
1510 TIME-FREQUENCY SIGNAL ANALYSIS

Method for Nonstationary Jammer
Suppression in Noise Radar Systems
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Abstract– Noise radars represent a rapidly
growing research topic owing to numerous ad-
vantages over the conventional radars. This pa-
per proposes a method for strong nonstation-
ary jammer suppression in noise radar systems.
The corrupted received signal is divided into
non-overlapping segments so that the instanta-
neous frequency (IF) of the jammer can be ap-
proximated by a parabola within each segment.
To that end, an adaptive recursive procedure is
proposed. The procedure uses the polynomial-
phase transform to estimate the parabola co-
efficients. The jammer suppression is done for
each segment separately. The simulations, per-
formed for various types of FM interferences,
prove the effectiveness of the proposed method
even for highly nonstationary jammers with
non-polynomial phase.

I. I������	�
��

Noise radars exhibit numerous advantages
over the conventional ones due to truly random
transmitting signal. The advantages include
unambiguous range estimation, high immunity
to noise, interference suppression, low proba-
bility of intercept, high electromagnetic com-
patibility, ideal thumbtack ambiguity func-
tion.

In the past decade, a significant research
has been devoted to the development and im-
plementation of random noise radar [1]—[6].
Recent research has investigated the poten-
tial use of noise radar for the ultrawide-band
SAR/ISAR imaging, Doppler and polarimet-
ric measurements, collision warning, detection
of buried objects and targets obscured by fo-
liage. Wide bandwidth provides a high range
resolution, while an extended pulse length re-
duces the peak power. A non-periodic wave-
form suppresses the range ambiguity while re-
ducing both the probability of intercept and
the interference influence.

IET Signal Processing, Vol. 4, No. 3, June 2010.

The real time digital range/Doppler process-
ing puts strong requirements on computing
speed, but, on the other hand, provides in-
creased flexibility in performance. The bi-
nary or low-bit ADC significantly improves the
signal-processing rate and reduces the costs
[5]. The average peak-to-sidelobe ratio (PSR)
is for the single reflector case similar for both
the binary and high-resolution ADC. For the
multiple reflectors case, the binary ADC is
outperformed by the high-resolution one for
approximately 4dB. A comprehensive analysis
of the performance of phase- and frequency-
modulated noise radar is presented in [6], in-
cluding a study on the main factors that influ-
ence the range sidelobes, analysis of phase and
frequency modulation by noise, investigation
of the range sidelobe suppression and perfor-
mance, investigation of biphase modulation by
random noise, analysis of clutter influence on
the sidelobe level.
Even though random noise radar is a rapidly

growing research topic, very little attention
has been devoted to the jamming problem.
A strong jammer can significantly reduce the
PSR of the received signal and therefore dete-
riorate the performance of receiver [7]. Nu-
merous available methods for nonstationary
jammer suppression in direct sequence spread
spectrum (DSSS) systems can be used with
noise radars, since DSSS signals are also wide-
band signals. In [16], the author introduces
the nonstationary jammer excision for signals
characterized by their instantaneous frequen-
cies. Time-frequency (TF) based methods
are among most attractive. Let us mention
non-parametric methods based on the short-
time Fourier transform (STFT) [17] and the
local polynomial Fourier transform [18], and
parametric method based on the generalized
Wigner-Hough transform [19].
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In this paper, we propose a simple method
for filtering the noise radar return corrupted
by a high-power broadband jammer. The jam-
mer covers both the frequency and time ranges
of the operating noise radar. The received sig-
nal is divided into non-overlapping segments so
that, for each segment separately, the instan-
taneous frequency (IF) of the jammer can be
sufficiently well approximated by a parabola.
The parabola coefficients are obtained by us-
ing the discrete polynomial-phase transform
(DPT) [11]—[13]. The DPT is chosen over
other parameter estimation methods (see [8]—
[10], [14], and corresponding references) for its
simplicity. Knowing the jammer’s IF trajec-
tory [8], we can dechirp the received signal
in order to move the jammer to the zero fre-
quency (DC), and filter it by excising only its
DC component. The proposed method is eval-
uated for various types of FM interferences.
An approximation to the PSR after the jam-
mer suppression is derived and numerically
verified.
The theoretical background, including the

basics of random noise radar and the DPT,
is given in Section II. The proposed jammer
suppression method is presented in Section III.
Numerical examples are given in Section IV.

II. T�
��
�
	�� ��	�������

A. Noise radar basics

In noise radar systems, a random noise sig-
nal is transmitted, reflected from a target, and
received with a delay T = 2r

c , where r and c
respectively denote the distance from the tar-
get and the speed of light. The received signal
is correlated with a replica of the transmit-
ted noise delayed by Tr. The correlation peak,
arising for T = Tr, indicates the distance from
the target. On the other hand, Doppler filters,
at the correlator output, give the velocity of
the target [2], [3].
Let us consider a radar transmitting a com-

plex stationary Gaussian random noise x(t)
with the variance σ2x. We will assume that
a single point scatterer is located at the range
r0 along the radar line-of-sight (LOS). The re-
ceived signal y (t) can be modeled as

y(t) = Aσx(t− T0) + ε(t), (1)

where Aσ denotes the target reflectivity, T0 =
2r0
c is the round-trip delay and ε(t) is an un-

desired part of the received signal which will
be modeled as additive white Gaussian noise
(AWGN) with the variance σ2ε. Moreover, x (t)
and ε (t) are uncorrelated with each other.
Without loss of generality, we will adopt Aσ =
1. The correlation between the received and
delayed transmitted signal can be written as

C(τ) =

Tint∫

0

y(t)x∗(t− τ)dt, (2)

where Tint is the integration time. Due to fi-
nite Tint, C(τ) is also a random variable char-
acterized by mean

E [C(τ)] =

Tint∫

0

E[y (t)x∗ (t− τ)]dt

=

Tint∫

0

E [x (t− T0)x
∗ (t− τ)] dt

+

Tint∫

0

E [ε (t)x∗ (t− τ)] dt

=

Tint∫

0

Rxx (τ − T0) dt

= TintRxx(τ − T0), (3)

where Rxx(τ) represents the autocorrelation
function of x(t). Having in mind that
|Rxx(τ)| ≤ Rxx(0) [20], the delay T0 can be
estimated as

T0 = max
τ
|E [C(τ)]| . (4)

The randomly fluctuating correlation, how-
ever, can be analyzed in a simpler way by de-
scribing the correlation integral as follows [5],
[6]:

Ck =
N−1∑

n=0

y (n)x∗ (n− k)

=
N−1∑

n=0

[x (n−m) + ε (n)]x∗ (n− k) , (5)
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where x (n) is a sequence of random com-
plex numbers with E [x (n)] = 0 and
E [x (n)x∗ (l)] = σ2xδ (n− l), integers m and
k respectively correspond to T0 and τ , and N
represents the number of independent samples
corresponding to the integration time Tint.
Clearly, a strong correlation peak occurs at
k = m.
In order to evaluate the performance of the

correlation receiver, the PSR is introduced as
follows [5]:

PSR =
E2 [Ck=m]

Var [Ck �=m]
. (6)

Substituting (5) into (6) yields [5], [6]

PSR =
N2σ4x

Nσ4x +Nσ2xσ
2
ε

=
N

1 + SNR−1
, (7)

where SNR = σ2x/σ
2
ε represents the signal-to-

noise ratio (SNR), where the term noise in this
definition corresponds to the AWGN.

B. The discrete polynomial-phase transform

Consider a constant amplitude signal x(n)
with the Qth order polynomial phase ϕ (n) ,

x (n) = Ae
j

Q∑
m=0

am(n∆)
m

, 0 ≤ n ≤ N − 1, (8)

where N is the number of samples, am are real
coefficients and ∆ represents the sampling in-
terval. Next we define operators [12], [13]

DP1 [x (n) , τ ] = x (n)

DP2 [x (n) , τ ] = x (n)x∗ (n− τ)

...

DPM [x (n) , τ ] = DP2 [DPM−1 [x (n) , τ ] , τ ] ,
(9)

where M is the operator order and τ is the
delay parameter.
ForM = Q , DPM [x (n) , τ ] outputs a single

tone with frequency

ω0 =M !(τ∆)M−1aM (10)

implying that aM can be estimated simply by
estimating ω0. On the other hand, if M > Q,
DPM [x (n) , τ ] outputs a constant.

The DPT of order M (DPTM) is de-
fined as the discrete-time Fourier transform of
DPM [x (n) , τ ] [12], [13] , i.e.

DPTM [x(t), ω, τ ] =

N−1∑

n=(M−1)τ

DPM [x(n), τ ]e
−jωn∆. (11)

Therefore, for M = Q, DPTM has a single
spectral line at ω0 given by (10), whereas for
M > Q, DPTM has a spectral line at the zero
frequency.
The DPT-based estimator is computation-

ally efficient and robust to slowly time-varying
amplitude and non-polynomial (but continu-
ous) phase, and it provides estimation accu-
racy very close to the CR bound (see [12, eq.
(42)-(47)]). On the other hand, for this esti-
mator to operate properly, the required SNR
should satisfy (see [12, eq. (58)])

N SNR ≥ 25
(
2M − 2
M − 1

)
(12)

and it increases rapidly with the phase poly-
nomial order.
In addition, in order to properly estimate

aM , ω0 must not exceed the Nyquist frequency,
and therefore

|aM | ≤
π

M !τM−1∆M
(13)

is required [12, eq. (15)]. By reducing ∆ we
can extend the range of values of aM that can
be unambiguously estimated.
Finally, we will choose the value of τ accord-

ing to

τ =

{
N
M for M = 2 and M = 3
N

M+2 for M ≥ 4, (14)

which is shown to minimize the mean-square
error of the aM estimation [12].
For example, the coefficients of a third-order

polynomial phase can be estimated as follows:

Step 1. Set τ = N
3 and estimate a3 as

â3 =

argmax
ω

{|DPT3 [x (n) , ω, τ ]|}

3! (τ∆)2
. (15)
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Step 2. Set τ = N
2 and estimate a2 as

â2 =

argmax
ω

{|DPT2 [x3(n), ω, τ ]|}

2!τ∆
, (16)

where x3(n) = x (n) e−jâ3(n∆)
3

.
Step 3. Estimate a1 as

â1 = argmax
ω

{|DPT1 [x23(n), ω, τ ]|} , (17)

where x23(n) = x (n) e−j[â2(n∆)
2+â3(n∆)

3].

The estimates â3, â2 and â1 may be effec-
tively obtained by using an iterative procedure
proposed in [14].

III. A DPT ���
� 
��
��
�
�	


�����
��
��

A. Influence of jammer

Let us assume that the received sequence
y (n), apart from the sequences x (n) and ε (n),
contains a jammer sequence J (n), that is

y (n) = x (n)+ε (n)+J (n) , 0 ≤ n ≤ N−1.
(18)

All the three sequences are uncorrelated with
each other. In addition, the constant-
amplitude model for J (n) is adopted,

J (n) = Aejϕ(n), (19)

where ϕ (n) represents the phase of J (n).
The signal-to-jammer ratio (SJR) is defined as
SJR = σ2x/A

2.
Substituting (18) and (19) into (5) gives

E [Ck=m] = Nσ2x
Var [Ck �=m] = Nσ4x +Nσ2xσ

2
ε +NA2σ2x

and the corresponding PSR value, denoted as
PSRJ , equals

PSRJ =
N

1 + SNR−1 + SJR−1
. (20)

This PSR can be dramatically reduced for
SJR � 1, implying that y (n) has to be pre-
processed before the correlation is performed.
A simple and computationally efficient

method for high-power jammer suppression in
noise radar systems is introduced in the fol-
lowing section.

B. Proposed method

According to the Weierstrass’s approxima-
tion theorem, we can approximate the jam-
mer’s phase ϕ (n) by a polynomial assuming
that the original phase function ϕ (t) is con-
tinuous within an observed time interval. We
propose to divide the received signal into non-
overlapping segments so that, for each seg-
ment separately, ϕ (n) can be approximated
by a third-order polynomial, or equivalently,
the IF of the jammer can be approximated by
a parabola. Next step is to dechirp segments
in order to dislocate the jammer power to the
zero frequency. The jammer is suppressed in
the frequency domain by excising only the DC
component of the dechirped segment.
The jammer suppression can be performed

in an adaptive manner by using the following
recursive procedure.

Step 1. Estimate the phase coefficients of
the jammer by using (15)—(17).
Step 2. Form θ (n) = â1 (n∆) +

â2 (n∆)
2+ â3 (n∆)

3 and dechirp y (n) accord-
ing to yθ (n) = y (n) e−jθ(n).
Step 3. Calculate Yθ (p) = DFT [yθ (n)].

If the jammer spectrum for p �= 0 can be ne-
glected, suppress the jammer by excising the
DC component Yθ (0). After excising Yθ (0)
and chirping the signal back, we obtain the
filtered signal y′ (n) as

y′ (n) =

(
1

N

N−1∑

p=1

Yθ (p) e
j 2πN np

)
ejθ(n) (21)

or alternatively

y′ (n) = y (n)− 1

N
Yθ (0) e

jθ(n). (22)

However, if the jammer spectrum for p �= 0
cannot be neglected, perform the steps 1—3 for
both the left half and the right half of the ob-
served signal y (n).

The decision whether the jammer power
contained within Yθ (p), p �= 0, can be ne-
glected is made by observing the vicinity of
Yθ (0). Ideally, after dechirping, the whole
jammer is contained within Yθ (0) and the fil-
tering is optimal. In addition, |Yθ (p)| for p �= 0
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represents a Rayleigh variable with scale para-
meter b0 = σxε/

√
2, where σxε =

√
σ2x + σ2ε.

We will denote such a variable as Y0. The
mean and variance of Y0 are defined as [20]

µY0 =
√

π
2 b0

σ2Y0 =
(
2− π

2

)
b20.

(23)

In reality, however, the dechirped jammer is
spread over other DFT coefficients. The low-
frequency components of Yθ (p) contain more
jammer than the high-frequency ones (see Fig.
2). We will therefore assume that the jammer
contained within Yθ (p) for p �= 0 can be ne-
glected if

|Yθ (p)| < µY0 + 4σY0 , p = 1, 2, ...,K, (24)

where µY0 and σY0 are defined by (23) andK is
the number of considered samples. Note that
P
(
Y0 ≥ µY0 + 4σY0

)
= 5.5121× 10−4.

One way to estimate the standard deviation
σxε, and in turn b0, is from a TF representa-
tion of the received signal. For this purpose
we can use the simplest TF representation,
the STFT. In the TF plane, J (n) occupies
a narrow frequency band compared to both
the radar return and the AWGN that are uni-
formly spread over all frequencies [7]. σxε can
be estimated from the variance of the STFT
bins that belong to the TF areas where the
jammer contribution can be neglected.

Finally, by observing the steps of the pro-
posed method, as well as (15)—(17) and the
frequency estimation procedure presented in
[14], we can conclude that the overall com-
putational complexity is O(N log2N), where
O(·) represents the big O notation. On the
other hand, the TF-based jammer suppression
methods have the complexity of O

(
N2 log2N

)

[16]—[18].

C. PSR after the jammer suppression

Let L represent the number of signal seg-
ments obtained in the filtering procedure. The
segment lengths are N1, N2, ..., NL. The cor-
relation (5) after the filtering, denoted as C ′k,

satisfies

C′k =
L∑

l=1

Nl−1∑

n=0

y′

(
n+

l−1∑

i=1

Ni −m

)

× x∗

(
n+

l−1∑

i=1

Ni − k

)

=
L∑

l=1

Nl−1∑

n=0

y′lm (n)x
∗
lk (n) =

L∑

l=1

C′kl, (25)

where the definitions of y′lm (n), x
∗
lk (n) and

C ′kl are clear from (25). Consider C′kl. First,
by using (21), we get

y′lm (n) =

(
1

Nl

Nl−1∑

p=1

Y θ
lm (p) e

j 2πNl
np

)
ejθ(n)

=
1

Nl

Nl−1∑

p=1

Nl−1∑

q=0

ylm (q) e
j 2πNl

p(n−q)
ej(θ(n)−θ(q)).

(26)

Inserting (26) into the C′kl expression yields

C′kl =
1

Nl

∑

n,q

∑

p

ylm(q)x
∗
lk(n)

× ej
2π
N1
p(n−q)ej(θ(n)−θ(q))

=
1

Nl

∑

n,q

∑

p

(xlm (q) + εlm (q))x
∗
lk (n)

× e
j 2πNl

p(n−q)
ej(θ(n)−θ(q)), (27)

where n and q run from 0 to Nl − 1, while p
runs from 1 to Nl − 1. We will assume that,
after the filtering, the residual jammer can be
neglected. The jammer sequence Jlm (q) was
therefore omitted in (27). This assumption
will be numerically justified in the Simulations
section.
The expectation of C′kl for k = m equals

E [C ′kl] =
σ2x
Nl

∑

n,q

∑

p

δ (n− q)

× e
j 2πNl

p(n−q)
ej(θ(n)−θ(q))

=(Nl − 1)σ2x.
On the other hand, E [C′kl] for k �=m equals

E [C′kl]=
1

Nl

∑

n,q

∑

p

E [xlm(q)x
∗
lk(n)]

× e
j 2πNl

p(n−q)
ej(θ(n)−θ(q))
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which, by using

E [xlm (q)x
∗
lk (n)] =

E

[
x

(
q +

l−1∑

i=1

Ni −m

)
x∗

(
n+

l−1∑

i=1

Ni − k

)]

= σ2xδ (q −m− n+ k) ,

becomes

E [C′kl] =
σ2x
Nl

∑

n,q

∑

p

δ (q −m− n+ k)

× e
j 2πNl

p(n−q)
ej(θ(n)−θ(q))

=
σ2x
Nl

∑

n

∑

p

e
−j 2πNl

p(m−k)
ej(θ(n)−θ(n+m−k))

= −σ2x
Nl

∑

n

ej(θ(n)−θ(n+m−k)).

In the previous relation, we used the identity

Nl−1∑

p=1

e
−j 2πNl

p(m−k)
=

{
−1 k �= m

Nl − 1 otherwise.

Since
∑Nl−1
n=0 ej(θ(n)−θ(n+m−k)) represents the

DC component of ej(θ(n)−θ(n+m−k)), it can be
neglected for θ (n) �= const. Therefore, for k �=
m, we have

E [C′kl] ≈ 0. (28)

As for the variance Var[C′kl], we have

Var[C′kl] =

1

N2
l

∑

n1,n2,q1,q2

∑

p1,p2

E[(xlm(q1) + εlm(q1))

× (x∗lm(q2) + ε∗lm(q2))x
∗
lk(n1)xlk(n2)]

× e
j 2πNl

(p1(n1−q1)−p2(n2−q2))

× ej(θ(n1)−θ(q1)−θ(n2)+θ(q2))

=
1

N2
l

∑

n1,n2,q1,q2

∑

p1,p2

E[xlm(q1)x
∗
lm(q2)

× x∗lk(n1)xlk(n2)]e
j 2πNl

(p1(n1−q1)−p2(n2−q2))

× ej(θ(n1)−θ(q1)−θ(n2)+θ(q2))

+
1

N2
l

∑

n1,n2,q1,q2

∑

p1,p2

E[εlm(q1)ε
∗
lm(q2)

× x∗lk(n1)xlk(n2)]e
j 2πNl

(p1(n1−q1)−p2(n2−q2))

× ej(θ(n1)−θ(q1)−θ(n2)+θ(q2)).
(29)

Since both xlm (n) and εlm (n) are zero mean
Gaussian variables, the following relations
hold [20]:

E[xlm(q1)x
∗
lm(q2)x

∗
lk(n1)xlk(n2)] =

σ4xδ(q1−q2) δ(n1−n2)
+ σ4xδ (q1 −m− n1 + k) δ (q2 −m− n2 + k)

E[εlm(q1)ε
∗
lm(q2)x

∗
lk(n1)xlk(n2)] =

σ2xσ
2
εδ(q1 − q2)δ(n1 − n2)

and, by inserting these relations into (29), we
obtain

Var [C′kl] = (Nl − 1)σ2x
(
σ2x + σ2ε

)
. (30)

Now (25) implies that

E [C′k=m]=
L∑

l=1

(Nl − 1)σ2x = (N − L)σ2x

Var
[
C ′k �=m

]
=

L∑

l=1

(Nl − 1)σ2x
(
σ2x + σ2ε

)

=(N − L)σ2x
(
σ2x + σ2ε

)
.

Finally, the PSR after the filtering of the re-
ceived signal, denoted as PSR′, satisfies

PSR′ =
E2 [C ′k=m]

Var
[
C ′k �=m

] = N − L

1 + SNR−1
. (31)

For L � N , PSR′ approximately equals the
PSR given by (7).

D. Multicomponent jammer case

The DPT is a nonlinear transform and for
multicomponent signals it will, apart from the
DPTs of individual components (auto-terms),
produce undesired cross-terms. Depending on
the amplitudes of signal components, these
cross-terms can completely cover auto-terms.
For example, assume that the jammer J(n)

comprises two cubic-phase components with
amplitudes A1 and A2, where A1 > A2. The
operator DP3 [J (n) , τ ] outputs two complex
sinusoids with amplitudes A41 and A42 (auto-
terms), as well as eight cubic-phase and two
quadratic-phase cross-terms. The amplitude
of the strongest cross-term is 2A31A2; therefore
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the proper estimation of stronger component
requires A1 > 2A2.

Assuming that the number of jammer com-
ponents, NJ , is known and the component am-
plitudes allow the estimation of auto-terms,
we can suppress it starting from the strongest
component. The procedure is as follows [13]:

Step 1. Set k = 1.
Step 2. If k = NJ go to step 4. Otherwise,

estimate the phase coefficients of the strongest
component using the DPT, which results in
θ (n).
Step 3. Suppress the jammer component

by using (22). Set k = k + 1 and go to step 2.

Step 4. Estimate θ (n) of the last com-
ponent and dechirp the received signal. If
the jammer spectrum at K lowest frequencies
(bins) of the dechirped signal, excluding the
DC component, can be neglected, suppress the
jammer. Otherwise, perform the steps 1—3 for
the left half and the right half of the observed
signal.

This algorithm is very similar to the filtering
procedure proposed in [13], with the difference
that herein we, instead of noise, suppress the
signal whose phase is estimated. The use of
the algorithm is, however, restricted to sim-
ple cases when the amplitudes of components
considerably differ.

In the Simulations section, the proposed al-
gorithm is evaluated on the received signal
containing a two-component jammer.

IV. S
�����
���

Consider a noise radar operating at the car-
rier frequency f0 = 10GHz with the band-
width B = 204.8MHz and the pulse dura-
tion of Tr = 40µs. The transmitted signal
is reflected from a single point scatterer tar-
get located at the distance r0 = 1.5km. We
assume that the sampling rate, at baseband,
equals the Nyquist rate ∆ = 1/B; therefore
one pulse contains N = 8192 samples. The
received signal is corrupted by the AWGN so
that SNR = 1

20 (or -13dB).
The received signal contains a jammer de-

fined by (19). Table I presents phase function

0 Tr
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B/2 

(a)
t

f
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Fig. 1. The instantaneous frequency of jammers de-
fined in Table I. (a) Stationary jammer. (b) Linear
FM jammer. (c) Quadratic FM jammer. (d) Ex-
ponential FM jammer. (e) Sinusoidal FM jammer.

ϕ (n) of five considered jammer types, each of
them satisfying SJR = 1

1000 (or −30dB). The
first three types are polynomial phase jam-
mers, i.e., constant frequency, linear FM and
quadratic FM jammer, whereas the fourth and
the fifth type correspond to exponential FM
and sinusoidal FM jammer, respectively. Evo-
lution of the IF versus time for all the jammer
types is depicted in Fig. 1.

The analytical value of the PSR, according
to (7), for the adopted values of the SNR and
SJR, is PSR = 390.1. Numerical PSR values,
obtained over 1000 filtering realizations, with-
out and with the jammer suppression are pre-
sented in Table II. The rightmost column of
Table II gives the average number of segments,
L, obtained in the filtering procedure over all
the realizations. We used K = 3 samples in
the decision procedure (24).

The numerical PSR′ values clearly justify
that the influence of the residual jammer can
be neglected in our analysis. The flatness of
the spectrum around the DC component of
the dechirped signal yθ (n) = y (n) e−jθ(n) in-
dicates how well does a parabola, determined
by the estimates â1, â2 and â3, approximate
the jammer’s IF function within the considered
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TABLE I

P���
 ���	�
��� �� 	���
�
�
� ����
��

Jammer’s phase ϕ(n)

Type 1 2πB3 (n∆)

Type 2 2π(−B
3 (n∆)+

B2

3N (n∆)
2)

Type 3 2π(−B
5 (n∆)− 17B2

40N (n∆)
2 + 5B3

12N2 (n∆)3)

Type 4 2π( 4N
B ln(2B/3)(

2B
3 )

3
4 e

Bln(2B/3)
4N (n∆)− B

3 (n∆))

Type 5 2π 2N
21π cos(

7πB
2N (n∆) +

π
7 )
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Fig. 2. The spectrum of the dechirped parts of the
received signal corrupted by the fifth jammer type.
The parts correspond to first (a) N/8 samples; (b)
N/16 samples; (c) N/32 samples.

segment. In accordance with Section III-B, if
the jammer’s IF is well approximated within
the whole signal, i.e., N samples, we do the fil-
tering (22); otherwise, we split the signal into
two halves and separately perform the IF esti-
mation on both halves, first left then right. By
reducing the observed segment length we also
reduce the IF variation we deal with. If the IF
estimation obtained for the left half (first N/2
samples) is sufficiently well, we filter the left
half; otherwise, we split the left half into its
left half and right half and so forth. Once we
filter the current left half, we repeat the proce-
dure for the corresponding right half. In this
way, the whole signal is segmented in an adap-
tive manner so that the length of each segment

0 2000 4000 6000 8000
0
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10000

(a)

k

0 2000 4000 6000 8000
0

5000

10000

(b)

k

Fig. 3. The absolute value of correlation, |Ck|, for a
single point scatterer: (a) before the jammer sup-
pression and (b) after the jammer suppression.

equals N
2k
, where k = 0, 1, 2... Furthermore,

within each segment, the IF variation can be
approximated by a parabola, which is the cri-
terion for stopping further segment splitting.

Consider, for example, the fifth type of jam-
mer. We first operate on N samples, then on
first N/2 samples (left half), then on first N/4
samples (left half of the left half), then N/8
samples. The spectra of the dechirped parts of
the received signal, where the parts correspond
to its first N/8, N/16 and N/32 samples, are
shown in Fig. 2(a), (b) and (c), respectively.
The DC component is excised. The first N/32
samples will not be further split since the jam-
mer is well concentrated at the DC component
(i.e., the rest of the spectrum is sufficiently
flat), which is not the case for N/8 and N/16.

The absolute value of correlation (25), for
one realization of the received signal corrupted
by the fifth jammer type, is depicted in Fig.
3. More precisely, Fig 3(a) depicts the value



1518 TIME-FREQUENCY SIGNAL ANALYSIS

TABLE II

PSR ����
� ��� ��
���
 ����
� �� �
��
��� L

Supp. off Supp. on L

Type 1 8.11 383.76 1.003
Type 2 7.99 399.53 1.010
Type 3 8.14 392.19 1.001
Type 4 8.07 382.78 11.854
Type 5 7.89 395.30 27.492

Type 2 + Type 3 6.13 380.74 1.009

TABLE III

P��
�
�� �� ����
�� ��� 	���
�����
�� SJR�

Position SJR

Target 1 1.1km -27.31dB
Target 2 1.3km -28.76dB
Target 3 1.5km -30dB
Target 4 1.7km -31.09dB
Target 5 1.9km -32.05dB
Target 6 2.1km -32.92dB
Target 7 2.3km -33.71dB
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Fig. 4. The absolute value of correlation, |Ck|, for
multiple targets: (a) before the jammer suppres-
sion and (b) after the jammer suppression.

TABLE IV

PSR ����
� ��� �
��� ��� ��!-�
� ADC�

Supp. off Supp. on

Binary 1.02 1.14
Low-bit 2 bits 3.37 39.66
Low-bit 3 bits 8.51 169.96
Low-bit 4 bits 7.75 299.91
Low-bit 8 bits 7.81 373.16

of |Ck| when no jammer suppression is per-
formed, whereas Fig. 3(b) depicts the value
of |C ′k| after implementation of the proposed
method.

The last row of Table II corresponds to the
multicomponent jammer case. In specific, we
considered a two-component jammer whose
components correspond to the Type 2 and
Type 3 jammers from Table I. The compo-
nents are characterized by SJR = −25dB and
−30dB, respectively.
We will briefly illustrate the case of multi-

ple targets. In specific, we will assume that,
in addition to the above considered target, six
more targets exist, thus making a system of
seven targets. All targets are modeled as sin-
gle point scatterers. The target positions are
given in Table III. The received signal is cor-
rupted by the Type 5 jammer. The SJRs for
radar returns from all the targets are also given
in Table III. Fig. 4 shows the value of |Ck| be-
fore and after the jammer suppression. With-
out the jammer suppression, we are still able
to detect two targets that are closest to the re-
ceiver since they have higher SJR than other
targets, which are completely covered by corre-
lation sidelobes. However, after applying the
proposed filtering method, all the seven tar-
gets are successfully detected. The decreasing
trend of the |C′k| peak values in Fig. 4(b) is
due to the fact the received signal’s power de-
creases with the fourth power of the distance.

In the previous examples, the high-
resolution ADC is considered. Let us, in the
end, evaluate the performance of the binary
and low-bit ADCs in a strong jamming en-
vironment. Low-bit ADCs with 2, 3, 4 and
8 bits are considered. The received signal is
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corrupted by the Type 3 jammer with SJR =
−30dB. The PSR values are given in Table IV.
Only the binary ADC does not work properly
with a strong jammer. The low-bit ADC with
8 bits performs nearly as the high-resolution
ADC.

V. C��	���
��

A method for nonstationary jammer sup-
pression in noise radar systems is proposed.
The corrupted received signal is divided into
non-overlapping and non-equal length seg-
ments. Within each segment, the IF of the
jammer is approximated by a parabola, which
is, in turn, used for jammer suppression. The
proposed method is fast and efficient and it
performs well for both polynomial and non-
polynomial jammer’s phase. It can be also ex-
tended to the multicomponent jammers case
given that the amplitudes of components con-
siderably differ.
In the future work, we will focus on improv-

ing the proposed method so it can suppress
multicomponent jammers without amplitude-
related restrictions.
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