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Micro-Doppler parameter estimation
from a fraction of the period
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Abstract– Radar micro-Doppler signatures
are of great potential for identifying proper-
ties of unknown targets. All the techniques de-
veloped for extracting micro-Doppler features
for the past decade rely primarily on the as-
sumption that the time series of the signal con-
tains at least one oscillation or more during
the coherent integration time or imaging time.
However, many applications in real-world sce-
narios involve short duration signals and of-
ten require detection and estimation of micro-
Doppler characteristics. Short duration signals
may contain only a fraction of an oscillation.
In this paper, we develop two techniques to es-
timate the micro-Doppler parameters from a
fraction of the period. In these scenarios, the
coherent integration will cover only 1/4 and 1/2
of the oscillation. The performance of the pro-
posed methods are evaluated using both syn-
thetic and experimental data.

I. I������	�
��

Today’s radar technology has attained a
broad scope of applications ranging from mil-
itary to civilian. Target classification is one
such area, which investigates both the moving
characteristics as well as discrimination of tar-
gets. Recent research indicates that the micro-
Doppler (m-D) technique exhibits a high po-
tential for this purpose. The basic idea be-
hind this is that mechanical vibration or ro-
tation of a target, or structures on the target,
may induce additional frequency modulations
to the regular Doppler shift on the returned
radar signal. This generates sidebands about
the target’s Doppler frequency, called micro-
Doppler effect. Micro-Doppler is regarded as
a unique signature and can be used to deter-
mine properties of a target. The uniqueness
of micro-Doppler signatures means different
micro-motions have distinct signatures [1]-[10].

Traditional techniques, such as Fourier
analysis or the sliding window Fourier trans-
form (FT) (short time Fourier transform -
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STFT), lack the required resolution for ex-
tracting and processing these unique m-D fea-
tures. Therefore, high-resolution linear and
quadratic time-frequency (TF) analysis tech-
niques are recently employed for extracting m-
D features [1]-[3], [5]-[6], [7],[9]. Several pa-
pers have been written about the ways to deal
with the m-D effect. Wavelet analysis of he-
licopter and human data, along with the TF
representation based imaging system, is pre-
sented in reference [2]. Details on the m-D
effect physics, with some typical examples, are
given in reference [5]. A method for the sepa-
ration of the m-D effect from the radar image,
based on the chirplet transform, is proposed
in [7]. Both wavelet-based and chirplet-based
procedures are used in reference [8] to extract
m-D features such as the rotating frequency of
an antenna in SAR (synthetic aperture radar)
data. Recently, two techniques for the separa-
tion of a target’s rigid body from m-D parts
have been proposed in reference [9]. The first
approach is based on order statistics of the
spectrogram samples. The second approach
is based on the Radon transform processing of
obtained radar signals. An effective quadratic
time-frequency S-method based approach in
conjunction with the Viterbi algorithm to ex-
tract m-D features is proposed in [3].

All the techniques developed for the past
decade rely primarily on the assumption that
the time series of the signal contains at least
one oscillation or more during the coherent
integration time or imaging time. However,
many applications in realistic real-world sce-
narios involve short duration signals and of-
ten require detection and estimation of micro-
Doppler characteristics. Short duration sig-
nals may contain only a fraction of an oscil-
lation. In this paper, we develop two tech-
niques to estimate the micro-Doppler parame-
ters from a fraction of the period. In these
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scenarios, the coherent integration will cover
only 1

4 and 1
2 of the oscillation.

II. E��
��
�� ������

It is known that mechanical vibration or ro-
tation on a target can induce frequency mod-
ulation on the returned radar signal and gen-
erates sidebands about the Doppler frequency
shift of the target’s body [4], [5]. The fre-
quency of the returned radar signal is time de-
pendent and can be modeled as (see Figure 1)

f(t) = f0 +A cos(2πfvt+ θ), (1)

where f0 is the Doppler frequency caused by
the target motion and A cos(2πfvt + θ) is the
Doppler frequency caused by vibrating or ro-
tating parts. Here fv denotes the frequency of
the rotation (or vibration), and θ is an arbi-
trary phase angle. Thus, the radar return can
be written as

x(t) = exp(j2πf0 + j
A

fv
sin(2πfvt+ θ)). (2)

We will assume that the instantaneous fre-
quency of the radar return is estimated by us-
ing the time-frequency analysis methods as de-
scribed in [13], [14] giving the estimation

f̂(t) ≈ f0 +A cos(2πfvt+ θ) (3)

Our goal is to estimate the target rotation
(or vibration) rate fv. We will assume that
the observation interval 0 ≤ t < T is small,
i.e., 2πfvT < π. In this case, we can not
perform the conventional estimation methods
for fv (e.g., Fourier-based, zero crossing based
methods, etc.). In this section, we develop two
approaches to estimate the micro-Doppler pa-
rameters from a fraction of the period.

A. Estimation Method-1

In the first approach, we use 3-point model
to estimate the motion parameters from a frac-
tion of the period. Figure 1 shows the illustra-
tion of the method for frequency determina-
tion based on 3-point model. Let us consider
the discrete sinusoidal signal

y(n) = A sin(ωn+ ϕ), (4)

where A is the amplitude, ω is the angular
discrete frequency, and initial phase ϕ is the
initial phase.

The frequency of the considered signal can
be estimated as

ωe =
1

k
arccos

y(n− k) + y(n+ k)

2y(n)
. (5)

Proof:

y(n− k) + y(n+ k)

2y(n)
=

A sin(ωn+ ϕ− ωk) +A sin(ωn+ ϕ+ ωk)

2A sin(ωn+ ϕ)
=

2A sin(ωn+ ϕ) cos(ωk)

2A sin(ωn+ ϕ)
= cos(ωk) (6)

ωe =
1

k
arccos(cos(ωk)) = ω

=
1

k
arccos

(
y(n− k) + y(n+ k)

2y(n)

)
(7)

Note that ω should be 0 ≤ ω ≤ π/k. This
relation limits the values of lag k to several
samples, which is not so important since ω
is assumed to be small in this case. In this
scenario, the considered time interval is much
smaller than half of the period.

In the case of noisy observations

ŷ(n) = y(n) + ε(n), (8)

where ε(n) is a discrete noise. When an es-
timation error is introduced, Equation 5 be-
comes:

cos(ωk) =

y(n− k) + ε(n− k) + y(n+ k) + ε(n+ k)

2y(n) + 2ε(n)
.

(9)
For small ε(n) compared to y(n) and by us-

ing the well-known approximation (1/(1+x) ≈
1− x for small x) we get

1

2y(n) + 2ε(n)
=

1

2y(n)

1

1 + ε(n)
y(n)

≈
1

2y(n)
(1−

ε(n)

y(n)
). (10)
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Fig. 1. Illustration of the method for frequency determination based on three points for n = 120 and k = 20

Thus, we can write

cos(ωk) = [y(n− k) + ε(n− k)+

+y(n+ k) + ε(n+ k)]
1

2y(n)
(1−

ε(n)

y(n)
). (11)

By neglecting the higher-order error terms
such as (ε(n)ε(n+ k) and ε(n)ε(n− k), small
error multiplied by small error), the error ξ in
the estimation of cos(ωk) is:

ξ = cos(ωk)|with_noise− cos(ωk)|without_noise

= y(n−k)+ε(n−k)+y(n+k)+ε(n+k)
2y(n) (1− ε(n)

y(n))

−y(n−k)+y(n+k)
2y(n)

=
(
y(n−k)+y(n+k)

2y(n) + ε(n−k)+ε(n+k)
2y(n)

)
(1− ε(n)

y(n))−

−y(n−k)+y(n+k)
2y(n) ≈

≈ ε(n−k)+ε(n+k)
2y(n) − y(n−k)+y(n+k)

2y(n)
ε(n)
y(n) (12)

ξ = ε(n−k)+ε(n+k)
2y(n) − cos(ωk) ε(n)

y(n) (13)

The mean of the estimation error is equal to
zero. This means that the estimator is unbi-
ased. The variance of ξ is equal to the mean
square of the estimation error

var(ξ) = E[ξ2], (14)

where E[·] is the expectation operator. If we
assume that ε(n − k), ε(n + k) and ε(k) are

mutually independent, the sum of three inde-
pendent random variables is

ξ =
ε(n− k)

2y(n)
+
ε(n+ k)

2y(n)
−cos(ωk)

ε(n)

y(n)
, (15)

and the total variance is equal to the sum of
individual variances

var(ξ) = var(
ε(n− k)

2y(n)
) + var(

ε(n+ k)

2y(n)
)

+var(− cos(ωk)
ε(n)

y(n)
), (16)

with

var(
ε(n− k)

2y(n)
) =

1

4y(n)2
var(ε(n−k)) =

σ2e
4y(n)2

(17)

var(
ε(n+ k)

2y(n)
) =

1

4y(n)2
var(ε(n+k)) =

σ2e
4y(n)2

(18)

var(− cos(ωk)
ε(n)

y(n)
) =

=
cos2(ωk)

y(n)2
ε(n) =

cos2(ωk)

y(n)2
σ2e. (19)
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Finally the variance of ξ is:

var(ξ) =
σ2e

4y(n)2
+

σ2e
4y(n)2

+
cos2(ωk)

y(n)2
σ2e

=
σ2ε

2y(n)2
(1 + 2 cos2(ωk))

=
(2 + cos(2ωk))

2

σ2ε
y(n)2

=
(2 + cos(2ωk))

2

1

SNRn
. (20)

where SNRn is signal-to-noise ratio at the
time instant n and we assume that noise sam-
ples ε(n−k), ε(n) and ε(n+k) are independent
with variance σ2ε. For small ωk, cos(2ωk) ≈ 1
and we finally get

var(ξ) ≈
3

2

1

SNR
. (21)

The most significant component of the noise
is related to the discretization error in the es-
timation of the instantaneous frequency using
the discrete frequency grid. The simplest way
to reduce this error is by using several points,
n, and several lags, k, to obtain set of esti-
mates

Ω = {ωe,n,k}, (22)

and the resulting estimate, that is, the mean
value of such estimates is,

ω̂e = mean
ωe,n,k∈Ω

ωe,n,k. (23)

Assuming that estimations ωe,n,k are statis-
tically independent, the variance of the result-
ing estimation error is

var(ξe) =
var(ξe,n,k)

NΩ
, (24)

where NΩ is number of independent estima-
tions, i.e. the number of elements of the set
Ω.

B. Estimation Method-2

In the second approach, we use cubic poly-
nomial fitting to estimate the motion parame-
ters from a fraction of the period. Let us con-
sider the signal of the form

y(n) = A sin(ωn+ ϕ) +B, (25)

with ω � 1. The signal can be expanded into
Taylor series around n = 0 as

y(n) = y(0) +
y′(0)

1!
n+

y′′(0)

2!
n2+ (26)

+
y′′′(0)

3!
n3+· · · = A sin(ϕ)+B+Aω cos(ϕ)n−

−
Aω2 sin(ϕ)

2
n2 −

Aω3 cos(ϕ)

6
n3 + . . . (27)

where n is a continuous variable. It is known
that the Taylor expansion is the best polyno-
mial expansion of the analyzed signal at n = 0.
Let us now approximate the signal y(n) with
cubic polynomial

ŷ(n) = p0 + p1n+ p2n
2 + p3n

3 (28)

where coefficients pk are chosen in order to
minimize the total approximation error over
the whole considered time interval. Note, an
unknown initial phase appears as sin(ϕ) in the
even terms and as cos(ϕ) in the odd terms for
the exponent n of a polynom y(n).

If we divide the coefficient of n2 by the con-
stant term we obtain

−Aω2 sin(ϕ)
2

A sin(ϕ) +B
(29)

and, for sinusoid offset B = 0, we get

−Aω2 sin(ϕ)
2

A sin(ϕ)
=
−Aω2 sin(ϕ)

2A sin(ϕ)
= −

ω2

2
. (30)

On the other hand, if we use coefficients of n
and n3 there is no need to have B = 0 since
we have

−Aω3 cos(ϕ)
6

Aω cos(ϕ)
=
−Aω3 cos(ϕ)

6Aω cos(ϕ)
= −

ω2

6
. (31)

According to equations 27 and 28, we can
now estimate the frequency of the considered
signal (for B = 0) as

p2
p0
= −

ω2

2
(32)

and we obtain

ωestimated = ω̂1 =

√
−
2p2
p0

. (33)
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Similarly, but without the assumption of
B = 0, we get

p3
p1
= −

ω2

6
(34)

and the estimation is

ωestimated = ω̂2 =

√
−
6p3
p1

. (35)

Let us now consider the case with 2N + 1
samples of the analyzed signal obtained for
−N ≤ n ≤ N . The total approximation er-
ror is

e =
N∑

n=−N

|y(n)− ŷ(n)|2, (36)

where coefficients pk are determined by mini-
mizing e, i.e., by solving

∂e

∂pk
= 0 (37)

for k = 0, 1, 2, 3.
Now the estimation error can be calculated

as

ω − ω̂2 =

(
N2 +N

36
+
1

24

)
ω3 +O(ω5) (38)

Note that for small ω and ωN < 1 the esti-
mation error is small. For example, if we have
2N + 1 = 65 samples of the sinusoidal oscilla-
tion with period T = 256, we get ω = π/128.
In this example we know the true frequency.
When we approximate the data set with cu-
bic polynom, we can find coefficients p1 and
p3 and estimate ω̂2. We can then calculate
the estimation error ω − ω̂2. In this example,
the estimation error is then ω − ω̂2 = 0.00043
with relative error of 1.8%. It should be noted
in this example that the signal is 1/4 of the
period of the analyzed sinusoid. We can even
define a better estimator according to (38)

ω̂3 = ω̂2 +

(
N2 +N

36
+
1

24

)
ω̂32 (39)

Here we replace the true frequency ω in the
estimation error with the estimation ω̂2.

III. S
����
��

A. Example 1

Let us consider the discrete signal

y(n) = A sin(ωn+ ϕ) (40)

with simulation parameters A = 0.9, ω = 0.03,
ϕ = 1.27, −32 ≤ n ≤ 32. Let the signal be
discretized over the interval [−1, 1] with M =
128 discretization levels

yD(n) =
2

M

[
M

2
y(n)

]
(41)

where [·] denotes the nearest integer. Now
choose n = 0 and perform the frequency es-
timation according to (5) for various values of
lag k.

Figure 2 shows the analyzed signal and esti-
mation results using Method-1. Figure 2a and
Figure 2d illustrate an example with M = 512
discretization levels. Since the discretization
noise estimation is inaccurate for small k, the
highest possible lags k are used for the fre-
quency estimation. The mean estimate over
the range of lag 16 ≤ k ≤ 32 is ω̂e = 0.0300
with the relative error 0.01%. The estimation
method-2 gives ω̂2 = 0.0291 with the relative
error 3.10%. After the correction according
to (39), ω̂3 = 0.0298 with the relative error
0.70%. Less than 5 percent error from the true
value can be considered to be accepted value.
More examples will be provided in this section.

The experiment is repeated with M = 128
discretization levels. Results are presented in
Figure 2b and Figure 2e. The mean estimate
over the range of lag (in time) 16 ≤ k ≤ 32 is
ω̂e = 0.0299. The relative error of the mean
estimate over the range of lag 16 ≤ k ≤ 32 is
0.36%. The estimation method-2 gives ω̂2 =
0.0289 with the relative error 3.70%. After the
correction according to Equation (39), we get
ω̂3 = 0.0296 with the relative error 1.34%.

Figure 2c and Figure 2f illustrate the case
with M = 32 discretization levels. The mean
estimate over the range of time lag 16 ≤ k ≤
32 is ω̂e = 0.0295. The relative error of
the mean estimate over the range of time lag
16 ≤ k ≤ 32 is 1.7%. The estimation method-
2 gives ω̂2 = 0.0288 with the relative error
4.09%. After correction according to (39), we
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obtain ω̂3 = 0.0295 with the relative error
1.74%. These results show that when the num-
ber of discretization levels is high, both meth-
ods are in good agreement with true value.
When there is limited number of discretization
levels, the estimation method-1 provides reli-
able results at higher time lags while the esti-
mation while method-2 provides consistent re-
sults. The estimation method-2 requires more
data in order to perform accurate cubic poly-
nomial approximation.

B. Example 2

Let us now consider the sinusoidally fre-
quency modulated signal of the form

x(t) = exp(j64 sin(2πt−
π

3
)) + ε(t) (42)

over time interval 0 ≤ t < 250ms sampled
with T = 1/512. Assume the modulation fre-
quency is 1Hz. The discretized signal is of the
form

x(n) = exp(j64sin(
2π

512
n−

π

3
)) + ε(n), (43)

with 0 ≤ n < 128, where ε(n) is the Gaussian
white noise with variance σ2ε.

Figures 3a,b,c illustrate the results with
σ2ε = 0. We use the S-method in order to ob-
tain the time-frequency representation of the
analyzed signal (Figure 3a) [11]. The instan-
taneous frequency is estimated by using the
maximum position of the time-frequency rep-
resentation and is shown in Figure 3b. Here
we can see the effect of discretization. The
estimation of the modulation frequency is cal-
culated using the estimation method-1 (Figure
3c). The mean estimate over the range of lag
40 ≤ k ≤ 63 is ω̂e = 2π · 0.99Hz. The estima-
tion method-2 gives ω̂2 = 2π ·1.023Hz. Figure
3d,e,f illustrate the results for σ2ε = 1 i.e.,
for SNR=0 dB. The mean estimate over the
range of lag 40 ≤ k ≤ 63 is ω̂e = 2π · 1.05Hz.
Using method-2, the estimated frequency is
ω̂2 = 2π · 1.09Hz. These results show that at
high SNR, the estimation method-2 provides
reliable results and the estimation method-1
provides reliable results at higher time lags.
At low SNR, the estimation method-1 provides
better results at higher time lags while the es-
timation method-2 provides the results, where

the accuracy is within 9 percent error from the
true value. These results suggest that the es-
timation method-2 is sensitive to high noise
level.

C. UH-1D Helicopter

In this example we consider the simulated
signal of a German Air Force Bell UH-1D He-
licopter known also as ‘Iroquois’. The sim-
ulation is performed according to [4]. Sev-
eral effects are emphasized in the TF repre-
sentation of Figure 4a. The stationary pat-
terns along the time-axis correspond to the
rigid body reflection, the vibration of the tar-
get or the radar-clutter caused by the move-
ment in the target background. The motion of
the two main blades is modeled by two rotat-
ing reflectors, producing sinusoidal FM signals
with a large magnitude in the frequency direc-
tion. The main rotor flashes are simulated by
the signals producing lines connecting peaks
of the sinusoidal FM signal with time axis.
The smaller pulses that can be seen in Figure
4a correspond to the tail rotor flashes. These
flashes correspond to periodic alignment of the
main and tail rotors to maximally reflect the
radar signal. Note that other effects that can
be observed in a radar image, including multi-
path, are not considered here.

Therefore, the simplified model of the re-
flected UH-1D signal can be written as:

x(t) = xRIG(t)+xROT (t)+xFLM (t)+xFLT (t),
(44)

where xRIG(t), xROT (t), xFLM (t) and xFLT (t)
represent signals caused by the rigid body, ro-
tation of the main rotor, and the main and tail
rotor flashes, respectively. The signal is con-
sidered within the interval of 400ms, sampled
with a rate of ∆t = 1/48000 s. Four sinusoidal
components, caused by the rigid body, are at
the frequencies −10.3 kHz, −2.5 kHz, 2.3 kHz
and 2.7 kHz. Two components at −0.4 kHz
and 0.4 kHz correspond to the modulated time
tones commonly added to the data tape [12].
The sinusoidal FM signals, corresponding to
the rotation of the main rotor blades, are mod-
eled as:

xROT (t) =
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Fig. 2. Analyzed signal discretized with (a) 512 levels, (b) 128 levels, and (c) 32 levels. Estimation results for
various lags k are obtained with (d) 512 levels, (e) 128 levels, and (f) 32 levels. The solid line represents the
true value, asterisk represents the values estimated by method-1, and the dashed line represents the value
estimated by method-2.
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Fig. 3. Noiseless case: (a) time-frequency representation of the analyzed signal, (b) the instantaneous frequency
of the signal, and (c) estimation results for various lags k. Noise case: (d) time-frequency representation of
the analyzed signal, (e) the instantaneous frequency of the signal, and (f) estimation results for various lags
k. The solid line represents the true value, asterisk represents the values estimated by method-1, and the
dashed line represents the value estimated by method-2.



MICRO-DOPPLER PARAMETER ESTIMATION FROM A FRACTION OF THE PERIOD 1469

= σROT [exp(j2πAROT sin(2πt/TROT ))+

+exp(−j2πAROT sin(2πt/TROT ))] (45)

where TROT = 175ms and AROT = 19kHz.
The main and tail rotor flashes are modeled
as broadband pulses given as:

xFLM (t) =

= σFLM
∑

k

δ(t− kTROT/2) ∗τ hFLM (t) (46)

xFLT (t) =

= σFLT
∑

k

δ(t−kTTAIL/2)∗τ hFLT (t), (47)

where TTAIL in our experiment is TTAIL =
35.8ms, while hFLM (t) and hFLT (t) are cut-off
filters given in the frequency domain as:

HFLM (ω) =

{
1 |ω| < 2πAROT
0 elsewhere,

(48)

HFLT (ω) =

{
1 7.35 kHz <

ω

2π
< 15.7 kHz

0 elsewhere.
(49)

The signal is corrupted with the Gaussian
noise. The SNR in this case is 3 dB. To com-
pare our simulated radar image with the real
one, refer to [4], [12].

In order to demonstrate our estimation
methods, we have extracted a part of the heli-
copter data signal, which is presented in Fig-
ure 4b. The resulting instantaneous frequency
estimation is shown in Figure 4c and the esti-
mated frequency for various lag k is shown in
Figure 4d. The mean estimated rotation per
minute (rpm) over the range of lag 15 ≤ k ≤ 35
is ω̂e = 352. The estimation method-2 gives
ω̂2 = 362. The true value is 343 rpm. It should
be noted that part of the discrepancy in the es-
timation value is caused by the noise and rigid
body part (i.e., the horizontal line in the TF
at approximately -5 kHz), which cause inaccu-
rate IF estimation between n=53 and n=60 in
Figure 4c.

We have repeated the procedure with dif-
ferent time instant n. In this case, two win-
dow sizes, narrow and wide windows, are used.
The procedure is performed without additional
noise and with additional noise. Results are

presented in Figure 5 for noisy signals. Mean
estimated rpm values using method-1 are 338
and 323 for the narrow and wide windows, re-
spectively. Using method-2, mean estimated
rpm values are 328 and 329 for the narrow and
wide windows, respectively.

In Figure 6, results are presented for signals
without additional noise. Mean estimated rpm
values using method-1 are 349 and 348 for the
narrow and wide windows, respectively. Us-
ing method-2, mean estimated rpm values are
329 and 330 for the narrow and wide windows,
respectively. Both methods are in good agree-
ment with the true value.

IV. E����
����� ���� ������
�

A. Rotating fan

Experimental trials were conducted to in-
vestigate and determine the m-D radar sig-
natures of objects that could be found in in-
door radar imaging. The object in these ex-
periments is rotating fan data supplied to us
by Prof. Moeness Amin, Villanova University.
The rotational motion of blades in a fan im-
parts a periodic modulation on radar returns.
The rotation-induced Doppler shifts relative to
the Doppler shift of the body occupy unique
locations in the frequency domain. Whenever
a blade has specular reflection such as at the
advancing or receding point of rotation, the
particular blade transmits a short flash or pe-
riodic modulation to the radar return. The
rotation rate of the blade is directly related to
the time interval between these flashes. The
duration of a flash is determined by the radar
wavelength and by the length and rotation rate
of the blades. A flash resulting from a blade
with a longer length and radar with a shorter
wavelength will have a shorter duration.

The fan in this experiment is rotating at a
height of approximately 2 m and at a range
of 3 m from the radar. The fan has 4 metal-
lic blades. The rotation rate of the blades is
known to be 1050 rpm for this data. The ex-
periment was conducted with the radar oper-
ating at frequency of 903 Hz. The sampling
frequency is 5000 Hz.

Figure 7 illustrates the results. In order to
demonstrate our estimation methods, we have
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Fig. 4. (a) Time-frequency representation of the simulated helicopter data; (b) Part of the analyzed helicopter
data; (c) The instantaneous frequency of the signal; (d) Estimation results for various lags k. The solid
line represents the true value, asterisk represents the values estimated by method-1, and the dashed line
represents the value estimated by method-2.

extracted a part of the fan data signal, which
is presented in Figure 7b. The mean estimated
frequency over the range of lag 6 ≤ k ≤ 22 is
ω̂e = 7.55 Hz. The estimation method-2 gives
ω̂2 = 6.02 Hz. After the correction, we get
ω̂3 = 8.08 Hz. The true value is 7.6 Hz.

B. Rotating corner reflector

Experimental trials were conducted to in-
vestigate and determine the m-D radar signa-
tures of targets using an X-band radar. The
target used for this experimental trial was a
spinning blade with corner reflectors attached
that were designed to reflect electromagnetic
radiation with minimal loss. These controlled
experiments can simulate the rotating types of
objects, generally found in an indoor environ-
ment, for example, a rotating fan and outdoor
environment, for example, a rotating antenna
or rotors. Controlled experiments allow us to
set the desired rotation rate and then permit
us to cross check and assess the results.

The blade was set up to simulate real data
that might be collected from a similar target
such as a rotating antenna or rotating fan or
any other rotation of structures on a target.
The experiment was conducted with the radar
operating at 9.2 GHz. The pulse repetition
frequency (PRF) was 1 kHz. The target em-
ployed in this experiment was at a range of 300
m from the radar. The S-method is utilized in
order to depict the m-D oscillation.

Figure 8 illustrates the results. In this case,
the rpm of the corner reflector is 28. In or-
der to demonstrate our estimation methods,
we have extracted a part of the helicopter data
signal, which is presented in Figure 8b. The
mean estimated frequency over the range of
lag 45 ≤ k ≤ 64 is ω̂e = 26.19 rpm. The esti-
mation method-2 gives ω̂2 = 27.09 rpm. After
the correction, we get ω̂3 = 28.77 rpm. In
this case, method-2 shows excellent agreement
with the true value while method-1 shows re-
liable results at higher time lags.
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Fig. 5. Noise case using narrow window: (a) time-frequency representation of the analyzed signal, (b) the
instantaneous frequency of the signal, and (c) Estimation results for various lags k. Noise case using
wide window: (d) time-frequency representation of the analyzed signal, (e) the instantaneous frequency of
the signal, and (f) estimation results for various lags k. The solid line represents the true value, asterisk
represents the values estimated by method-1, and the dashed line represents the value estimated by method-
2.
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Fig. 6. Noiseless case using narrow window: (a) time-frequency representation of the analyzed signal, (b) the
instantaneous frequency of the signal, and (c) estimation results for various lags k. Noiseless case using
wide window: (d) time-frequency representation of the analyzed signal, (e) the instantaneous frequency of
the signal, and (f) estimation results for various lags k. The solid line represents the true value, asterisk
represents the values estimated by method-1, and the dashed line represents the value estimated by method-
2.
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Fig. 7. (a) Time-frequency representation of the experimental fan data; (b) Part of the analyzed fan data; (c)
The instantaneous frequency of the signal; (d) Estimation results for various lags k. The solid line represents
the true value, asterisk represents the values estimated by method-1, and the dashed line represents the value
estimated by method-2.

Figure 9 illustrates another example. In this
case, the rpm of the corner reflector is 60. The
mean estimated frequency over the range of
lag 45 ≤ k ≤ 55 is ω̂e = 60.65 rpm. The esti-
mation method-2 gives ω̂2 = 65.00 Hz. After
the correction, we get ω̂3 = 62. In this case,
method-1 shows excellent agreement with the
true value.

V. C��	���
��

The detection and extraction of micro-
Doppler provide additional capability to better
identify potential threats for security applica-
tions. Methods developed to extract micro-
Doppler information for the past decade rely
primarily on the assumption that the time se-
ries of the signal contains at least one oscil-
lation or more during the coherent integra-
tion time or imaging time. However, real-
world applications engage short duration sig-
nals and often require detection and estima-
tion of micro-Doppler characteristics. Short
duration signals may contain only a fraction
of an oscillation. In this paper, two methods
for extracting micro-Doppler oscillation para-
meters have been proposed. In these scenar-

ios, the coherent integration will cover only 1/4
and 1/2 of the oscillation. The first method is
based on a three-point model and the second
method is based on a cubic polynomial fitting
and an approximation. The reliability and ro-
bustness of these two methods are evaluated
using both simulated and experimental data.
Both proposed methods have shown satisfac-
tory accuracy for both simulated and experi-
mental data.

Results from this study show that when the
number of discretization levels is high, both
methods provide reliable and robust estima-
tion of the motion parameters. When there
is limited number of discretization levels, the
estimation method-1 provides reliable results
at higher time lags while the estimation while
method-2 provides consistent results. The es-
timation method-2 requires more data in order
to perform accurate cubic polynomial approx-
imation. Both methods are sensitive to low
SNR. Experimental results suggest that the
estimation method-1 provides consistent reli-
able results at higher time lags compared to
the estimation method-2, where the accuracy
is within 5 percent error from the true value.
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Fig. 8. (a) Time-frequency representation of the experimental corner reflector data; (b) Part of the analyzed
corner reflector data; (c) The instantaneous frequency of the signal; (d) Estimation results for various lags
k. The solid line represents the true value, asterisk represents the values estimated by method-1, and the
dashed line represents the value estimated by method-2.
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Fig. 9. (a) Time-frequency representation of the experimental corner reflector data; (b) Part of the analyzed
corner reflector data; (c) The instantaneous frequency of the signal; (d) Estimation results for various lags
k. The solid line represents the true value, asterisk represents the values estimated by method-1, and the
dashed line represents the values estimated by method-2.
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Micro-Doppler features have great potential
for use in automatic target classification al-
gorithms. Although there have been studies
of m-D effects in radar in the past few years,
this is the first study for micro-Doppler pa-
rameter estimation from a fraction of the pe-
riod, that has great potential for use in target
identification applications. As such, this pa-
per contributes additional experimental m-D
data and analysis, which should help in devel-
oping a better picture of the m-D research and
its applications to indoor and outdoor radar
detection and automatic gait recognition sys-
tems.

R������	��

[1] V. C. Chen, and H. Ling, Time-frequency trans-
form for radar imaging and signal analysis,
Artech House, Boston, 2002.

[2] T. Thayaparan, S. Abrol, E. Riseborough,
L. Stankovíc, D. Lamothe, and G. Duff.
(2007), “Analysis of Radar Micro-Doppler Signa-
tures From Experimental Helicopter and Human
Data,” IEE Proceedings Radar Sonar Navig., 1,
(4), pp. 288-299.

[3] T. Thayaparan, L. Stankovic., and I. Djurovic:
“Micro-Doppler Based Target Detection and Fea-
ture Extraction in Indoor and Outdoor Environ-
ments, ”J. of the Franklin Institute, 345, pp. 700-
722, 2008.

[4] V. C. Chen, F. Li, S.-S. Ho, and H. Wech-
sler: “Analysis of micro-Doppler signatures,” IEE
Proc. Radar, Sonar, Navig., Vol. 150, No. 4, Aug.
2003, pp. 271-276.

[5] V. C. Chen, F. Li, S.-S. Ho, and H. Wech-
sler, “Micro-Doppler effect in radar: phenom-
enon, model, and simulation study”, Vol. 42, No.
1, pp. 2-21, IEEE Trans. on Aerospace and Elec-
tronis Systems,, 2006.

[6] T. Sparr, and B. Krane, “Micro-Doppler analy-
sis of vibrating targets in SAR”, IEE Proc-Radar
Sonar Navig., Vol. 150, No. 4, pp. 277-283, 2003.

[7] J. Li, and H. Ling: “Application of adaptive
chirplet representation for ISAR feature extrac-
tion from targets with rotating parts”, IEE Proc.
Radar, Sonar, Navig., Vol.150, No.4, August
2003, pp.284-291.

[8] T. Thayaparan, “Micro-Doppler analysis of the
rotation antenna in airborne SAR image collected
by the APY-6 radar,” IRS 2005, Berlin, Germany,
Sept. 2005.

[9] L. Stankovíc, T. Thayaparan, and I. Djurovíc,
“Separation of target rigid body and micro-
Doppler effects in ISAR imaging”, IEEE Trans.
on AES, Vol. 41, No. 4. pp. 1496-1506, 2006.

[10] P. Setlur, M. Amin, and T. Thayaparan: “Micro-
Doppler signal estimation for vibrating and ro-
tating targets,” in Proc. of ISSPA 2005, Sydney,
Austr. 2005, pp. 639-642.

[11] L. Stankovíc, “A method for time-frequency
analysis,” IEEE Trans. Signal Process., Vol. 42,
pp. 225-229, 1994.

[12] S. L. Marple: ”Special time-frequency analy-
sis of helicopter Doppler radar data”, in Time-
Frequency Signal Analysis and Processing, ed. B.
Boashash, Elsevier 2004.

[13] B. Boashash, “Estimating and interpreting the in-
stantaneous frequency of a signal - Part I,” Proc.
IEEE, Vol. 80, No.4, Apr. 1992, pp. 521-538.

[14] I. Djurovíc, and LJ. Stankovíc: "An algorithm for
the Wigner distribution based instantaneous fre-
quency estimation in a high noise environment",
Signal Processing, Vol. 84, No. 3, Mar. 2004, pp.
631-643.


