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Time-frequency based detection of fast
maneuvering targets
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Abstract–The time-frequency representation
is a powerful tool for analysis of non-stationary
signals. In the past decades, time-frequency
representations have been primarily devoted to
the analysis tasks in the sense that they were
introduced so as to depict time-frequency struc-
ture of time-varying signals and non-stationary
processes in the time-frequency plane. Also,
there has been a permanent interest in tackling
decision problems by means of time-frequency
representations. In this paper, we present a
time-frequency based detection scheme in the
high-frequency surface-wave radar (HFSWR)
for detection of maneuvering air targets in the
presence of noise. Performance of the proposed
method is evaluated by using both synthetic
and experimental data. In addition, the pro-
posed time-frequency detection scheme is ex-
amined in detail with various signal-to-noise
ratio. This time-frequency based detection
method is then compared to the Fourier-based
detector. Results clearly demonstrate that the
time-frequency based detector can significantly
improve detection performance in the HFSWR,
as well as add new physical insight, compared
to the conventional Fourier-based detector, cur-
rently used by HFSWRs.

I. I������	�
��

Traditionally, radar signals have been ana-
lyzed in either time or frequency domain. The
Fourier Transform (FT) is at the heart of a
wide range of techniques that are generally
used in radar data analysis and processing.
However, the change of frequency content with
time is one of the main features we generally
observe in radar data. Most of radar signals
belong to the class of non-stationary signals.
The analysis of non-stationary signals requires
technique that extends the notion of a global
frequency spectrum to a local frequency de-
scription. Joint time-frequency analysis, us-
ing time-frequency representations (TFR) or
wavelet transforms, has improved the analy-
sis of non-stationary signals by revealing time-
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varying information embedded in signals [1],
[2].

During the past ten years, time-frequency
analysis has been a major area of research in
radar signal processing. One of the main chal-
lenges in radar detection is in the unknown
nature of the target’s motion. Commonly
used technique for radar signal detection is a
Fourier-based one, which assumes time invari-
ance of the Doppler frequency. However, in
real-world radar detection scenarios, when a
target exhibits complex motion, such as ac-
celeration or maneuvering, standard Fourier-
based methods fail to reveal a complete pic-
ture of the temporal localization of the sig-
nal’s spectral components. The TFR extend
the fundamental concept of spectrum to non-
stationary signals and facilitate time-varying
spectral analysis by representing signal charac-
teristics jointly in terms of time and frequency
[1]-[7].

Detection of an unknown deterministic sig-
nal in a high noise environment is of cru-
cial interest in many real-world applications.
In the case of a stationary signal, for exam-
ple, sinusoidal signal with constant frequency,
the FT concentrates all the signal’s energy at
one frequency point, while the noise is dis-
tributed over many frequencies. Thus, it is
easy to conclude that the FT-based detec-
tion method provides the optimal detection in
the case of stationary signal and white noise,
when noise components are distributed uni-
formly over whole frequency range. However,
for non-stationary signals, i.e., when the fre-
quency content of a signal changes over time,
the spectral content of such signals becomes
time-varying. Then, the FT-based detector
will not provide the optimal result. In this
paper, we present a time-frequency based de-
tection scheme in the high-frequency surface-
wave radar (HFSWR) for the detection of ma-
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neuvering air targets in the presence of high
noise. The basic idea is to use a method
that produces highly-concentrated energy of
the desired signal around the instantaneous
frequency (IF) and then to apply integration
along the IF line. In the case of high noise,
an algorithm for finding possible IF paths is
proposed. In this way, the detection perfor-
mance will be as high as in the case of constant
frequency estimation using the FT method.
The time-frequency based detection method is
compared with the FT-based detector. The
proposed method is then applied to the real
radar signals with artificially added and in-
creased noise.

The paper is organized in the following man-
ner. Signal detection via the FT is reviewed
in Section 2. Section 3 deals with the time-
frequency tools in detection, including the de-
finition of an algorithm for path finding. Ef-
ficiency of the proposed method is demon-
strated in Section 4, along with its compari-
son to the FT-based detector and application
to the real radar data. In Section 5, the con-
clusions are presented.

II. S
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Let us consider a single component de-
terministic signal with unknown discrete fre-
quency ω0

x(n) = Aejω0n, (1)

and observation

s(n) = ξ · x(n) + ε(n),

where ε(n) is a complex zero mean Gaussian
white noise with independent real and imagi-
nary parts, with variance σ2ε. Variable ξ can
take values ξ = 0 (absence of the signal x(n))
and ξ = 1 (presence of the signal x(n)). Sup-
pose that there are N samples of the discrete
signal s(n). The finite FT of the signal s(n) is

S(k) = ξNAδ(k − k0) + εF (k), (2)

where εF (k) is also complex zero mean
Gaussian white noise, with variance σ2F = Nσ2ε
and k0 = ω0N/(2π). The expected value of the
signal spectrum is

E[|S(k)|2] = N2|A|2δ(k− k0) +Nσ2ε for ξ = 1

E[|S(k)|2] = Nσ2ε for ξ = 0 (3)

Now we can make decision about presence of
the deterministic signal x(n) in noisy samples
s(n) as

ξ̂ =

{
1 for max[|S(k)|2] > RS2 ,
0 for max[|S(k)|2] ≤ RS2 ,

(4)

where RS2 is the threshold level. False alarm
probability PFA can be determined by analyz-
ing the statistical properties of the noise, while
magnitude of the signal x(n) must be known
in order to determine the probability of signal
detection PD. A common method for deter-
mining the threshold level RS2 is a constant
false alarm rate method (CFAR), where the
probability PFA is kept constant. In the ana-
lyzed case we have

PFA = P [|εF (k)|
2 > RS2 for at least one k]

= 1− P [|εF (k)|
2 ≤ RS2 for every k]

= 1−
N−1∏

k=0

P [|εF (k)|
2 ≤ RS2 ]. (5)

where P [·] denotes probability of event [·].
The square absolute value of complex ran-

dom variable with Gaussian probability distri-
bution is a random variable with Chi-square
probability distribution with two degrees of
freedom so we have

PFA = 1−

(
1− e

(−
R
S2

Nσ2
ε

)
)N

, (6)

Now we can determine the threshold level RS2 ,
which depends on the probability PFA,

RS2 = − ln(1−
N

√
1− PFA)Nσ2ε. (7)

To determine the threshold level, the noise
variance must be known. This variance can be
estimated by using data samples of the signal
s(n) according to [3] as

σ2ε
∼= 1.1[median

1≤i<N
(|Re[s(i)− s(i− 1)]|)2+

+median
1≤i<N

(| Im[s(i)− s(i− 1)]|)2]. (8)

In many cases, the discrete frequency of the
deterministic signal does not satisfy the rela-
tion ω0 = 2πk0/N , where k0 is an integer. In
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these cases, when ω0 �= 2πk0/N , the detec-
tion result can be improved (probability PD
increased) by zero padding before the FT cal-
culation.

If the deterministic signal x(n) is non-
stationary it can be written as

x(n) = A(n)ejϕ(n), (9)

where ϕ(n) is a nonlinear function. In this
scenario, the Fourier-based detector is not the
optimal one. When signals are non-stationary,
the detection capability of the Fourier-based
detector is limited. In these cases, the detec-
tion problem can be solved in a better way
by using time-frequency analysis of the signal
s(n). Before we start time-frequency formula-
tion, in order to better illustrate its efficiency,
we will introduce an intermediate step, the
parametric processing of non-stationary sig-
nals.

A. Parametric Processing Extension of the

Fourier Transform

A non-stationary signal of the form x(n) =
A(n)ejϕ(n) can be processed by using a para-
metric form of the FT

X(k) =

N−1∑

n=0

A(n)ejϕ(n)e−jψ(n;a0,a1,...,aP )e−j2πkn/n,

(10)
where N is the signal’s duration and
ψ(n;a0, a1, ..., aP ) is a function with P pa-
rameters. If we are able to match the
form of ϕ(n) with ψ(n; a0, a1, ..., aP ) and
find the parameters a0, a1, ..., aP such that
ϕ(n) = ψ(n; a0, a1, ..., aP ) up to a lin-
ear phase term (constant frequency), then
ejϕ(n)e−jψ(n;a0,a1,...,aP ) would be a pure sinu-
soid. Then, all the conclusions valid for the FT
based detector could be applied [15]. In order
to match the form of ϕ(n) we can apply in-
stantaneous frequency estimation techniques,
the fractional Fourier transform [11], [12] or
discrete polynomial Fourier transform [13], if
the signal phase is polynomial.

In order to illustrate these methods, which
will lead to a non-parametric time-frequency

based signal detection, consider the discrete
short time Fourier transform

STFT (n, k) =

N /2−1∑

τ=−N/2

w(τ)x(n+ τ)e−j2πkτ/N

(11)
with Hanning window w(τ) of discrete length
N = 32 and N = 256 samples along the
frequency axis. The spectrogram, a squared
module of the STFT, will be used here as the
TFR. We will consider two signals: a signal
with linear frequency modulation, and a signal
with sinusoidal frequency modulation. Signal-
to-noise ratio in both cases is 0 dB.

Figures 1 and 2 illustrate the basic prin-
ciple of the time-frequency based detection.
Subplots in the first row in Figure 1 present
TFR of the analyzed linearly frequency modu-
lated signal, illustrating the paths in the time-
frequency plane and the summation of TFR
values along the paths. In this case, the paths
are parallel to the time axis and the sum-
mation along these paths is proportional to
the FT of the analyzed signal. The second
row in Figure 1 presents the summation along
the paths adjusted to the signal’s instanta-
neous frequency, by determining the parame-
ters of the linear FM (LFM) signal. The max-
imum value of the summation along the paths
is higher in the second case. This distinctly
demonstrates that the detection of these types
of signals is simple and straight-forward using
this approach.

Figure 2 illustrates the time-frequency based
detection of a sinusoidally frequency mod-
ulated deterministic signal. The first row
presents the summation along the paths equiv-
alent to the FT, the second row presents the
summation along the paths adjusted to the
LFM signal from the previous figure, and the
third row presents the summation along the
paths adjusted to the instantaneous frequency
and parameters of the analyzed signal. The
maximum value is obtained when the path co-
incides with signal’s instantaneous frequency.
The proposed detection method is based on
searching the best path (with the maximum
summation of the TFR values along the path).

The above example shows that the detection
of non-stationary signal can only be considered
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Fig. 1. Detection example - linear FM signal. First row - paths parallel to the time axis, equivalent to FT-
based detector. Second row - paths parallel to the instantaneous frequency, equivalent to the time-frequency
detector. First column - TFR. Second column - paths. Third column - sum of the TFR values along the
paths.

by FT tools if we know the signal form and
we are able to adjust the signal parameters
to the instantaneous frequency. However, in
practice the signal form is not a priori known
and the parametric approach to these types
of applications is quite limited. We will next
show that similar principles can be used in
non-parametric formulation of the detection,
without using a priori knowledge about the
signal form.

III. S
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�� �� ��
��
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For signals whose spectral content varies
over time, time-frequency distributions are in-
troduced in order to obtain energy distribution
over time and frequency. The basic quadratic
time-frequency distribution is the Wigner dis-
tribution (WD) [1]. The discrete WD is de-
fined as

WD(n, k) =

=

N/2∑

τ=−N/2

w(τ)w(−τ)x(n+τ)x∗(n−τ)e−j4πkτ/N ,

(12)
where w(τ) is time window. The WD has the
best concentration among quadratic distribu-
tions [1], [14]. However it can not be used in
practice due to the very exhibited cross-terms.

A method which is based on the idea of pre-
serving auto-terms as in the WD, with elimina-
tion or significant reduction of the cross-terms,
is introduced as the S-method (SM) [16]. It
has been derived based on the relationship be-
tween the STFT and the pseudo WD

WD(n, k) =

=

N/2∑

i=−N/2

STFT (n, k + i)STFT ∗(n, k − i)

(13)
This relation has led to the definition of a time-
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Fig. 2. Detection example - sinusoidal FM signal. First row - paths parallel to the time axis, equivalent
to FT-based detector. Second row - paths used in the LFM example. Third row - paths parallel to the
instantaneous frequency, equivalent to the time-frequency detector. First column - TFR. Second column -
paths. Third column: sum of the TFR values along paths.

frequency distribution [16]

SM(n, k) =

=
Ld∑

i=−Ld

P (i)STFT (n, k + i)STFT ∗(n, k − i)

= |STFT (n, k)|
2
+

+2Re

Ld∑

i=1

P (i)STFT (n, k+i)STFT ∗(n, k− i)

(14)
where P (i) is a finite frequency domain win-
dow (we also assume rectangular form), P (i) =

0 for |i| > LP . Two special cases are: the
spectrogram P (i) = δ(i) and the pseudo WD
P (i) = 1. Distribution obtained in this way is
referred to as the S-method [1], [16].

The S-method can produce TFR of a mul-
ticomponent signal such that the distribution
of each component is its WD, avoiding cross-
terms, if the STFTs of the components do
not overlap in the time-frequency plane. For

x(n) =
M∑

m=1
xm(n) the S-method has the form

SM(n, k) =WDat(n, k) =
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M∑

m=1

N/2∑

τ=−N/2

w(τ)w(−τ)xm(n+ τ)

×x∗m(n− τ)e−j4πkτ/N

where WDat(ω, t) denotes the sum of the
pseudo WDs of the individual signal compo-
nents (without cross-components terms).

A. Time-Frequency based Signal Detection

Let us consider a single component linearly
frequency modulated signal of the form

x(n) = Aejan
2

. (15)

Let S(n, k) denote TFR of the signal s(n).
Figure 3 shows the FT of the signal s(n) for
the cases ξ = 1 (first plot from the left) and
ξ = 0 (last plot). TFR of the signal s(n) for
both cases is also shown in Figure 3. The S-
method with rectangular window and L = 12
is used as the TFR of the signal [3]. The num-
ber of samples is N = 256, the noise variance
is σ2ε = 4, and the signal amplitude A = 1, so
that the signal-to-noise ratio is approximately
−6 dB. Reference level of the FT-based detec-
tor is calculated with the false alarm probabil-
ity PFA = 0.0027, and is shown in the first and
last plots. The same realization of the noise is
used for all four plots. Figure 3 clearly shows
the limited ability of the FT-based detector.
On the other hand, it is easy to see if a deter-
ministic component x(n) exists in the TFR of
the signal s(n).

This example shows that the time-frequency
analysis can be used for non-stationary signal
detection in the presence of a strong noise.
The basic problem is to automate the signal
decision procedure if the analyzed TFR con-
tains a deterministic component. An algo-
rithm for the signal detection in the arbitrary
TFR is described below.

Let us consider TFR S(n, k) of the signal
s(n), where k = 0, 1, . . . ,M − 1 and n =
0, 1, . . . N − 1. Assume that the instantaneous
frequency of a deterministic signal x(n) is a
continuous function. We define a path in the
time-frequency plane as an array of N fre-
quency indices π(t), with 0 ≤ π(t) < N for
every t. We then observe the ensemble of such

paths having the property |π(t)− π(t − 1)| ≤
D for some specified value D and for t =
1, 2, . . . , N−1. The value of D is the maximal
allowed frequency index change for two consec-
utive time instants, or allowed frequency step.
We then observe one path πm(t) ∈ ΠD and
sum the TFR values along this path. That is,

Jm =
N−1∑

t=0

S(t, πm(t)). (16)

Denote the maximum of the observed sum
over the ensemble ΠD as Jmax,

Jmax = max
πm∈ΠD

Jm =
N−1∑

t=0

S(t, πmax(t)), (17)

where πmax is the best path. The quantity
defined in this way represents a reliable crite-
ria for determining the deterministic compo-
nent existence in the TFR S(n, k). Namely,
if Jmax > RJ holds, where RJ denotes the
threshold level, it can be concluded that the
deterministic component exists in the signal
s(n); in other words, ξ̂ = 1.

The basic problem in detector realization is
in the threshold level RJ determination. In the
case of the second order TFR, we can assume
that the level RJ is proportional to σ2ε. For
a specific TFR, known noise distribution and
for a chosen probability PFA, it is sufficient
to determine the threshold level R0 when the
false alarm probability is equal to PFA for the
noise variance σ2ε = 1. The threshold level for
non-unity noise variance can be calculated as
RJ = R0σ2ε. The determination of R0 in this
way, demands the processing of many noise
only data if PFA is significantly small. How-
ever, this procedure should be used only once
for a given TFR and for a given PFA. The
algorithm for the threshold level R0 determi-
nation is described below.
1. Choose TFR, probability of false alarm
PFA, and the maximum allowed frequency
step D.
2. For i = 1, 2, . . . ,Mi where Mi is number of
iterations
(a) Take a realization of noise only signal

s(n) with unity noise variance σ2ε = 1.
(b) Calculate S(n, k) = TFR[s(n)].
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Fig. 3. FT (with threshold level) and TFR of the signal s(n) in the cases of the deterministic signal x(n)
existence (ξ = 1) and non-existence (ξ = 0).

(c) Find the best possible path πmax(t) and
calculate

Jmax(i) =
N−1∑

t=0

S(t, πmax(t)). (18)

3. Calculate the threshold level R0 such that
in MiPFA iterations we obtain Jmax(i) > R0
(and Jmax(i) < R0 in the remaining Mi(1 −
PFA) iterations).

Second problem is in specifying the number
of path ensembles ΠD and in the determina-
tion of the best path. In order to decrease the
total number of paths (of the order NM), we
can apply the following approach:
1. For each time index n, find the maximum
Smax(n) and the position of maximum kmax(n)

Smax(n) = max
k

S(n, k), (19)

kmax(n) = argmax
k

S(n, k).

Assume that the best path πmax(n) passes
through at least one of the selected maxima.
2. For each time index n ∈ {1, 2, . . . , N},
form the path πn(t) starting at the point
(n, kmax(n)) in the time-frequency plane.
(a) Put point (n, kmax(n)) into path: πn(n) =

kmax(n).
(b) For t = n+1, n+2, . . . , N , the path point

is
πn(t) = argmax

k∈K
S(t, k), (20)

where set K includes frequency points K =
{k|πn(t− 1)−D ≤ k ≤ πn(t− 1) +D}. Note
that this procedure limits the frequency step
between two consecutive time instants to D.

(c) For t = n− 1, n− 2, . . . 1, the path point
is

πn(t) = argmax
k∈K

S(t, k), (21)

where K = {k|πn(t+1)−D ≤ k ≤ πn(t+1)+
D}.

3. Calculate the sum Jn(i) =
∑N−1
t=0 S(t, πn(t)).

4. The best path is the path with maximum
Jn(i).

Note that the number of analyzed paths in
this procedure is equal to N . The number of
paths can be further decreased if, in step 2 of
the previous procedure, we perform the path
forming only if the starting point (n, kmax(n))
is not included in any of the previous ana-
lyzed paths πn−1(t), πn−2(t), . . . , π1(t). This
can de done because if the point (n, kmax(n))
belongs to the path πp(t) for some p then the
path πn(t) coincides with the path πp(t). Also,
note that in step 2 of the previous procedure
we can process time instants n in an arbitrary
order. We suggest that the value of Smax(n)
determines the order of processing the time in-
stants. That is, we process the time instant
with the highest Smax(n) first and the time in-
stant with the smallest Smax(n) should be the
last one processed. This re-ordering can not
change the best path, but can change the to-
tal number of analyzed paths.

Figure 4 presents the threshold estimation
for the spectrogram with 32-point Hanning
window. It should be noted that Jmax in Fig-
ure 4 is plotted in a descending order. Signal
length is 256 samples and the STFT is calcu-
lated over 256 frequency bins. The probability
of false alarm is PFA = 0.0027. The threshold
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Fig. 4. Threshold estimation - The best acheived values of the path sum for 3704 realizations of random signal
without deterministic component. The horizontal line represents the threshold R0 = 10397 obtained with
PFA = 0.0027.

is estimated by analyzing the best paths in the
noise only case with σ2ε = 1. The number of
realizations is Mi = 3704. The threshold is de-
termined according to the number of expected
false alarms Mi · PFA = 10. In this way, we
can implement the desired probability of false
alarms.

Figure 5 presents histogram of the number
of analyzed paths in the procedure for search-
ing the best path in the noise only case. The
mean number of the analyzed paths per real-
ization is 12.

B. Comparison with Fourier-Based Detector

Performance of time-frequency based sig-
nal detectors, with their comparison to the
Fourier-based detector, are shown in Figure 6.
The case of a linearly frequency modulated sig-
nal is considered

x(n) = ej
π

128
(n−128)2 , (22)

for 0 ≤ n ≤ 256 in the presence of additive
Gaussian white noise. For each SNR, 200 re-
alizations are observed and the detection is
performed by using the FT and the S-method
with L = 4, L = 16 and L = 32. The depen-
dency of the probability PD on signal-to-noise
ratio is shown in Figure 6. As we expected,
the S-method with large enough L is a good

signal detector, even if the signal-to-noise ra-
tio is small. The false alarm probability for
all analyzed detectors is PFA = 0.0027. It
should be noted that the threshold estimation
for the Fourier-based detector is very simple
compared to time consuming threshold esti-
mation for proposed detector.

IV. A���
	
�
�� �� ��� R�
� R
�
�

D
�


Let us now consider detection of target sig-
nals in experimental high-frequency surface-
wave radar system. Suppose that the target
velocity is high enough so that the sea-clutter
can be removed by high-pass filtering.

A. Stationary Case

For stationary targets, the FT is the optimal
detector. Let us now consider a single range
cell with the signal representing that range cell
denoted by x(n). The detection algorithm in
the case of a constant false alarm rate is:

1. Choose the probability of false alarms PFA.
2. Estimate the noise variance for the consid-
ered signal σ2ε. A good estimation can be ob-
tained by using (8).
3. Calculate the reference level RFT =
− ln(PFA/N)Nσ2ε, where N is the signal
length.
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Fig. 5. Histogram of the number of analyzed paths for Mi = 3704 realizations. The average number of analyzed
paths is 12.

-5 -4 -3 -2 -1 0 1 2 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR [dB]

P
D FT

SM
L=4

SM
L=16

SM

L=32
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4. Calculate the discrete FT of the signal
X(k) = DFTN [x(n)].
5. If there exists k such that |X(k)|2 > RFT ,
then we make a decision that a target signal
exists.

B. Non-Stationary Case

The algorithm mentioned above is opti-
mal in the case of stationary signals. When
the target velocity changes in the considered
time interval, the target’s signal becomes non-
stationary, and the FT is no longer an optimal
detector. In these cases, we can use the time-

frequency based detector. Now, the detection
algorithm is:

1. Choose the probability of the false alarm
PFA.
2. Choose the TFR.
3. Consider the noise-only case with unit vari-
ance. Estimate the reference level R0 so that
the criterion Jmax > R0 gives the false alarm
rate as chosen in the step 1.
4. Estimate the noise variance σ2ε.
5. Calculate the TFR of the analyzed signal.
6. Find Jmax and compare it with the refer-
ence level RJ = R0σ2ε. If Jmax > RJ , we can
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Fig. 7. FT of the analyzed signals with SNR=-2dB

make a decision that the target signal exists in
the considered range cell.

Note that steps 1-3 should be performed
only once, so the time-consuming step 3 does
not slow down the detection process.

C. Detection Examples

Signals in the following comparisons are
experimental aircraft data collected by a
high-frequency surface-wave radar (HFSWR),
which used a 10-element linear receiving an-
tenna array. The data was collected with a tar-
get present. Since the experimental data are
collected with high SNR an artificial noise is
added in order to simulate various SNR scenar-
ios. The radar carrier frequency is 5.672 MHz
and the pulse repetition frequency is 9.17762
Hz. There are 6 trials, each trial corresponds
to a block of 256 pulses. A detailed description
of the radar is given by [4]. We consider five
non-stationary cases (signals 1-5) and one sta-
tionary case (signal 6). The signals are high-
pass filtered in order to remove strong sea clut-
ter. Figure 7 presents the FT of the filtered
analyzed signals with SNR= −2dB. TFR of
the analyzed signals are presented in Figure 8.
The S-method is chosen as the TFR with large
L (L = 64). The reference level R0 = 1320

is determined according to the previously de-
scribed procedure. The false alarm probability
is PFA = 0.0027.

In order to estimate threshold values of the
detector, we add noise to the analyzed signal
so that a noisy signal is be obtained. Note
that in this example deterministic signal x(n)
is experimental data and noise ε(n) is artificial.
Detection algorithms of stationary and non-
stationary cases are then applied to the noisy
signal. Table I shows the number of detected
target signals for 100 noise realizations with
varying signal-to-noise (SNR). It is obvious
that the time-frequency based approach out-
performs the Fourier-based detection approach
when the target signal is non-stationary. In
the case of a stationary signal (signal 6), the
proposed method is slightly worse than the
Fourier-based approach. The Fourier-based
detection is optimal in these cases. The es-
timated probability of target detection with
varying SNR is given in Figure 9 for non-
stationary cases using both the Fourier and
the time-frequency based detectors. Figures
10 and 11 represent two typical realizations
for non-stationary and stationary signals and
its detection procedure, respectively. Both Ta-
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TABLE I

N����� �� ����	��� �
���� �
��
�� 
� 100 ��

�� ��� "
�
��� SNR. FT - F���
�� �
��� ����	���,

T-F - �
��-�������	� �
��� ����	���.

SNR Signal 1 Signal 2 Signal 3 Signal 4 Signal 5 Signal 6
[dB] FT T-F FT T-F FT T-F FT T-F FT T-F FT T-F

−2 79 100 67 100 87 100 94 100 80 100 100 100
−3 67 100 33 100 60 100 84 100 59 100 100 100
−4 43 100 22 100 25 100 55 100 27 100 100 100
−5 18 100 10 100 18 100 47 100 20 100 100 100
−6 12 100 8 100 8 100 19 100 9 100 100 100
−7 9 100 5 99 10 100 14 100 7 100 100 99
−8 5 99 4 93 5 99 3 98 5 99 98 94
−9 1 93 2 77 2 89 2 93 1 91 93 87
−10 2 85 1 62 1 73 2 81 4 69 80 77
−11 1 61 1 32 0 45 2 79 0 50 59 45
−12 2 49 1 14 0 21 0 43 1 27 35 31
−13 1 33 0 5 2 7 0 22 0 15 21 18
−14 0 13 0 4 1 8 1 11 0 6 14 13
−15 0 8 0 6 0 5 3 5 2 8 9 5
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Fig. 10. Signal 5 (nonstationary target velocity) with SNR = −8 dB
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ble I and Figure 9 also show that the time-
frequency based detector is able to detect the
non-stationary target signals correctly when
the SNR is higher than −8 dB.

These results specifically suggest that the
Fourier detector is optimal when the signals
are stationary, whereas the time-frequency
based detector is better for non-stationary sig-
nals.

V. C��	���
��

In this paper, we present a time-frequency
based detector, which yields substantial per-
formance improvement over the traditional
Fourier-based detector. In this method, we
choose the S-method as a time-frequency tool
due to its desirable properties. The proposed
time-frequency detector requires training with
noise and does not require full knowledge of
the event to be detected. It is assumed that
the deterministic signal is a single compo-
nent signal with continuous frequency changes.
Performance of the proposed method is evalu-
ated by using both simulated and experimen-
tal data. Results demonstrate that the time-
frequency based approach provides an effec-
tive technique for detecting and analyzing ma-
neuvering air targets in heavy noisy environ-

ment. The proposed time-frequency based de-
tector approach successfully detects the ma-
neuvering target. When the target is station-
ary, the Fourier-based detector and the pro-
posed method produces similar detection re-
sults. However, when the target is maneu-
vering or non-stationary, the time-frequency
based detector approach produces reliable and
robust results. Results also show that the
proposed time-frequency detector outperforms
the Fourier-based detector in terms of good
detection with equal false alarm rates. The
method presented here is not restricted to this
particular application. It can be applied in
various other settings of non-stationary signal
analysis and filtering. More generally, it is be-
lieved that the time-frequency approach to the
signal detection can provide new hints for han-
dling open problems in a comprehensive way.
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