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The Two-Dimensional Hermite
S-method for High Resolution ISAR
Imaging Applications

Srdjan Stankovié, Irena Orovié, and Andrey Krylov

Abstract— The two-dimensional multiwindow
S-method for radar imaging applications is
proposed. It represents a combined tech-
nique that uses the standard S-method and
the multiple windows approach based on the
two-dimensional Hermite functions. The pro-
posed method provides significant improve-
ment of radar image concentration in compari-
son with the standard S-method. Also, it does
not require an additional post-processing algo-
rithm. The efficiency of the proposed method
is demonstrated on various examples.

I. INTRODUCTION

The Fourier transform is one of the most fre-
quently used signal analysis tool that provides
characterization and interpretation of signals
for various applications. Hence, in radar imag-
ing, the two-dimensional Fourier transform has
been frequently employed. Namely, by ap-
plying the two-dimensional Fourier transform
to the coherently processed radar echoes, the
corresponding radar images are obtained [1]-
[4]. Tt is used for both the synthetic aperture
radar (SAR) and the inverse synthetic aper-
ture radar (ISAR) systems. However, the high
image resolution can be achieved only in the
case of stationary targets in SAR and constant
rotation in ISAR applications. Otherwise, the
Doppler shift and the Doppler spread in the
received signal will cause blurred and smeared
images. Therefore, in order to improve the res-
olution in these cases, various time-frequency
approaches [5]-[8] and/or motion compensa-
tion techniques have been employed [9], [10].
The motion compensation techniques provide
good results usually by estimating target mo-
tion parameters, but at the expense of high
computational load. Concerning the time-
frequency representations, some efficient so-
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lutions have been provided by using the S-
method [5], [6], [8]. It provides highly con-
centrated representation as in the case of the
Wigner distribution, but with reduced number
of cross-terms [11]. The S-method is compu-
tationally very efficient technique that starts
from the two-dimensional Fourier transform
and improves its concentration by performing
a simple convolution within the frequency do-
main window. The appropriate selection of
window width is crucial for image resolution
and readability. The narrow window may pro-
duce the blurred radar image, while in the case
of wide window, the cross-terms appear. More
details about the choice of window width can
be found in [7], [11]. To provide satisfactory re-
sults, in some cases the S-method is combined
with an additional post-processing algorithm
[8].

In order to improve performances of the
Fourier transform and the standard S-method
in radar imaging, the two-dimensional mul-
tiwindow S-method is introduced in this pa-
per. It can be considered as an extension
of the method introduced in [8]. The pro-
posed multiwindow approach is based on the
usage of two-dimensional Hermite functions.
These functions exhibit some desirable proper-
ties such as good time-frequency localization:
they are optimally concentrated in the circu-
lar regionR = {(t, f) : t> + f? < C}, with C
a constant. A signal expansion into series of
Hermite functions provides, at the same time,
the insight to its Fourier transform, since they
are the eigenfunctions of the Fourier trans-
form. Therefore, the two-dimensional Hermite
functions are combined with the advantages
of the S-method, providing an enhanced res-
olution in radar imaging. Our approach uses
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only a few low order functions, and hence the
algorithm complexity is slightly increased in
comparison with the standard S-method. Un-
like some common time-frequency techniques,
that split the ISAR image into a time-series
of ISAR images, the multiwindow S-method
uses the whole set of data, in the same way
as the standard S-method does [7], [12]. It
starts with an already obtained radar image,
based on the multiwindow Fourier transform,
and improves its concentration by additional
matrix calculations.

The paper is organized as follows. Brief re-
view of the basic radar signal model and ISAR
model is given in Section II. In Section III, the
multiwindow Hermite S-method is proposed.
The experimental results including the ISAR
application are presented in Section IV. Con-
cluding remarks are given in Section V.

II. THEORETICAL BACKGROUND — SIGNAL
MOoODEL AND ISAR MODEL

The commonly used techniques for radar
imaging are SAR and ISAR. These methods
are designed to provide high resolution images
of stationary and moving targets. The SAR
method is used for stationary targets while
the radar is moving at a uniform speed and
at a constant altitude [3]. On the other hand,
the ISAR method is designed for moving tar-
get while the radar is fixed. In both systems,
radar transmits a signal usually in the form of
M coherent chirps [3], [6]:

M-1
o, (t) = e w0t Z zo(t —mTy), (1)

m=0
where:

Ta(t) = eI BI for 0<t< T,
o 0 otherwise.

The model parameters are:

1. t: Fast time,

2. wp: Radar operating frequency,

3. T,: Pulse repetition rate

4. mT,: Indexes the slow time

5. MT,: Total signal duration

6. f,. = 1/T,: Repetition frequency

7. B: Bandwidth of the transmitted pulse.
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Assuming that the distance between the
radar and the target is d (also known as the
range), the received signal is delayed with re-
spect to the transmitted signal by 2d/c, as fol-
lows:

‘ M-1 9
zp, (t) = geIwo(t=2d/c) Z xa(t—?—mﬂ.),

m=0
(3)
where ¢ is the reflection coefficient, while c is
the speed of light. The received baseband sig-
nal produced by the m-th chirp and returned
from the single point scatterer can be written
as [6], [7]:

) — O_ejw02d/ce—j27rBfr(t—mTT)Zd/c'

(4)
Using the matched filtering of the m-th re-
ceived pulse and the m-th transmitted pulse
(the received signal is multiplied with the com-
plex conjugate of the transmitted signal), pro-
duces:

xR, (Mt

x(m, t) _ O_ijOZd/cejZﬂ'Bfr(tfmTr)ejTrBfr(z_cd)2'
(5)
Since B < wg, the constant phase shift

) 2
B4 can be neglected with respect to

other two components [9]. Thus, by substi-
tuting t —mT, = nT; into (5), where T is the
sampling interval within the chirp, the two-
dimensional discrete mixed signal can be ob-
tained in the form [6], [7]:

x(m,n) = gelwo2d/cg=in (6)

where 0 = 27Bf,2d/cTs is the angular fre-
quency. The Fourier transform will result in a
pulse at the angular frequency 6, proportional
to the range d. Note that, in the case of target
that is moving with respect to radar, the range
is time dependent: d(t) = d(nTs + mT}).

ISAR model: Let us assume that a loca-
tion of the p-th target point scatterer is (z,,
Yp). The range coordinate (in direction of the
radar-target line) is denoted by z,, while y,
denotes the cross-range coordinate (in the di-
rection normal to the radar-target line). The
total range of the p-th scatterer is then defined
as [7]:

d(t) = R(t), R = Ro,
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R(t) = Ry + x,, cos(wrt) + yp sin(wrt)
limO[R(t)] = Ro + zp + ypwrt, (7)
WR—

where wgt is the rotation angle of point scat-
terer. The Doppler shift is obtained as [7]:

wa =220 L ()] =

= 290 2[Ryt cos(wnt) +yp sin(wrt)], (8
For wrt — 0, wg = 2“: YpWR ~ Yp holds, as-
suming that the translation is compensated.
According to these conditions, d(t) ~ z,, while
the velocity is v(t) ~ yp,wr = v.

Under previous assumptions, the two- dimen-
sional Fourier transform of the signal corre-
sponding to the p-th scatterer can be approxi-
mated by [9]: 270,60 (wi —c1Yp)0 (Wi —camay),
where ¢; = 2wgrwp/cand ¢y = 47 B/c. In other
words, it produces a peak on the proper scat-
terer position.

Non-uniform motion: When the target ro-
tates with constant angular velocity wg, for
a longer period of time, the position of p-th
scatterer is given by: y, = rpsin(wgt), x, =
rp cos(wrt),where r, = \/x, +y,. Hence, for
the time interval [t, ¢+ At], the cross-range co-
ordinate changes within the interval [7]:

[Yp, Yp + AYy| =

= [rp sin(wgt), xp sin(wrAt) + yp, cos(wrAt)].

(9)
The line-of-sight projection of the point scat-
terer velocity changes within:

[05(t), vs(t + AL)] =

= [rpwrsin(wgt), rpwr sin(wgr(t + At)] =

= [Ypwr, Tpwr sin(wrAt) + ypwr cos(wrAt)].

(10)
Furthermore, for small wrAt, (10) can be writ-
ten as [7]:

[vs(t), vs(t + At)] = [ypwr, Ypwr + TpwRAL].
(11)
Thus, at the frequency that corresponds
toypwr, a function corresponding to the linear
frequency modulated signal is obtained instead
of delta pulse [7]. The same holds for the range
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coordinate z,. If wrAtis not small enough,
or if wgis not constant, the instantaneous fre-
quency can be highly non-linear, resulting in a
spread two-dimensional Fourier transform and
blurred image.

III. TiIME-FREQUENCY ANALYSIS IN ISAR:
TwWO-DIMENSIONAL MULTIWINDOW

S-METHOD

A. The Two-dimensional Fourier Transform
and the S-method

The two-dimensional Fourier transform has
been widely used in radar imaging. For the
received signal x(m, n), it is given in the form:

M—-1N-1
X(p, Q) = Z Z x(m, n)e_j(Zﬂ-"”;U/M"Fzﬂ'nq/N)-

(12)

The ISAR image is obtained by using the pe-
riodogram, defined as Per(p,q) = | X (p, q)|2,
which is the square modulus of the Fourier
transform. Due to the nonuniform target mo-
tions, the Doppler shift corresponding to the
cross-range of each scatterer, is time-varying.
The received radar signal will be frequency
modulated. Consequently, its two-dimensional
Fourier transform will be spread, resulting in
the blurred or smeared image.

In order to improve the concentration of
the periodogram, the S-method has been used.
The S-method for a fixed range cell is defined
as [6], [11]:

L
SMr(p.q) = Y P()X(p+i,0)X*(p—1i,q),
i=—1L
(13)
where P(i) is a frequency window which is
commonly of rectangular form. Similarly, for
a fixed cross-range cell, the S-method can be
written as:
L
SMor(p,q) = >, P()X(p,q+5)X"(p,q—5)-
j=—L
(14)
Consequently, the two-dimensional S-method
that improves the concentration of radar im-
ages along both coordinates (range and cross-
range) is defined as [6], [13]:

SM(p,q) =
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L L
i=—L j=—L

= Per(p,q)+

L L
+2Re{ Y N P, )X (p+i,q+ )%
i=1j=1
xX*(p—i,q—3)}

Note that, in some applications, the one-
dimensional S-method applied to the cross-
range coordinate could provide satisfactory re-
sults [8]. Namely, the target velocities in-
duce spreading in the cross-range and focusing
along this axis is needed. However, as a result
of nonuniform rotation (or fast movements)
performed by the target and radar setup, the
spreading may appear along the range axis
as well. In this case the two-dimensional S-
method can be used [8].

The S-method is very suitable for hardware
realization and some efficient solutions have al-
ready been proposed and analyzed in [14], [15].

(15)

B. The multiwindow S-method based on the
Hermite functions

Spatial function in the Sturm-Liouville
boundary value problem, which appears, for
example, in the treatment of the harmonic os-
cillator in quantum mechanics, is called Her-
mite function [16]. The Hermite functions are
the eigenfunctions of the Fourier transform:

FT(Wy(x)) = "Wy (), (16)
where FT(.) denotes the Fourier transform.
Thus, an expansion of signal into a series of
Hermite functions enables one to analyze of
the signal and its Fourier transform simulta-
neously. Furthermore, the Hermite functions
are orthogonal and well localized in both time
and frequency domains. Hence, the set of Her-
mite functions could be employed for efficient
time-frequency analysis. The two-dimensional
Hermite functions are defined as follows [16],
[17]:

"I/k'l (CL‘ ) y) =
(71)k+lez2/2+y2/2 dk(efﬁ) dl(eny) .
V2R wray 1
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Some examples of two-dimensional Hermite
functions are plotted in Fig 1. It is interest-
ing to note that a two-dimensional Hermite
function can be obtained by calculating one-
dimensional Hermite functions for each coor-
dinate separately:

Ui (x,y) = Wi(x)Wi(y) =

(—1)k€$2/2 dk(e—x2) (—l)ley2/2 dl(e_y2)
V2REN/A o dah o\ flin/m dyt
(18)
Although they seem to be complex for real-
ization, the Hermite functions could be easily

calculated by using the recursive realization as
follows [18]:

_, /%\I}k_z(m), VE>2.  (19)

In order to improve the concentration in the
time-frequency domain, the Hermite functions
have been used in the definition of multiwin-
dow spectrograms, denoted as HSpec(tw) [19]-
[21], which could be written in the discrete
form as:

HSpec(n,w) =
2

)

K-1
= (Md_k Zw(m)%(mn)e-fm")
k=0 m (20)

where di are the weighting coefficients. It
has been shown that the multiwindow spectro-
gram outperforms the standard one and can
provide highly concentrated time-frequency
representation [20], [21]. Similarly, to im-
prove the concentration of radar images, the
multiple windows approach based on the
Hermite functions can be adapted for two-
dimensional case and the existing processing
tools: the two-dimensional Fourier transform
and the S-method (the one-dimensional and
two-dimensional cases).
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Fig. 1.

Analogous to the standard S-method, the
two-dimensional multiwindow S-method can
be defined as a convolution of Hermite based
Fourier transforms, as follows:

HSM(p,q) =

L L

=>" Y PGHHXN(p+iq+])x

i=—L j=—L

xHX"S*(p—1i,q - j), (21)

where HXX(p,q)denotes the multiwindow
two-dimensional Fourier transform. It
is obtained as a sum of two-dimensional
Fourier transforms calculated by using two-
dimensional Hermite functions of various or-
ders, as follows:

K—

=2

k=0 1

N

HX"(p,q HXM (pq) =

Il
=]

Illustrations of some two-dimensional Hermite functions: a) Woo(z,y), b)¥as(z,y),
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©

c)Waq (1‘, y)

N

N—

,_.

K-1 M—
= E kl\IJkl m, n
m

o
Il
=]

=0 n=0

) —](27rmp/M+27rnq/N). (22)
where dy; are the weighting coefficients, while
K is the number of functions used along both
range and cross-range direction (axis). Fur-
thermore, in order to simplify the realization,
HX"(p,q) is obtained as a composition of
one-dimensional cases, as follows:

Z[fwz

HXkl p7 7j27rnp/N

M—1

X Z VdgUr(m) z(m n)e_j%mq/M} . (23)
m=0

The one-dimensional weighting coefficients

di and d; are determined according to the pro-
cedure described in [21], while dy=+v/drd; =
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di. holds. The different order Hermite func-
tions act as multiple windows that improve the
concentration in both directions.

The two-dimensional multiwindow peri-
odogram is obtained as: HPer(p,q) =

K-1
K—1 . 2
k=0 ZZO |HXkl(p7 Q)} .
Consequently, the multiwindow Hermite S-
method can be written in the form:

HSM(p,q) = HPer(p,q)+

L L

+2Re ¢ S P, ))HX  (p+i,q+ j)
i=1 j=1

xHXX*(p—i,q—3)} (24)

Observe that in case of the standard

S-method given by (15), the terms 2Re
(S S PaHX(p+ i+ )
xX*(p —1i,q — j)} are used to improve the pe-
riodogram concentration (all even phase deriv-
atives are removed from the spread factor) [6],
[8]. Since the same idea is used for multi-
window approach, the multiwindow S-method
improves the resolution by eliminating even
phase derivatives that remain after the multi-
window periodogram removed first K-1 deriv-
atives [21].

In some applications, it might be sufficient
to calculate the Hermite S-method along only
one axis. Thus, the Hermite S-method in
range and cross-range direction could be, re-
spectively, defined as:

HSMg(p,q) =

L L

= >N P, ) HX X (p+i, ) HX " (p—i, q),
P —

HSMcr(p,q) =
L L

= > P(i,5)HX (p,q+5)HX"*(p, q—j).

i=—Lj=—L
(25)
The proposed approach can be generalized
by using other functions instead of the Hermite
functions. For example, the Laguerre func-
tions could be interpreted as the Wigner dis-
tribution of Hermite functions (k-th order La-
guerre function is the Wigner distribution of
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the k-th order Hermite function), and hence,
could be used to generate optimal kernels [20].
Furthermore, the windows provided by spline
functions, e.g. B-spline functions that are
time-limited piecewise polynomials [22], could
be considered, as well.

IV. EXAMPLE

Ezxzample 1: In order to demonstrate how the
S-method improves the concentration in the
time-frequency domain, let us observe the sim-
ple simulated signal in the form:

z(n) = z1(n) + x2(n) + 23(n) + 24(N0),

w1 (n) = A(n)e/ B eIEn,

12(n) = A(n)el S IR,

75(n) = A(n)e I eI

za(n) = A(n)e—I58™* —i%n,

The time instant n=0 is considered. Thus,
the signal consists of four components that
may correspond to the returned radar sig-
nals from four point targets that accelerate.
The amplitude is slow-varying: A(n) = % +
%cos ﬁn, —128 < n < 127.The discrete in-
stantaneous frequencies of signal components

are: wi(0) = §2(0) = Fa(0) = —F and
w4(0) = —F. The Hermite S-method is cal-

culated by using different values of parameter
L (L=0, 4, 16, 32), and the results are shown
in Fig 2. Here, the same number of Hermite
functions: K=3 is used for each L. One might
observe that the concentration of signal com-
ponents increases by increasing L, i.e. by in-
creasing the number of convolution terms in
the Hermite S-method. However, for high val-
ues of L (L=16 and L=32 in Fig 2), the unde-
sired cross-terms appear between components.
Generally, in most applications, 3 < L < 10
should be used [7], [11].

Furthermore, the concentration can be also
improved by increasing the number of Hermite
functions K. The Hermite S-method, imple-
mented by using different number of Hermite
functions (K=1, 2, 3, and 4) is illustrated in



1490

HERMITE S-METHOD (K=3)

200
(0]
=
2
a) 'g}‘] 00 L= 0
£
0 L L L
-0.4 -0.2 0 0.2 0.4
200 HERMITE S-METHOD (K=3)

=
=
magnitude
-
o
)

o

IL=4
4

-0.

-0.2 0 0.2

HERMITE S-METHOD (K=-3)

iL=16
0 (\/\

-0.4 -0.2 0 0.2 0.4
HERMITE S-METHOD (K=3)
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-0.2 0 0.2 0.4
normalized frequency

Fig. 2. Concentration improvement by increasing L:
a) L=0, b) L=4, ¢) L=16, d) L=32

Fig 3. Note that the same value of parameter
L (L=4) is used for all values of K.

Ezxample 2: In order to prove efficiency of
the Hermite S-method in target points de-
tection, the simulated range/cross-range data
are used. The radar setup assumes: high
resolution radar operating at the frequency
f0=10.1GHz, bandwidth of the transmitted
signal B=600MHz, the coherent integration
time T=2s, 64 pulses in one revisit and 256
samples within one pulse. The target is at
2 km distance from the radar and rotates at
wr = 2.19/sec. The nonlinear rotation with
frequency Q2 = 0.5H z is superimposed:wr(t) =
wr + Asin(27Qt), where A = 1.05%/sec. The
translation is not assumed within the experi-
ment, so there is no need for translation com-
pensation. The target is simulated as six point
scatterers in (z, y) plane, where the posi-
tions of scatterers at ¢=0 are: (z1, y1)=(-
2.1, 144), (.Tg,yg):(o, 144), (Ig,yg):(Q.l,
1.44), (24,y4)=(-1.08, -0.72), (z5,y5)=(1.08, -
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Fig. 3. Concentration improvement by increasing K:
a) K=1,b) K=2,c) K=3,d) K=4

0.72), (z6,y6)=(0, -2.28). All coordinates are
in meters. Radar images obtained by using:
the two-dimensional Fourier transform (peri-
odogram), the standard S-method and the pro-
posed Hermite S-method are given in Fig 4.
The parameter L=3 is used for the calcula-
tion of both the S-method and the Hermite
S-method. The number of Hermite functions
used in the Hermite S-method is K=3.

We have calculated the number of “cor-
rect points” by finding the six largest values
within the periodogram, the S-method and
the Hermite S-method (Fig 5), and checking
if they correspond to the true targets posi-
tions. Other points are set to zero. The co-
ordinates of the six points with largest energy
are given in Table I. Note that in the case
of periodogram, the selected points are quite
dislocated from the true target points. Four
out of six points could be considered as “cor-
rect points”, if the S-method is used, while all
selected points in the Hermite S-method are
“correct points” for this signal.
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Fourier transform (periodogram)

e =
Y IS
RS &

cross-range [m]
cross-range

-2.28

-4 -2.1+1.080 1.0821
range [m]

(@

-4

Fig. 4.
S-method

Fourier transform (periodogram)

cross-range [m]
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t=0 [sec]

S-method Hermite S-method

cross-range

4 6 -4 -2.+1.080 1.08 2.1

range
(©

4 6

range

(b)

ISAR images of simulated range/cross-range data: a) periodogram, b) standard S-method, ¢) Hermite

t=0 [sec]

S-method

Hermite S-method

-4

-2.1-1.080 1.082.1
range [m]

4

-4

-1-1.080 1.08 2.1
range

(b)

-4

-2.+-1.080 1.08 2.1
range

()

4 6

(@)
Fig. 5. Six largest values (points) within: a) periodogram, b) standard S-method, ¢) Hermite S-method

TABLE 1

THE COORDINATES OF SIX LARGEST POINTS

(z,y) i=1 =2 1=3 1=4 1=5 1=6
True points (2.1, 1.44) | (0, 1.44) | (2.1, 1.44) | (-1.08, -0.72) | (1.08, 0.72) | (0, -2.28)
Periodogram (-2.25, 1.82) (0, 1) (2.25, 0.8) (-1, -1) (1,-0.4) (0,1.4)
S-method (2.2, 1.44) | (0, 1.44) | (2.2, 1.44) [0, 2) 0,2.1) (0, 2.2)
Hermite S-method | (2.2, 1.44) | (0, 1.44) | (2.2, 1.44) (1,0.8) {1, -0.65) | (0, 2.98)

Furthermore, all points whose energy is
above the minimal energy of true points are
considered as “false alarms”. In Fig 6, we have
illustrated the true points and “false alarms”.
The number of “false alarms” in the case of pe-
riodogram and S-method is 8 (in total 14 point
are presented). Note that within the Hermite
S-method there are no “false alarms” in this
example.

Example 3: The MIG target model is
used in this example. The ISAR images
of MIG25, obtained by using standard peri-

odogram and the standard S-method (with-
out post-processing algorithms and by using
the rectangular window), are shown in Fig 7.a
and b, respectively. The value of parameter
L=3 is used in the calculation of the stan-
dard S-method. Note that some parts of the
ISAR images are blurred due to the maneuvers
that target performs (for example the points
on the nose, wings, etc). The standard S-
method cannot provide notable improvement
of the concentration, since the starting two-
dimensional Fourier transform produces quite
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Fourier transform (periodogram)
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cross-range [m]
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-4
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Fig. 6. True target points and “false alarms”:

unfocused image.

In Fig 7.c the two-dimensional Hermite pe-
riodogram is shown. It is obtained by us-
ing the two-dimensional Hermite functions for
K=3 (three Hermite functions are used in
both range and cross-range direction). Its
concentration can be further improved by us-
ing the Hermite S-method. Hence, the im-
ages obtained by using the Hermite S-method
for K=1 (one window function in both range
and cross-range directions) and K=3 (three
window functions are used in both range and
cross-range directions) are shown in Figs 7.d
and 7.e, respectively. As in the case of stan-
dard S-method, the parameter L=3 is used
for the Hermite S-method calculation. Ob-
serve that the image in Fig 7.e (the Hermite
S-method for K=3 and L=3) is quite focused
and improved comparing to other presented
cases (including the case for K=1).

In this example, the one-dimensional form
of Hermite S-method applied to cross-range di-
rection is sufficient to provide good results and
low computational costs. Namely, the images
are sharp enough in the range direction, so the
convolution within the standard S-method and
the Hermite S-method can be applied only to
the cross-range direction. Since a small num-
ber of Hermite functions (K'=3) is used, this
approach is still efficient regarding the compu-
tational complexity.

The measure of image sharpness [23] is used
in order to quantify the quality of re-focused
images. This simple quality metric is defined
as the intensity normalized sum of the absolute

S-method

-4 -21+1.080 1.082.1 4 6 -6

TIME-FREQUENCY SIGNAL ANALYSIS

=0 [sec]

Hermite S-method

cross-range

-4 -2.+1.080 1.08 2.1 4 6
range

range
(b) ()

a) periodogram, b) standard S-method, ¢) Hermite S-method

value of pixel photocurrent convolved with a
spatial high pass filter [23]:

QM = LY |1, + K],
Y

K

where I; ; is the intensity at the (4,j)"" position
and E = )" I; ;is the total intensity of the
g

image. As an additional objective measure,
the image contrast is calculated as follows [24]:

1/Zl:%:|fi,j|4

= -
SOOI

The quality measures, IQM and C, for images
presented in Fig 7, are given in Table II. Note
that in the case of image obtained by using the
Hermite S-method, the measures IQM and C
have the highest values, indicating the highest
quality.

Ezample 4: Here, the simulation with the
noisy signal is considered. Namely, the signal
from the previous example has been corrupted
by the Gaussian noise with SNR=3dB. The
ISAR images obtained by using the standard
periodogram, the standard S-method, the Her-
mite periodogram and the Hermite S-method
are presented in Fig 8.

Note that the images obtained by using the
standard periodogram and the standard S-
method are quite blurred and smeared (Fig 8.a
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(a)

(b)

(d)
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(c)

(e

Fig. 7. ISAR image of MIG25 obtained by using: a) two-dimensional Fourier transform, b) standard S-method,
¢) two-dimensional Hermite periodogram, d) Hermite S-method by using K=1, e¢) Hermite S-method by

using K=3

TABLE 11
IMAGE QUALITY METRICS

Image obtained by using: QM C
Standard periodogram — Fig 7.a 0.76 | 0.00089
Standard S-method (L=3) - Fig 7.b 0.71 | 0.0011
Hermite periodogram (K=3) - Fig 7.c 0.79 0.014
Hermite S-method (K'=3,L=3) - Fig 7.e | 0.86 | 0.0019

and Fig 8.b, respectively). The Hermite peri-
odogram (Fig 8.c) improves the results, but it
is still blurred and affected by the noise. How-
ever, the Hermite S-method (Fig 8.d) is more
robust in noisy conditions and provides rather
clear and focused image.

V. CONCLUSION

A multiwindow Hermite S-method is in-
troduced as an efficient tool for high res-
olution radar imaging. This multiwindow
approach is based on the usage of two-
dimensional Hermite functions. Also, the Her-
mite based two-dimensional Fourier transform
and Hermite periodogram are defined as in-

termediate processing steps. Furthermore,
the one-dimensional and two-dimensional ver-
sions of the Hermite S-method are consid-
ered. The Hermite S-method provides a sig-
nificant resolution improvement comparing to
two-dimensional Fourier transform and the
standard S-method. The enhanced resolution
could be obtained with only a few Hermite
functions that could be easily calculated by
using the recursive algorithm. The computa-
tional complexity of the proposed method is
slightly increased comparing to the standard
S-method. Hence, it is amenable for imple-
mentation in hardware.
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(d)

Fig. 8. Noisy ISAR image of MIG25 obtained by using: a) periodogram, b) standard S-method, ¢) Hermite

periodogram, d) Hermite S-method by using K=3
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