will consider a well
known model of SAR system from [1]. This
model is presented in Fig. 1.

Assume that the signal transmitted to-
ward radar target is of the form: sp(t) =
exp{j27(fot +nt2/2)}, 0 <t < T, where f is
the carrier frequency, while 7 is referred to as
a chirp-rate. The received signal is attenuated
and delayed with respect to the transmitted
signal. The baseband version of the received
signal after range compensation can be written
as:

=G [ 210)
xsinc [mndT (t — 2R(t)/c)], (1)

where Cj is a constant corresponding to the
reflectivity coefficient of the radar target, A
is wavelength, 67 is the width of compressed
pulse, and c is velocity of light. For a moving
target the distance between the radar and the
target can be written as eq. 2 (at the top of
the next page.)

Note that v is the aircraft velocity, (vs,vy)
and (ag,a,) are the target velocity and accel-
eration in corresponding directions, h is the al-
titude of the platform (aircraft) while (xo,yo)
is the target position with radar mounted on
the board of the aircraft. The Taylor series
expansion of R(t) produces:

R(t) ~ R(0) + R'(0)t + R"(0)t*/2 =

ToVz + YoUy — ToV
Ry

Ry + t+
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v2 + UE. + ”5 + 200z + Yoay — 200, 5
% (3)
2Ry

where Ry = \/x3 + y3 + h2. For non-moving
target the relation R(t) ~ Ry — xovt/Rp holds
(with compensated term v?t?/2R,) and the
received signal (for compensated term ¢ =
2R(t)/c) is:

So(t) = C() exp{fj47rR0/)\ + j4’/T1'0’Ut/R0)\}.
(4)
This signal is well-concentrated in the FT do-
main at the frequency proportional to xg, i.e.,
at 2xgv/Ro.
By assuming that g < Ry and Ry ~ o,
for moving targets we have additional terms
in the signal phase, producing the signal:

s0(t) & Coexp{—jdmRo/\ + jdmzouvt/RoA} x

x exp{—j2m2v,t/\}

x exp { —j4r[(v — vs)? + v} + Roay]t*/2RoA} .
(5)

From this derivation we can conclude that
the baseband return is shifted for 2v,/A due
to the motion in the y direction. Also, the
quadratic phase term, equal to 47 [(v — v;)% +
U; + Roay]t? /2Ry, causes spread of compo-
nents. Note that we can again assume that the
term caused by the aircraft motion is compen-
sated, reducing the chirp-rate of the spread-
ing component to approximately 4r[v2 Jer +
Roay]tQ/QR())\.

From (5) one can conclude that there are
two negative effects caused by the motion of
targets: shift and defocusing introduced by
higher order derivatives in the signal phase.
Focusing of moving targets image by compen-
sating the chirp-rate of (5) (~ 4rn[v? + U; +
Roay]|/2Ro\) would cause spread in radar im-
age of non-moving targets. It means that we
have to apply different kinds of processing of
signals received by various radar targets. To
this aim, we apply a simple algorithm for sep-
aration of signals from the mixture and fo-
cusing each signal by using the PFT of the
second order proposed for ISAR systems in
[11]. However, some recent surveys and ex-
periments have shown that for some realistic
applications, including traffic monitoring, the
received signal has polynomial phase of order
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R(t) = \/(vt — Uyt — agt? /2 — 20)? + (Yo + vyt + ayt?/2)% + h2. (2)

higher than 2. For details on these experi-
ments refer to [7], [12]. For this case our ap-
proach can easily be upgraded employing the
order adaptive PFT [9].

Note that the backprojection technique is
considered recently for the SAR imaging as
an alternative to the considered radar model.
This technique stems from the computer to-
mography [13], [14]. There are several ad-
vantages of this technique including using of
the polar instead of the Cartesian coordinate
system. In this case, the polar system more
accurately describes considered problem. In
addition, processing of radar images in the
case of the backprojection algorithm can be
performed pixel-by-pixel (employing some in-
terpolation strategy) without waiting for all
radar returns. The backprojection algorithm
has relatively high computational complexity
that requires some sort of parallel processing
in order to achieve real time calculation. How-
ever, radar model in this paper assumes that
radar target is relatively far from the aircraft
platform as in [7]. It means that errors caused
by using the Cartesian are small comparing to
the polar coordinate system. Thus we will con-
tinue to study problem of SAR imaging with
the FT based approach.

III. PorynoMIAL FT

Here, we will describe the PFT that will be
used as a tool for SAR images focusing. As
far as we know the PFT of the second order is
used in [15] for detecting moving targets but
not for imaging. Our approach has several ad-
vantages with respect to this technique since
we can efficiently calculate the PFT of the
higher order polynomial phase signals (PPS)
using order adaptive PFT form [9]. In ad-
dition, since the chirp-rate that corresponds
to the moving object is relatively slowly vary-
ing our approach offers possibility to perform
search for chirp parameters over reduced pa-
rameter space. Note that the PFT is applied
in the ISAR imagining in [11]. However, the
algorithm in the case of SAR images is signifi-

cantly different due to different type of targets
and radar parameters.

The standard FT of discrete-time signals
can be defined as:

X(w) =) z(n)exp(~jwn) (6)

n

where it is assumed that the signal z(n) is a
discretized version of the continuous time sig-
nal z(n) = z(nAt), sampled with sampling
rate At selected according to the sampling the-
orem. For sinusoidal signal x(t) = exp(jwot),
the FT is concentrated on the frequency w =
wo, 1.e., X(w) = 2mé(w — wp) for signal with
relatively large number of samples. Then, we
can perform the estimation of the frequency of
sinusoid by using the FT as:

wp = arg max | X (w)]. (7

However, for the PPS x(n) = exp(j¢(n)), with
(o)

#(n) = > axn® the FT exhibits:
k=1

X(w) ~ 2m5(w — ¢'(0))*,

FT {exp (j iqﬂf) (0)nF /k!) } NG

k=2

where ¢'(0) and (b(k)(O), k = 2,3,... represent
respectively the first and higher-order deriva-
tives of the signal phase evaluated for n = 0
(i.e., for t = 0), and *,, denotes the frequency
domain convolution. Obviously, the problem
of signal parameters estimation from (8) is not
trivial. We need more sophisticated tools than
the simple FT. In addition, X (w) given in (8)
is spread in the frequency domain due to the

term FT {exp (j 3 o™ (0)nk/k! } caused

k=2
by the higher order derivatives. Omne of the
ideas is to perform the phase differentiation
by using the correlation of signal in the time
domain [2], [6]. They have proposed decreas-
ing the order of polynomial in the signal phase
until a sinusoidal signal is obtained. By us-
ing the FT of this signal we can determine
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Fig. 1.

the coefficient of the highest polynomial in the
signal phase. The estimated coefficient of the
highest order term in polynomial expansion is
used in the estimation of the lower order co-
efficients. This procedure is not accurate in
the case of multicomponent signals since au-
tocorrelations would have cross-terms caused
by multiple components. In addition, errors
in estimation of the highest order coefficients
propagate to estimation of lower order coeffi-
cients.

The PFT is reinvented several times in sci-
ence under different names [16]-[18]. Detailed
asymptotic accuracy analysis of this transform
is performed in [19], [20]. The PFT can be de-
fined as:

X(wa 2, (3, ...,O{k)

3 —jaynk).

(9)
Obviously, for the PPS of the k—th order,

k
x(n) = exp (j > aml), the PFT will be ide-
=1
ally concentrated at the position correspond-
ing to the signal parameters w = ay, oy = q
for [ = 2,...,k. Then, parameters of the PPS

Z z(n) exp(—jwn—jaon®—jasn

n

Model of SAR system.

of the k—th order can be estimated by using
position of the PFT maximum:

(G1,a2,...,45) =

arg max

(w,2,...,0p

|X(w;a2,a3,...,ak)|. (10)

The PFT for signals of the corresponding or-
der (when the order of polynomial in signal
phase is the same as the order of the PFT)
is the maximum likelihood (ML) estimate of
the PPS parameters. However, the remaining
problem is in dimensionality that can intro-
duce significant memory and calculation re-
quirements. An additional problem could be
mismodeling (using the higher order PFT to
capture signals with lower order of polynomial
in the phase or using the lower order PFT
to capture higher order of polynomial in the
signal phase). However, our goal is to obtain
a focused SAR image but not to perform ex-
tremely precise signal parameters estimation.
It is more important that radar images are fo-
cused, as high as possible, and that the calcu-
lation requirement is within reasonable limits.
Both of these effects can be achieved by using
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the PFT of the second order:

X(w;a) = Zw(n) exp(—jwn — jan?). (11)

n

For signal (n) = exp(jwon + jan?) the ideal
concentration on central frequency w = wg can
be achieved for &« = a. Thus, our goal is to
estimate the parameter a, @ = a in order to
concentrate (focus) the signal (radar image)
on the frequency w = wyg (position). When
the signal contains higher order polynomial in
the signal phase, we have two possible strate-
gies. The first is to assume that higher order
derivatives (third and other higher order) do
not contribute significantly to spreading com-
ponents and to perform the procedure as in the
case of the signals of the second order polyno-
mial in the phase. The second strategy is to
employ the recently proposed order adaptive
PFT approach [9] where in each stage of the
procedure the order of polynomial in the signal
phase is increased until the well concentrated
signal component is obtained. Then, instead
of multidimensional search for signal parame-
ters over k—dimensional parameter space, the
procedure is reduced to k searches over an
1—dimensional parameter space.

The main advantages of the approach based
on the PFT are its closeness to the ML esti-
mate (it means that this technique is robust
to noise influence) and at the same time this
transform is linear (there are no effects associ-
ated to the cross-terms). In the next section,
a procedure for focusing SAR image based on
the PFT is introduced.

IV. ALGORITHM FOR IMAGING OF MOVING
TARGETS

Signals received from radar target will be
denoted as: so(t,m), m =0,...., M — 1, where
m represents the chirp index. We assume that
the signal is sampled with sampling rate At =
T/N, so(n,m) = so(nAt,m). The standard
radar image can be obtained as a 2D FT of
the dechirped version of received signal:

S(wn,wm) = FT{so(n,m)} =

Z Z s0(n, m) exp(—jwpn — jw,m). (12)

n m
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This radar image can be alternatively rep-
resented by using two 1D FTs as:

S(Wm Wm) = Z SO(Wm m) exp(—jwmm),

(13)
where

SO(Wm m) = Z 50 (n7 m) eXp(_jwnn)- (14)

n

The obtained image could be non-focused for
the moving targets, as well as dislocated from
the proper position. Now we will describe the
algorithm for focusing the radar target.

Algorithm

FOR each m

Let p(n,m) = so(n,m) and R(w,,m) =
> p(n,m)exp(—jwy,n) and I =1, &y = 0.

WHILE radar return p(n,m) contains sig-
nificant energy

Calculate

S1(wn, m) = R(wy, m) (15)

for (wn,m) representing well-focused com-
ponent (target) in the FT domain and
St(wn, m) = 0 otherwise. Non-focused compo-
nents are updated as: R(wp,m) < R(wp,m)—
St(wn, m). Calculate

p(n,m) = IFT{R(w,, m)exp(jan?)}. (16)

Set I« I+1.

FOR « € A (for various chirp-rates from
the considered set A)

Calculate

Ru(wn,m) = Zp(n, m) exp(—jwnn — jan?).

(17)
ENDFOR
Estimate the chirp-rate of the radar returns
as:

(&, 0n,) = arg max |Rg(wp, m)|,

(et,wn,
R(wn,m) = Ra, (wn, m). (18)
ENDWHILE
ENDFOR

Radar image is calculated as:

S(wn, wm) =
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= Zizl Zm Sy(wn, m) exp(—jwmm).
(19)

Comments to the algorithm.

1. There are several ideas how to deter-
mine what is relatively high energy. For noise-
less signal it can be determined by using the
following technique. If the total energy is
>, 3 |so(n,m)[?, then the average energy
in a single return is > > |so(n,m)>/M.
We are considering only chirps (or chirps with
already removed components) p(n,m) with
energy larger than > > |so(n,m)*/M,
where € is a small positive number. In sim-
ulations, the conservative value of ¢ = 0.02 is
adopted producing significant calculation sav-
ings for noiseless signals.

However, in the case of signals corrupted by
certain amount of noise, this technique does
not produce any savings of calculations and
we need some alternative way for reducing the
number of received chirps for which the search
is performed. For this purpose the noise vari-
ance is estimated. Here, we will describe the
procedure for the Gaussian additive noise envi-
ronment, while similar techniques could be de-
veloped for other noise environments and mod-
els of clutter and backscatter data [21]. Un-
der the assumption that the noise environment
is Gaussian, the variance can be estimated as

[22], [23]: ,

Q>

6%+ 67 (20)

2Ly
Z&:}(m)

I
<
Q

Q>

R(m)

(21)

X
I
S

where

&R(m):medianﬂ Re{p(n+1,m) — p(n,m)}|}

0.6745+/2

orim
1(m) 0.6745v/2

(22)
Relation (22) is a well-known estimator of the
standard deviation of the Gaussian noise. In
this case estimates are calculated for each m
and averaged using (21). Final estimate of the

:median{| Im{p(n +1,m) — p(n, m)}|}
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variance is performed by summing estimated
variances for the real and imaginary parts.
Then, the threshold can be set as: KN&2 where
N is the number of samples within single chirp
and k is a constant. We set k = 3, ie., a
received chirp should have at least three av-
erage noise variances in order to be distin-
guished from the noise. Similar results can
be achieved for x in a wide range of values
k € [1,10]. An alternative technique for esti-
mation of the noise variance for this type of
signals is described in [24]. In addition, we
can perform the estimation of the amplitude
of the useful signal based on techniques de-
scribed in [23] or [24] and we could set thresh-
old based on both the estimation of the sig-
nal amplitude and the noise variance estima-
tion. Note that the proposed variance estima-
tion procedure could be performed for each in-
stant n by estimating the standard deviations
for fixed n as 6g(n) =median{|Re{p(n,m +
1) — p(n,m)}|}/0.6745+/2 and in similar man-
ner for the imaginary part of noise. The ob-
tained variance estimate should be averaged.
This can produce more accurate results since
signal p(n,m) varies more slowly along the m
coordinate than along the n coordinate (this
estimator of the variance is proposed under
stationary signal assumption). In addition, es-
timates 6 gr(n) and 67(n) could be more accu-
rate due to the reason that a significant part
of the blurring occurs in the cross-range do-
main. However, relations (22) could be used
to produce the noise variance estimate for each
chirp (equal to KN [6%(m)+67(m)]) and for se-
lecting different threshold values for each chirp
what could be reasonable solution for applica-
tions when radar image is formed by using a
large number of chirps and when noise para-
meters could be varying for various chirps.

2. The next question, arising from the pro-
posed procedure, is how to detect well concen-
trated components S;(wy,,m). These compo-
nents are higher than some specific threshold
but they should also be relatively sharp local
maxima. We assume that (w,, m) belongs to
the well focused region of the radar image if:

|[R(wn,m)| > &' max |R(wa,m)|  (23)
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and:

| R(wr,, m)| > n;|R(wy, £iAw,m)|, i =1,2.
(24)
The purpose of the first condition in (23) is
to remove the components with very small
magnitude comparing to the maximum of
|R(wn,m)| for a given chirp m. The second
condition selects only well concentrated local
maximum. For example, if the von Hann win-
dow is applied to the FT we know that the
maximum of the sinusoid on the frequency grid
has magnitude twice of the magnitude of the
FT in neighbor samples. Then if we find this
kind of pattern we can assume that we de-
tected a highly concentrated component (well
focused signal in the SAR image). In order to
be more robust to the noise influence and to
deal with potential application of alternative
window functions, we adopted the coefficients
17, = 2 and ny = 4. If (©,, m), for the con-
sidered «, belongs to useful component, then
we assume that samples separated by less than
2Aw from @,, belong also to the useful focused
component:
St(wn,m) =

B { R(w,,m) for |w, — @] < 2Aw (25)
o 0 elsewhere.

Note that Aw is the frequency sampling dis-
tance in w, direction and it depends on the
sampling rate At = T/N. This value exhibits
Aw = 27/T but it can be translated to the
position of the radar target. Namely, the reso-
lution in z domain in the radar image is equal
to Az = RoA/2vT.

Note that R(w,,m) can have several highly
concentrated components. These components
represent targets moving with similar parame-
ters. For example cars going over the road in
the same directions. Then all targets that are
highly concentrated can be removed from fur-
ther analysis in this stage and we can proceed
with searching for components with different
chirp-rates.

3. In the case when the radar return p(n, m)
contains significant energy but we cannot de-
tect highly concentrated component it can be
assumed that this component has a form of
the higher-order PPS. Then we can apply the
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order adaptive PFT as:

Rdlﬁ (w”“ m) =
= Z p(n,m) exp(—jw,n — jarn? — jBn>)

(BI,LD”I) = arg max |Rs, g(wn,m)|. (26)

sWn
We can set R(w,,m) = R&I,Bj(wn,m) and
remove the highly concentrated components.
After removing highly concentrated compo-
nents from R(w,, m), signal p(n, m), that will
be used for selection of other signal compo-
nents, can be obtained as:

p(n,m) = IFT{R(wn, m) exp(jén®+jBn*)}.

(27)
The procedure could be generalized to search
for higher order coefficients as well. However,
in our experiments it has been shown that the
order three is commonly enough for radar im-
ages of our interest and that further increasing
of the polynomial order could introduce prob-
lems with noise influence and with overmodel-
ing signal phase.

4. The proposed technique does not solve
the problem of displacement of the radar tar-
get from the true position caused by the mo-
tion in y direction. Techniques for reducing
(removing) the displacement are studied in
[10], [25]-[28]. Kirscht has proposed to con-
sider multiple frames of radar image and to
perform motion parameters estimation based
on standard algorithms from video signals
processing [27], [29]. Then the estimated ve-
locity v, can be used for the compensation
of displacement in (5). The same procedure
can be performed for the proposed PFT-based
radar imaging. In addition, the PFT technique
does not require the estimation of chirp-rates
for each frame since it can be assumed that the
chirp-rate varies relatively slowly. In the worst
case scenario, the search for the chirp-rate in
subsequent frames should be performed over
very small number of chirp-rate parameters
around the chirp-rate detected for previous
frame. This is an important advantage of the
proposed technique that helps in keeping the
computational requirements within reasonable
limits.
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5. Performing fair comparison of calcula-
tion complexity of the proposed algorithm and
standard SAR radar imaging is quite difficult.
Namely, complexity of the proposed algorithm
depends on the shape of the radar image, i.e.,
number of moving objects, number of moving
objects with different motion parameters, and
size of radar targets. Before we give some data
about complexity of the proposed algorithm
we should discuss two critical steps in the pro-
posed algorithm. The first step is search of the
optimal chirp-rate. This is quite complex pro-
cedure since it requires RM N log,(MN) op-
erations, where M x N are dimension of the
radar image and R is number of chirp-rates in
the set A. Fortunately, the suboptimal proce-
dure proposed in [30] based on the LMS algo-
rithm requires relatively small number of iter-
ations (not exceeding 10) in order to get a sub-
optimal estimation of chirp-rate parameter. In
addition, we are considering only those returns
containing significant energy and we are re-
moving other returns from further processing.
Then this part of procedure has complexity
of the order of magnitude rpM N log,(MN)
where 7 < R (commonly r € [5,10]) and
p is percentage of chirps with significant en-
ergy. In addition, we can further simplified the
proposed algorithm since the large number of
samples in S(w,,m) is set to be zero. Then it
can be applied some of FFT algorithms that
are using information about zero-samples [31],
[32]. For radar-image of dimension M x N with
in () non-zero samples, calculation complexity
of these algorithms is O(M N log, Q). Then
complexity of the PFT in the first stage of the
algorithm is of the order O(prM N log, pM N).
However, in the next step well concentrated
objects are removed from the PFT and we can
calculate the PFT for the remaining radar im-
age by removing from the PFT of radar im-
age obtained in the previous step the PFT
of the radar image of highly concentrated ob-
jects. These highly concentrated objects oc-
cupy very small part of image and again we
can use simplified procedure for evaluation of
the PFT from [31], [32]. In order to illustrate
calculation complexity consider the following
setup: size of radar image M x N = 256 x 256,
number of iteration in the search for opti-

1443

mal chirp-rate r = 10, p = 25% of chirps
with significant energy, 5 objects of 16 pix-
els each with different chirp-rates (motion pa-
rameters). Then, we need M N logy MN op-
erations for calculation of the standard radar
image. For the first step in evaluation of the
PFT we need additional rpM N log, pM N op-
erations. In the next stages for remaining 4
objects we need 4rM N log, 16 operations. In
total we need: 13828096 operations. The stan-
dard radar imaging requires 1048576 opera-
tions. The proposed algorithm requires about
13 times more operations for this setup than in
the standard SAR imaging but this complexity
has been paid off with significant improvement
in the radar image quality.

V. NUMERICAL STUDY

The experiment is inspired by the Environ-
ment Canada’s airborne CV 580 SAR system
described in [7]. A high resolution radar op-
erating at the frequency fo = 5.3GHz (fre-
quency of the C-band of the CV 580 SAR sys-
tem). The bandwidth of linear FM chirps is
B = 25MHz, duration of the pulse is T =
1/300s. Signal is sampled with At = T/N,
where N = 256 and number of pulses within
one revisit is M = 256. The platform (air-
craft) velocity is 130m/s. The radar altitude
is h = 6km. For considered model the max-
imal difference for single cell between polar
and Cartesian coordinates is about 6% (less
than 40cm). In this experiment we consider
the radar image containing 8 targets. Radar
returns from all 8 point scatterers can be ob-
tained by using the superposition principle, as
a sum of the individual returns. In the case of
stationary targets, the radar image is shown in
Fig. 2a. This radar image is obtained by the
2D FT processing. It can be noticed that all
targets are well concentrated (focused). How-
ever, when the targets in the corners are mov-
ing the radar image obtained with standard
techniques is spread, Fig. 2b. Velocity of
moving targets is represented by linear law as:
o) = 0(0) +al¢, v (£) = v{P(0) +a't,
i = 1,2,3,4. Parameters of the motion are
selected as: V, = [vg(gl)(O) vg(gz)(O) vg(f’)(())
oiY(0)] = [12 =20 0 —10jm/s, V,, = [v{"(0)
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. v$(0)] = [0 10 20 —20Jm/s, A, = [a}”
af? Y o] =000 2m/s? and A, = [0
0 1 0Jm/s%. It can be seen that corner tar-
gets are dislocated and spread from the true
positions. The proposed algorithm is applied
with the set of chirp-rate parameters selected
as a € A = [—0.005,0.005]. Domain of chirp-
rates can be determined according to a pri-
ory knowledge about expected maximal veloc-
ity and acceleration of the target and distance
Ry. Since calculation is performed for discrete
time signals, this maximal chirp-rate should be
normalized by a square of the sampling rate
At = T/N. Obtained results are presented
in Fig. 2c. It can be seen that all radar tar-
gets are well focused. In order to demonstrate
an advantage of our algorithm over the time-
frequency representations, we are considering
the signal independent S-method based radar
imaging [33] that has shown good accuracy
and high concentration in numerous consid-
ered trials, Fig. 2d. However, this transform
cannot separate very close components in the
radar image. It can be seen from Fig. 2d that
on two positions, for close scatterers, we have
cross-terms caused by mutual influence of sig-
nal components. These positions are marked
with ellipses on Fig. 2d.

Fig. 3 depicts the same setup but now with
additive Gaussian noise. All targets have the
same reflectivity coefficient Cy = 1. The sig-
nal is embedded in the Gaussian white addi-
tive noise with variance 02 = 100. It can be
seen that the proposed transform works very
accurately. The proposed thresholds in this
case keep low number of chirps for which the
proposed optimization procedure is performed.
As an additional benefit, this algorithm setup
rejects significant portion of the additive noise.

The third setup we consider here is com-
mon for the Ground Motion Target Identifi-
cation systems (SAR/GMTI). In this setup
we have 16 targets of which 8 are moving in
the same direction with similar motion para-
meters, while other 8 targets are moving in
opposite direction with similar motion para-
meters. These targets could illustrate mov-
ing of cars in two different directions along the
same road or motion of tanks on a battlefield.
In the first stage of the algorithm we recog-

TIME-FREQUENCY SIGNAL ANALYSIS

nize dominant chirp-rate corresponding to one
group of targets. Then all radar images of
radar targets moving in the same direction are
highly concentrated (focused) and we can re-
move all these targets from radar image. In
the next step we detect the chirp-rate para-
meter corresponding to other targets. Then,
this procedure calculate the PFT-based image
within two basic steps even if we have 16 dif-
ferent targets in the radar image. In Fig.4 the
following radar images are given: radar im-
age of non-moving targets (Fig. 4a), the FT-
based radar image (Fig. 4b), the PFT-based
radar image (Fig. 4c) and the S-method-based
radar image (Fig. 4d). Again we can observe
the same effect as in the previous two cases.
Namely, the standard radar image of moving
targets is very spread while in the case of the S-
method we have cross-terms between some of
radar targets. The proposed technique (PFT)
produces quite good results in this case with
highly concentrated targets and without inter-
ference terms.

VI. CONCLUSION

The PFT-based algorithm for focusing SAR
images has been proposed. The algorithm can
be performed in two modes: with second order
PET or with the order-adaptive PFT. The al-
gorithm performs accurately even in relatively
high noise environment. It is based on the lin-
ear signal representation and it can produce
very high resolution of the radar image with
moving targets that is close to the resolution of
the FT for radar image with non-moving tar-
gets. The algorithm with order adaptive form
of the PF'T can compensate higher order poly-
nomial in the signal phase without employing
consuming search over a k—dimensional para-
meter space.

Further research will be concentrated to re-
duce the motion displacement effects. Also, it
has recently been shown in [34] that for multi-
component signals phase differentiation tech-
niques produce suboptimal results even in the
case when cross-terms are removed. Then, it
would be very interesting to apply the phase
differentiation (higher order ambiguity func-
tion) with non-linear optimization approach
proposed in [34] in order to achieve two goals:
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Fig. 2. SAR imaging of 8 targets: (a) Non-moving targets, FT based imaging; (b) Moving target, FT based
imaging; (c) Moving target, imaging based on the proposed approach; (d) Moving target, imaging based on

the SM.

focused radar image for multicomponent sig-
nals with reduced calculation complexity. In
addition, the proposed approach can be ap-
plied to the newly proposed SAR systems with
generalized inverse synthetic aperture radar
geometry [35].
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