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Abstract– A new distribution that provides
high concentration in the time-frequency do-
main is proposed. It is based on the S-method
and multiwindow approach, where different or-
der Hermite functions are employed as multi-
ple windows. The resulting distribution will be
referred to as the multiwindow S-method. It
preserves favorable properties of the standard
S-method while the distribution concentration
is improved by using Hermite functions of just
a few first orders. The proposed distribution is
appropriate for radar signal analysis, as it will
be proven by experimental examples.

I. INTRODUCTION

Various forms of time-frequency distribu-
tions have been used for the non-stationary
signals analysis. Their applications cover
many different fields: radars, sonars, biomedi-
cine, image processing, etc. The simplest
time-frequency representation is the short-
time Fourier transform. It localizes the spec-
tral content around a time point by using a lag
window. The energetic version of this trans-
form is spectrogram. The spectrogram is very
simple for realization, but generally, it pro-
vides low time-frequency resolution. There-
fore, the quadratic time-frequency distribu-
tions have been introduced in order to provide
better concentration in the time-frequency do-
main [1]-[3]. The most frequently used among
them is the Wigner distribution that provides
an ideal representation for linear frequency
modulated signals. However, in the case of
multicomponent signals, it suffers from unde-
sired time-frequency components called cross-
terms. The S-method has been introduced to
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overcome this shortcoming of the Wigner dis-
tribution [4]. By using the S-method cross-
terms could be completely removed while the
auto-terms concentration will be the same as
in the Wigner distribution. It is simple for
realization and has been successfully used in
radar signals analysis [5], [6], speech signals
analysis [7], [8], etc.

A new distribution based on the S-method
modification is proposed in this paper. It is
achieved by introducing a set of Hermite func-
tions that improve the standard S-method con-
centration. The Hermite functions act as mul-
tiple windows that satisfy a number of desir-
able properties. The STFT is calculated by
using Hermite function of a certain order, and
after that, it is weighted and convolved within
the frequency window. Thus, each order of
Hermite function produces one form of the S-
method. The cumulative distribution is ob-
tained as their sum. In practical realizations
the Hermite functions of a few first orders are
sufficient to provide satisfactory results. The
proposed distribution shows better properties
for radar signal analysis than the standard S-
method.

The paper is organized as follows. In Sec-
tion II, the standard S-method is reviewed.
The multiwindow S-method based on the Her-
mite functions is introduced in Section III. In
Section IV, the efficiency of using the mul-
tiwindow S-method for obtaining high reso-
lution radar data representation is demon-
strated. Concluding remarks are given in Sec-
tion V.
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The short-time Fourier transform (STFT)
is the simplest tool for time-frequency signal
representation. The STFT is obtained by slid-
ing the window w(t) along the analyzed signal
x (t) as follows:

STFT (t, ω) =

∞∫

−∞

x(t+ τ)w(τ)e−jωτdτ. (1)

The spectrogram is defined as a square mod-
ule of the STFT:

SPEC(t, ω) = |STFT (t, ω)|2 . (2)

However, in most cases the spectrogram
cannot provide high time-frequency resolu-
tion. The significant improvement of the time-
frequency resolution is achieved by using the
quadratic time-frequency distributions, such
as the Wigner distribution.

In order to produce the same auto-terms
concentration as in the Wigner distribution
but to remove the cross-terms, the S-method
has been introduced. The appropriate time-
frequency representation is obtained by com-
bining the values of the STFT along the fre-
quency axis as follows [4]:

SM(t, ω) =

=

∞∫

−∞

P (θ)STFT (t, ω+ θ)STFT ∗(t, ω− θ)dθ,

(3)
where P(θ) represents a finite frequency do-
main window function. The discrete version
of the S-method is given by:

SM(n, k) =

=
L∑

l=−L

P (l)STFT (n, k + l)STFT ∗(n, k − l),

(4)
where n and k are the discrete time and fre-
quency variables, respectively, while P(l) is
the window of the length 2L+1. By taking
the rectangular window, the discrete S-method
can be written as:

SM(n, k) = |STFT (n, k)|2+

+2Re

{
L∑

l=1

STFT (n, k + l)STFT ∗(n, k − l)

}

.

(5)
Note that the terms in summation improve

the quality of spectrogram toward the qual-
ity of the Wigner distribution. The window
P(l) should be wide enough to enable the com-
plete summation over the auto-terms. At the
same time, in order to remove the cross-terms,
it should be narrower than the minimal dis-
tance between the auto-terms. The conver-
gence within P(l) is very fast, providing a high
auto-terms concentration with only a few sum-
mation terms. In many applications L<10 can
be used [4], [6]-[8].
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An efficient solution for the time-varying
spectrum estimation is achieved by introduc-
ing multiwindow analysis methods [9]-[12]. In
order to minimize the variance, these meth-
ods are mainly based on the usage of orthog-
onal windows. At the same time, the win-
dows should be optimally concentrated to pro-
vide low bias estimate. Thus, for an efficient
time-frequency analysis, the multiple orthogo-
nal windows that are optimally concentrated
in the joint time-frequency domain should be
employed. Hence, the idea is to use a set of
orthogonal Hermite functions that are compu-
tationally localized in both time and frequency
domains. Particularly, they are optimally lo-
calized in the circular time-frequency region:
{(t, ω) : t2 + ω2 ≤ R2}, of area πR2 [12].

The k-th order Hermite function is defined
as:

Ψk(t) =
(−1)ket2/2
√
2kk!

√
π
· d

k(e−t
2

)

dtk
. (6)

Although the computation of Hermite func-
tions seems to be a demanding task, these
functions could be easily obtained by using re-
cursive realization as follows [13], [14]:

Ψ0(t) =
1
4
√
π
e−t

2/2,

Ψ1(t) =

√
2t

4
√
π
e−t

2/2,
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Fig. 1. Illustration of Hermite functions Ψkfor
k=0,1,2,3,4,5.

Ψk(t)=t

√
2

k
Ψk−1(t)−

√
k − 1
k

Ψk−2(t), ∀k ≥ 2.
(7)

Note that the zero order Hermite function
Ψ0 corresponds to Gaussian window function.
Hermite functions vanish at the infinity and
represent the eigenfunctions of the Fourier
transform. Due to their good properties, these
functions have been used in various applica-
tions: texture analysis, projection filtering,
image foveation, speech processing, etc. [13]-
[16]. Hermite functions for the first six orders
(Ψk, k=0,1,2,3,4,5) are shown in Fig 1.

Starting from the idea introduced by Thom-
son [9], the multiple windows spectrogram has

been introduced in [10]. It is defined as a
weighted sum of K spectrograms, where K is
the total number of windows, i.e. Hermite
functions used in the realization. The mul-
tiwindow spectrogram is defined as:

MWSK =
K−1∑

k=0

dk(t)SPECk(t, ω) =

=
1

2π

K−1∑

k=0

dk(t)

∣∣∣∣

∫
x(τ)Ψk(τ − t)e−jωτdτ

∣∣∣∣
2

.

(8)
where x(t) is signal, while dk(t) are the weight-
ing coefficients. By using K Hermite func-
tions, it is possible to remove K -1 phase deriv-
atives: 2nd, 3rd,. . . , and K -th. Thus, higher
number K of the employed functions provides
higher concentration in the time-frequency
plane. It has been shown that the multiwin-
dow spectrogram outperforms the standard
one for various types of signals, and it rep-
resents a very efficient tool for instantaneous
frequency estimation [11]. Similarly, as in the
case of spectrogram, the multiwindow concept
can be extended to the S-method, as well.

By analogy with the standard S-method, the
multiwindow S-method can be defined as a
convolution of Hermite function based STFT.
Namely, after calculating the STFTs by using
Hermite functions of different orders, we per-
form the convolution of the STFTs for each or-
der k within an additional frequency window
P(θ). Finally, the multiwindow S-method is
obtained as a weighted sum of the convolution
terms, as follows:

MWSMK(t, ω) =

=
K−1∑

k=0

∫

θ

P (θ)dk(t)STFTk(t, ω + θ)×

×STFT ∗k (t, ω − θ)dθ, (9)

where STFTk(t,ω) denotes the short-time
Fourier transform obtained by using the k-th
order Hermite function:

STFTk(t, ω) =

∫
x(τ)Ψk(t− τ)e−jωτdτ.

(10)
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The frequency window P(θ) has the same
properties as in the case of the standard S-
method. The discretization of (9) leads to the
form that is suitable for practical applications
and can be written as:

MWSM(n, k) =
K−1∑

k=0

dk(n) |MWSk(n, k)|2+

+
K−1∑

k=0

2Re

{
L∑

l=1

dk(n)P (l)STFTk(n, k + l)×

×STFT ∗k (n, k − l)} . (11)

It can be observed that the first term within
the multiwindow S-method represents the mul-
tiwindow spectrogram. The convolution terms
improve the quality and resolution of multi-
window spectrogram. For the N -th order poly-
nomial phase signal (N>K ), the multiwindow
S-method contains (N -K )/2 phase derivatives
(higher than the K -th derivative), which is
half of their number in the case of multiwin-
dow spectrogram. The spread factors for the
spectrogram, the S-method, the multiwindow
spectrogram and the multiwindow S-method
are given in Table I. It is also important to
note that the multiwindow S-method provides
better resolution comparing to the standard
S-method, similarly as the multiwindow spec-
trogram outperforms the standard one.

An example demonstrating the efficiency of
the multiwindow S-method is given in Fig 2.
The signal is considered in the form: x(t) =
exp(6πj cos(0.1πt) + 4πj cos(0.2πt)).

The results obtained by using the spectro-
gram, the S-method, the multiwindow spec-
trogram and the multiwindow S-method are
presented (Figs 2.a, b, c and d, respectively).
The multiwindow distributions are obtained
by using four Hermite functions (k=0,1,2,3).
The parameter L=5 is used in the calcula-
tion of standard and multiwindow S-method.
Observe that the multiwindow S-method in
Fig 2.d provides better concentration than the
other considered distributions. Also, the com-
putational demands for the multiwindow S-
method are just slightly increased compared
to the standard S-method having in mind that
satisfactory results are achieved with a small
number of Hermite functions.

Fig. 2. Time-frequency distributions of a signal x (t):
a) Spectrogram, b) S-method by using L=5, c)
multiwindow spectrogram by using four Hermite
functions, d) multiwindow S-method by using four
Hermite functions and L=5

Based on the considered distributions, the
instantaneous frequency is estimated in the
presence of noise for several values of signal
to noise ratio: SNR=5dB, SNR=7.5dB, and
SNR=10dB. Mean square errors (MSE) are
calculated in 40 realizations, while the aver-
age MSE is calculated as:

E{MSE} = 1

N

N−1∑

n=0

E
{[

f(n)− f(n)
]2}

,

where f(n) represents the true instantaneous
frequency whilef(n) is the instantaneous fre-
quency estimated by using the considered
time-frequency distributions (TFD): f(n) =
max
m

TFD(n,m).

The results are presented in Table II. An illus-
tration of the mentioned time-frequency distri-
butions for a noisy signal: y(t) = x(t) + ν(t),
is given in Fig 3 (for SNR=7.5dB).

Observe that the multiwindow Hermite S-
method is less sensitive to noise than the other
presented distributions. This is an additional
advantage, especially in the case of real signals,
that are usually corrupted by the noise.

Additionally, it is important to emphasize
that the Hermite S-method provides cross-
terms free representation for multicomponent
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TABLE I

S$
��� !����
 !�
  ��� ����-!
�%����& �� �
�������

Distribution Spread factor

Spectrogram Q(t, τ) = φ2(t) τ
2

2! + φ3(t) τ
3

3! + φ4(t) τ
4

4! + ...

S-method Q(t, τ) = φ3(t) τ
3

223! + φ5(t) τ
5

245! + ...

Multiwindow Spectrogram
with K functions

Q(t, τ) = φ(K+1)(t) τ
K+1

(K+1)! + φ(K+2)(t) τ
K+2

(K+2)! +

φ(K+3)(t) τ
K+3

(K+3)! + ...

Multiwindow S-method
with K functions

even K Q(t, τ) = φ(K+1)(t) τK+1

2K(K+1)! +

φ(K+3)(t) τK+3

2(K+2)(K+3)!
+ ...

odd K Q(t, τ) = φ(K+2)(t) τK+2

2K+1(K+2)! +

φ(K+4)(t) τK+4

2(K+3)(K+4)!
+ ...

TABLE II

M���  %��
� �
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Mean square Error (MSE) SNR =5dB SNR =7.5dB SNR =10dB
Spectrogram 45.41 40.05 32.77
S-method 40.33 31.34 21.9
Multiwindow Spectrogram 24.17 20.56 13
Multiwindow S-method 13.77 12.9 11.8

signals in the same manner as the standard S-
method. Again in this case, the width 2L+1
of frequency domain window P(θ) should be
narrower than the minimal distance between
the auto-terms. An illustration of Hermite S-
method for multicomponent signal:

z(t) = exp(3πj cos(0.1πt) + 2πj cos(0.2πt) +
12jt)+exp(4πj cos(0.15πt)+4πj cos(0.05πt)−
12jt), is given in Fig 4.

The optimal weighting coefficients dk(n) in
(11) are calculated according to [11]:

K−1∑

k=0

dk(n)

∑N/2−1
m=−N/2A

2(n+m)Ψ2k(m)m
i

∑N/2−1
m=−N/2A

2(n+m)Ψ2k(m)
=

=

{
1, i = 0
0, i > 0

, i = 0, 1, . . . ,K− 1, (12)

where A(n) is the signal amplitude, while N

is the number of samples within the window
function. Note that for constant amplitude
within the window (A(n + m) = A(n)), the
weighting coefficients are constants, given in
Table III.

IV. A$$�������� �! M����������
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Efficiency of the multiwindow S-method will
be also proven in the example with radar data.
Hence, we provide a brief overview of the basic
radar signal model and related target motion
estimation.

Consider a Doppler radar transmitting a sig-
nal in the form [17], [18]:

s(t) = ejπ
ωs

Tr
t2 , 0 ≤ t ≤ Tr, (13)

where Tr is the repetition time. Commonly,
the transmitted signal consists of M chirps:

sM(t) = e−jω0t
M−1∑

m=0

s(t−mTr), (14)

where ω0 is the radar operating frequency.
Note that we can consider just one compo-
nent of the received signal sm(t) = e−jω0ts(t−
mTr). Furthermore, if the target distance from
radar (also known as range) is d(t), the re-
ceived signal is delayed with respect to the
transmitted signal for 2d(t)/c:
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TABLE III

W���
���� ���!!������ dk !�
 ��� ���� ��$������  ����� !�
 K=1,. . . ,11

d0 d1 d2 d3 d4 D5 d6 d7 d8 d9 d10
K=1 1
K=2 1.5 -0.5
K=3 1.75 -1 0.25
K=4 1.875 -1.375 0.625 -0.125
K=5 1.937 -1.625 1 -0.375 0.062
K=6 1.968 -1.781 1.312 -0.687 0.219 -0.031
K=7 1.984 -1.875 1.546 -1 0.453 -0.125 0.016
K=8 1.992 -1.929 1.710 -1.273 0.727 -0.289 0.070 -0.008
K=9 1.996 -1.961 1.820 -1.492 1 -0.507 0.179 -0.039 0.003
K=10 1.998 -1.978 1.890 -1.656 1.246 -0.754 0.344 -0.109 0.021 -0.002
K=11 1.900 -1.561 0.955 -0.223 -0.357 0.573 -0.460 0.237 -0.079 0.016 -0.001

Fig. 3. Time-frequency distributions of a noisy sig-
nal y(t): a) Spectrogram, b) standard S-method,
c) multiwindow spectrogram, d) multiwindow S-
method

Fig. 4. An illustration of the Hermite S-method in the
case of multicomponent signal

sm(t) = σe−jω0(t−
2d(t)
c )s(t− 2d(t)

c
−mTr),

(15)
where c is the propagation rate equal to the
speed of light, while σ is the reflection coeffi-
cient.
The Doppler phase can be written as [17]:

φr(t) =

∫ t

0

∆ωd(τ)dτ, (16)

where ∆ωd is the Doppler frequency shift.
Thus, the phase of the received signal changes
as follows:

φr(t) =
4π

λ
d(t) =

2ω0
c

d(t), (17)

where λ is the transmitted signal wavelength.
According to (15) and (17), the Doppler fre-

quency shift will be proportional to the target
radial velocity:

∆ωr(t) =
d

dt
[φr(t)] =

2ω0
c

d

dt
[d(t)] =

2ω0
c

υ(t).

(18)
The radar target may contain structures

that produce mechanical vibrations or rota-
tions, causing frequency modulation in the re-
turned signal. This modulation is known as
micro-Doppler phenomenon. The vibration of
a reflecting surface may be measured with the
phase change. Consequently, the Doppler fre-
quency shift can be used to detect vibrations
of structures on a target [18], [19].

The target can be observed as a set of pri-
mary reflecting points i.e. point scatterers [19].
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Assuming that the vibrating scatterer is set to
a radian frequency oscillation of ων , its time-
varying phase changes according to [19]:

φ(t) =
4πDν

λ
sin(ωνt), (19)

where Dν is amplitude of the vibration and
λ is the wavelength of the transmitted signal.
The micro-Doppler frequency induced by the
vibration can be obtained as:

fD(t) =
1

2π

dφ

dt
=
2Dνων

λ
cos(ωνt). (20)

The micro-Doppler signature caused by the
vibrating structure is important for target
identification, such as for example, human
walking gait. The time-frequency signatures
could be very suitable for this purpose, since
the micro-Doppler of the vibrating scatterer is
a time-varying frequency spectrum [18], [19].

Example: In this example we have consid-
ered a radar signal that captures human move-
ments. The signal contains multiple phys-
ical movements taking place simultaneously.
Various body parts have different shifts, since
they are moving with various velocities. The
strongest component corresponds to the main
body movements, while the other components
correspond to swinging arms and legs, etc. For
example, the swinging arms induce frequency
modulation of the returned signal and gener-
ate side-bands about the body Doppler.

The standard spectrogram and the S-
method are calculated by using Hanning win-
dow and they are presented in Fig 5.a and Fig
5.b, respectively. Also, the spectrogram and
the S-method obtained by using only one Her-
mite function (zero order function that corre-
sponds to Gaussian window) are considered in
Fig 5.c and Fig 5.d, respectively. The time
domain windows of length 256 are used.
The multiwindow spectrogram is shown in Fig
5.e, while the multiwindow S-method is pre-
sented in Fig 5.f. The multiwindow time-
frequency representations are calculated by us-
ing five Hermite functions. Both the stan-
dard and the multiwindow S-method are cal-
culated by using L=3, which provides cross-
terms free representation with good concen-
tration of auto-terms. It has been shown that

this is the optimal value for considered applica-
tion. Higher value of parameter L would pro-
duces cross-terms, whose value would increase
as L increases. Namely, after L has reached
the value equal to the distance between the
auto-terms, cross-terms start to appear.

It is interesting to note that the standard
S-method improves the concentration in com-
parison with the spectrogram. Some further
improvements are achieved by using the multi-
window spectrogram. However, the multiwin-
dow S-method outperforms both the standard
S-method and the multiwindow spectrogram,
which is especially emphasized in the region
that corresponds to torso component. The
standard S-method and multiwindow spectro-
gram can provide sufficiently good concentra-
tion for linear or almost linear frequency com-
ponents. However, the Hermite S-method can
further improve the concentration of compo-
nents with higher nonlinearity.

Note that good concentration of the Hermite
S-method is achieved by using just a few orders
(k=0,1,2,3,4) of Hermite functions. Namely,
the presence of the fifth and higher order phase
derivatives is not significant. Thus, higher
number of Hermite functions (that would re-
move them) does not contribute to the concen-
tration improvement.

V. C����� ���

The multiwindow S-method is developed
from the idea to merge two efficient signal
processing tools, the S-method and the Her-
mite functions, into a modified, highly concen-
trated time-frequency distribution. It exhibits
good properties in the presence of noise, while
regarding the concentration, outperforms both
the standard S-method and the multiwindow
spectrogram. This method provides very sat-
isfying results even by using small number
of Hermite functions and small number of
samples within the frequency domain window.
Therefore, it is computationally effective and
suitable for realization. The efficiency of the
proposed method is proven on the analytic sig-
nal, as well as on radar data.
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Fig. 5. Time-frequency representations of radar signal: a) Standard spectrogram with hanning window, b)
standard S-method by using hanning window, while L=3; c) Spectrogram with one Hermite function, d) S-
method with one Hermite function, e) Multiwindow spectrogram with 5 Hermite functions, d) Multiwindow
S-method with five Hermite functions and L=3
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