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Abstract– A cubic-phase function evaluation

technique for multicomponent FM signals with

non-overlapped components in the TF plane is

proposed. The proposed technique is based on

the STFT. Cross-terms are removed or reduced

in the same manner as in the case of the TF

representation called the S-method. The pro-

posed technique is applied for visualization of

signals in time-chirp-rate plane and parameter

estimation of analytical and radar signals. In

addition, a procedure for focusing SAR images

by using estimated parameters is proposed in

order to verify obtained results.

I. I������	�
��

The polynomial phase signals (PPS) are
observed in numerous research fields: radar,
sonar, biomedicine, seismology signals, etc.
[1]-[3]. The cubic-phase function (CPF) has
been recently introduced for estimation of
cubic-phase signals and it is generalized for
higher-order PPS [4]-[8]. This is a bilinear
transformation that performs mapping of sig-
nals into time-chirp-rate (T-CR) plane. Due
to its bilinearity, this transform suffers from
the cross-terms and interferences. It should
be noted that “geometry” of interferences in
this representation is still unknown as oppose
to the classical time-frequency (TF) represen-
tations [9], [10].

In this manuscript, we propose a tech-
nique for calculating the CPF in the frequency
domain. This technique allows to separate
the CPF of signal components that are non-
overlapped in the TF plane. It is applied to the
parameter estimation of the Synthetic Aper-
ture Radar (SAR) signals. In the SAR sys-
tems, radar return from a target with constant
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velocity or accelerating target is linear fre-
quency modulated (FM) or cubic phase signal
[11]. As a result of these modulations, mov-
ing targets are defocused in the radar image
obtained by using the two dimensional (2D)
Fourier Transform (FT) [12]. Therefore, the
proposed technique is attractive for applica-
tion to SAR imaging. Namely, by the pro-
posed technique the CPF can be calculated
separately for each signal component (target)
and the estimated parameters used for its de-
modulation. Then, the focused SAR image
can be obtained as the 2D FT of resulting sig-
nals.

The paper is organized as follows. The CPF
is introduced in Section II, where we present
influence of the cross-terms in this representa-
tion. The proposed technique for evaluation
of the CPF and Otsu algorithm for thresh-
old determination are described in Section III.
The SAR signal model is given in Section IV.
Numerical examples for both, analytical and
radar signals are presented in Section V and
VI, respectively. Conclusions are given in Sec-
tion VII.

II. C��
	-����� ���	�
��

The CPF introduced by O’Shea is defined
as [4]:

C(t,Ω) =

∞∫

−∞

x(t+ τ)x(t− τ)e−jΩτ
2

dτ, (1)

where we consider the FM signal x(t) =
A exp(jφ(t)). The CPF has a form similar to
the Wigner distribution (WD) [10]. The WD
is used for the instantaneous frequency (IF)
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estimation, where the IF is the first deriva-
tive of the signal phase function ω(t) = φ′(t).
The CPF can be used as the chirp-rate es-
timator, where the chirp-rate is defined as
the second derivative of the signal phase, i.e.,
Ω(t) = φ′′(t), as:

Ω̂(t) = argmax
Ω
|C(t,Ω)|. (2)

Consider now a multicomponent signal
x(t) =

∑
i xi(t) =

∑
iAi exp(jφi(t)). The

CPF of this signal can be written as:

C(t,Ω) =
∑

i

Ci(t,Ω) +
∑

i,j
i �=j

Cij(t,Ω), (3)

where Cij(t,Ω) are cross-terms caused by mu-
tual influence of different signal components:

Cij(t,Ω) =

∞∫

−∞

xi(t+τ)xj(t−τ)e
−jΩτ2dτ. (4)

However, eliminating (or reducing) cross-
terms is just part of solution. Namely,
the CPF is complex-valued, oscillatory and
its absolute value is ideally concentrated on
the chirp-rate for cubic-phase signals. It
can be approximately written as Ci(t,Ω) ≈
A2i exp(j2φi(t))δ(Ω−φ

′′
i (t)) and for multicom-

ponent signals, even with reduced cross-terms
Cij(t,Ω), we still have highly oscillatory rep-
resentation. Then, our goal here is primarily
to obtain specific components Ci(t,Ω).

III. P������� ������	�

A. Evaluation of the CPF

In this section, a new approach to evaluate
the CPF in the frequency domain is proposed.
It requires the short-time Fourier transform
(STFT), which is defined as:

STFT (t, ω) =

∞∫

−∞

x(t+ τ)w∗(τ)e−jωτdτ . (5)

It is noted that the STFT is a linear transform
and cross-terms between components can ap-
pear only in the case when they are very close

to each other (within window width in the fre-
quency domain) [13]. The inverse STFT can
be written as:

x(t+ τ) =
1

2πw∗(τ)

∞∫

−∞

STFT (t, ω)ejωτdω.

(6)
For the sake of simplicity, we assume that the
window function within the interval of interest
is equal to 1. After substituting (6) in (1) we
obtain (unimportant multiplicative constants
are removed):

C(t,Ω) =

∞∫

−∞

∞∫

−∞

∞∫

−∞

STFT (t, ω1)STFT (t, ω2)

×ej(ω1−ω2)τe−jΩτ
2

dτdω1dω2

=

∞∫

−∞

∞∫

−∞

STFT (t, ω1)STFT (t, ω2)

×ΠΩ(ω2 − ω1)dω1dω2

=

∫

ω

∫

θ

STFT (t, ω + θ)STFT (t, ω − θ)

×ΠΩ(2θ)dωdθ, (7)

where ΠΩ() is the FT of the linear FM signal
exp(−jΩτ2):

ΠΩ(θ) =

∞∫

−∞

e−jΩτ
2

e−jθτdτ. (8)

The implementation of the CPF in (7) in
the T-CR domain is a counterpart of the TF
transform called the S-method [13], [14].

Assume now that a significant energy of
any signal component exists only within the
frequency region [ωbi(t), ωei(t)], and that sig-
nal components are non-overlapping in the TF
plane, i.e., [ωbi(t), ωei(t)]∩ [ωbj(t), ωej(t)] = ∅
for i �= j. Then, the CPF for the i−th signal
component can be written as:

Ci(t,Ω) =
∫∫

ωbi(t)≤ω±θ≤ωei(t)

STFT (t, ω + θ)STFT (t, ω − θ)

×ΠΩ(2θ)dωdθ, (9)



1534 TIME-FREQUENCY SIGNAL ANALYSIS

or for discretized frequencies as:

Ci(t,Ω) =

k′′
i∑

k=k′
i

[
STFT 2i (t, k)ΠΩ(0)

+2

min[k′′
i
−k,k−k′

i
]∑

l=1

STFTi(t, k + l)STFTi(t, k − l)

×Re{ΠΩ(2l)}]. (10)

Here, the discretized frequencies correspond to
ωbi = 2πk′i/(N∆t) and ωei = 2πk′′i /(N∆t),
where ∆t is sampling rate and N is number of
samples in the considered interval. In this way,
the evaluation of the CPF for the i-th compo-
nent Ci(t,Ω) is separated from evaluation of
the CPF for other components.

Determination of region of the signal compo-
nents is not easy and it heavily depends on the
considered signal type. For this aim we used
the Otsu algorithm [15], already applied for
radar signal segmentation in [16]. This algo-
rithm exhibits high accuracy in the considered
application.

B. Otsu algorithm

The Otsu algorithm is one of the sim-
plest and most commonly used techniques for
threshold determination in the image process-
ing field [15]. This algorithm has already
been used in TF analysis for separating sig-
nal components from radar returns [16]. In
our case, we select the initial threshold as
T = max(t,ω)[|STFT (t, ω)|]/2. Then, the
mean value of the |STFT (t, ω)| “pixels” that
are above the threshold (T1) and mean value of
the |STFT (t, ω)| “pixels” that are below the
threshold (T2) are evaluated. Average of these
two quantities is used as a threshold for a new
iteration T = (T1 + T2)/2. Iterations are re-
peated until a difference between thresholds
in two consecutive iterations is not below spe-
cific value or for specific number of iterations.
This technique is used for threshold determi-
nation and region above the threshold could
be assumed to belong to signal component.
Positions ωbi(t) and ωei(t) are determined as
the beginning and the end of the continuos

region above the threshold. It works accu-
rately in the noise-free examples for analytical
and SAR signals. However, for high amount
of noise, the Otsu algorithm could produce a
large number of fake components. Let the de-
tected regions of these components be denoted
as [ωbi(t),ωei(t)], i ∈ [1,Q], where Q is num-
ber of detected components. Some of detected
components are fake. Therefore, it can be as-
sumed that the number of signal components
P , that is in general P ≤ Q, is known in ad-
vance. Then, one can determine the energy
concentrated in the signal component:

Ei(t) =

ωei(t)∫

ωbi(t)

|STFT (t, ω)|dω, (11)

and select P intervals with the highest energy
for which the CPF is evaluated. In addition,
we have found that for high amount of noise
the Otsu algorithm tends to reduce the width
of detected signal components. Therefore, we
set the minimal width of signal component
and dilate region detected in the Otsu proce-
dure until we reach this minimal width [15,
pp. 343]. In the considered radar applications
this threshold selection procedure produces ac-
curate results. Depending on the signal type
and noise environment, modified version of the
threshold selection technique can be required.
Fortunately, the digital image processing area
offers several quite successive techniques for
separation of objects from noisy background
[15].

IV. SAR �
���� �����

The SAR is a system for obtaining high res-
olution radar image based on a relative angle
change of the radar with respect to a target. In
the SAR systems, a radar is carried on a plat-
form moving with uniform speed at constant
altitude [12]. Along-track direction is called
the cross-range (azimuth), while across-track
direction is the range. The SAR images are
depicted in the range/cross-range domain.

Usually, for modeling radar signal, the point
scatterer model is used [12]. Then, received
signal, after some preprocessing, can be writ-
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ten as a sum of FM signals [12]:

q(m,n) =
∑

i

σie
jφ

i
(m,n), (12)

where σi is reflection coefficient of the cor-
responding scatterer, while m corresponds to
the signal number transmitted toward a target
(slow-time coordinate), and n corresponds to
the sample number within a one chirp (fast-
time coordinate). Form of the phase func-
tions φi(m,n) depends on the type of the cor-
responding radar scatterer.

Standard tool for SAR imaging is the 2D
FT. In the case when the SAR targets are non-
moving, radar signal is composed of a sum of
complex sinusoids and image obtained by us-
ing the 2D FT is well focused [12]. For moving
targets, the corresponding radar signal is com-
posed of linear FM signals. Moreover, when
the motion of a target is nonuniform along the
cross-range, the third order term in the cor-
responding phase is significant and cannot be
neglected [11]. As a consequence of the sig-
nal phase modulations, induced by its motion,
targets will be defocused and possibly shifted
in the SAR image obtained by using the 2D
FT [12]. Hence, some more sophisticated tech-
niques are needed for focusing radar images of
moving targets.

Commonly, spreading in the SAR systems
occurs only in the cross-range domain [12]
and we are performing autofocusing opera-
tions only in this domain. Thus, we need to
estimate parameters of discrete signal x(m)
representing the radar signal for fixed n, i.e.,
x(m) = q(m,n). In order to perform calcula-
tions for smaller number of ranges, we could
estimate parameters of radar signal by using
the CPF only for those ranges in which there
is one or more moving targets. Then, higher
order terms from the phase of each component
can be removed by using estimated parame-
ters and SAR image obtained as the 2D FT of
demodulated signal. Achieved concentration
of the resulting SAR image would be propor-
tional to the accuracy of parameters estima-
tion, and it presents a good measure of accu-
racy of the proposed technique.

V. N����
	�� ��������

Example 5.1. Sum of three linear FM sig-
nals:

x(t) = ej(−30πt
2−72πt) + ej(30πt

2+72πt)

+ej(26.1πt
2+160πt+0.34π), (13)

is considered. The signal is given within the
interval t ∈ [−0.4, 0.4] with sampling rate
∆t = 1/257. Fig. 1 depicts results of the
algorithm. The STFT and selected region of
interest are depicted in Figs. 1a,b. The CPF
calculated by using the standard definition is
presented in Fig. 1c. Two close components
(second and third) cannot be clearly distin-
guished and in addition there are oscillations
caused by mutual interaction between “auto-
terms”. The CPF estimates obtained by using
(10) for our three signal components are given
in Figs. 1d-f. The chirp-rate estimation for
the first component is given in Fig. 1g, while
for the two close components it is given in Fig.
1h. For a given component, chirp-rate is esti-
mated as a position of the corresponding CPF
maximum:

Ω̂i(t) = argmax
Ω
|Ci(t,Ω)|. (14)

The differences between true and estimated
chirp-rates in Fig. 1g are caused by discretiza-
tion of the set of chirp-rate values (errors
within one discretization step). From these
figures it can be noted that the proposed ap-
proach behaves accurately for this setup.

Example 5.2. Sum of two nonlinear FM sig-
nals

x(t) = ej(16πt
4+12πt2+80πt)

+ej(−16πt
4−12πt2−80πt) (15)

is considered in this example. Interval of in-
terest and sampling rate are the same as in the
previous example. Fig. 2a depicts the STFT,
while Fig. 2b presents the CPF calculated
using the standard definition. The CPF for
two detected components is depicted in Figs.
2c,d. Fig. 3 presents the estimated chirp-
rates (thick lines) and true chirp-rate values
Ω1,2(t) = ±(192πt2 + 24π) (thin lines). It can
be seen small bias that is inherent in the CPF
for higher-order PPSs (with polynomial order
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Fig. 1. Sum of three linear FM signals: (a) STFT; (b) Detected region of signal components using the Otsu
algorithm; (c) Standard CPF; (d) CPF calculated using the proposed approach for the first signal; (e)
CPF calculated using the proposed approach for the second signal; (f) CPF calculated using the proposed
approach for the third signal; (g) Chirp-rate estimation using the proposed technique (thick line) and true
chirp-rate (thin line) for the first component; (h) Chirp-rate estimation using the proposed technique (thick
line) and true chirp-rate (thin line) for the second and third component.
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Fig. 2. Sum of non-linear FM signals: (a) STFT; (b) CPF calculated using the standard definition; (c) CPF
calculated using the proposed approach for the first signal; (d) CPF calculated using the proposed approach
for the second signal.
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Fig. 3. Chirp-rate estimate for non-linear FM components (thick line) and true chirp-rate (thin line).



1538 TIME-FREQUENCY SIGNAL ANALYSIS

t

ω

(a)
-0.4 -0.2 0 0.2 0.4

-500

0

500

t

ω

(b)
-0.4 -0.2 0 0.2 0.4

-500

0

500

t

ω

(c)
-0.4 -0.2 0 0.2 0.4

-500

0

500

-0.4 -0.2 0 0.2 0.4

-200

-100

0

100

200

t

Ω

(d)

Fig. 4. Sum of three linear FM signals embedded in Gaussian noise: (a) STFT; (b) Detected region of signal
components; (c) Improved detection of signal components; (d) Chirp-rate estimates obtained using the
proposed technique (thick line) and true chirp-rate values (thin line) for signal components.

higher than 3) and it is not caused by our eval-
uation technique.

Example 5.3. The sum of linear FM sig-
nals (13) embedded in white complex Gaussian
noise environment with variance equal to 1 is
considered here. The STFT and region of in-
terest are depicted in Figs. 4a,b. The modified
region of signal component with removed fake
components and enlarged signal components
(any detected signal component is set to the
minimum width of 17 samples) is depicted in
Fig. 4c. Chirp-rate estimates with true chirp-
rate values for the signal components are de-
picted in Fig. 4d. Standard deviation of the
output error is about 9 and we can assume
that it is still reasonable. The MSE error of the
chirp-rate estimation for this signal is depicted
in Fig. 5. Input SNR is measured for a single
considered component (all three components
have the same amplitude). Detector thresh-
old is somewhere about -1.5dB, but again we
should stress that our goal was neither to per-

form a thorough numerical study of the algo-
rithm nor to propose algorithm for detection
and segmentation of components in the TF
plane, but to show that the proposed approach
for evaluation of the CPF can work for mul-
ticomponent signals embedded in noise envi-
ronment and consequently in a realistic radar
scenario.

VI. SAR �
���� ��������

Example 6.1. In this example we apply the
proposed technique to the parameter estima-
tion of the SAR signals. The CV 580 SAR
system (C-band) parameters are used. The
aircraft with a radar is moving along x-axis
with velocity V = 130m/ s. Radar altitude is
h = 6km, while radar ground distance to the
origin of the Cartesian coordinate system at
time t = 0 is 10 km. Radar pulses are trans-
mitted at regular intervals in time given by
the pulse repetition time T = 1/300 s, with
M = 1024 pulses in one revisit. Number of
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Fig. 5. MSE of chirp-rate estimation of multicomponent signals.

samples within a one pulse is N = 1024 like
in [11]. The radar operates at the frequency
f0 = 5.3GHz. The bandwidth of linear FM
signals is B = 25MHz.

The radar scene is composed of three tar-
gets at the same position along range direc-
tion. Its initial positions along cross-range
direction are x01 = −150m, x02 = 0m and
x03 = 150m, respectively. The targets are
moving with cross-range accelerations: ax1 =
2.4m/ s2, ax2 = 0.6m/ s2 and ax3 = 2.2m/ s2.
As a result of cross-range acceleration, the cor-
responding radar signals have significant third
order coefficients in the phase [11]. Received
signal, for a range in which the targets are po-
sitioned, is composed of three cubic phase com-
ponents. Since we do not intend here to form
radar image, but to show accuracy of the pro-
posed technique in the parameters estimation
of the SAR signals, we analyze radar signal for
this fixed range. For separating signal compo-
nents in the TF plane we use the previously
described Otsu based algorithm. The targets
are well separated in the TF plane, therefore
we use minimal region size of 16 samples in
order to enhance accuracy of the applied tech-
nique. The results are still quite accurate even
without this modification. Fig. 6 depicts the
results obtained after the proposed technique
is applied. The STFT is shown in Fig. 6a,
while Fig. 6b represents regions with detected

signal components. Each region corresponds
to one target. The CPF estimates obtained
by using the proposed approach for each de-
tected component are given in Figs. 6c-e. Es-
timated chip-rate values for each signal com-
ponent (thick lines) and their true values (thin
lines) are shown in Fig. 6f. The true values are
obtained by applying the proposed technique
on the signal that consists only of the target
of interest. The targets are well separated in
TF plane, consequently, estimated coefficients
are equal to their true values. It can be con-
cluded that the proposed algorithm produces
good results in the parameters estimation of
radar signals even in the case when there is
more than one target in a range bin.

Example 6.2. This example assumes the
same radar parameter as in Example 6.1. The
radar scene is composed of five targets with
initial positions and motion parameters given
in Table I. The first target is stationary, and it
is well focused in the radar image obtained by
using the 2D FT (Fig. 7a). Radar signals that
correspond to targets No. 2 and No. 4 are cu-
bic phase, while resulting radar signals for the
targets No. 3 and No. 5 are linear FM. As a re-
sult of frequency modulation, these targets are
defocused in the SAR image (Fig. 7a). A sim-
ple procedure for focusing SAR images is then
used. Since, there is no defocusing along range
direction, the FT is calculated along fast-time
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Fig. 6. Radar signal with three components with phase degree of 3: (a) STFT; (b) Detected region of signal
components using the Otsu algorithm; (c) CPF calculated using the proposed approach for the first compo-
nent; (d) CPF calculated using the proposed approach for the second component; (e) CPF calculated using
the proposed approach for the third component; (f) Chirp-rate estimations obtained using the proposed
technique (thick line) and true chirp-rate values (thin line) for signal components.

in order to obtain information about range po-
sition of the targets. For each range, the FT
is calculated along slow-time and compared to
a threshold obtained by using the Otsu algo-
rithm. If the absolute value of the FT for a
certain range is above the threshold, there is
one or more targets in it. Then, the proposed
technique is applied in order to estimate para-
meters of the corresponding signal. The same

minimal region size as the one in the previous
example is used here. The number of regions
detected in TF plane is shown to be equal to
the number of targets in the observed range.
Therefore, the same technique is applied for
detection and regions segmentation in the fre-
quency domain. The FT calculated for this
range is used in the Otsu algorithm for thresh-
old determination. Number and order of de-
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Fig. 7. SAR image of five targets: (a) obtained by using the 2D FT; (b) after focusing by using parameters
estimated by the proposed technique.

tected regions is shown to be the same as the
one obtained in the TF domain. Thus, each
detected region is extracted from the mixture
and its inverse FT is calculated in order to ob-
tain the corresponding signal. Then, the ob-
tained signal is dechirped by using mean value
of the corresponding chirp-rate estimated by
the proposed technique. The radar image, de-
picted in Fig. 7b, is obtained as a sum of radar
images of demodulated detected returns. It
can be seen, that high concentration of mov-
ing targets is obtained, without defocusing the
stationary one (No. 1), that is already well fo-
cused in the 2D FT (Fig. 7a). This is good val-
idation of the accuracy of the proposed tech-
nique for parameters estimation of radar sig-
nals.

Example 6.3. Performance of the proposed
technique applied to SAR signals in the pres-
ence of noise is examined in this example. The
same radar setup as the one in the previous
example is considered. The radar signal is em-
bedded in white complex Gaussian noise en-
vironment with a standard deviation equal to
10. Radar image obtained by using the 2D
FT is depicted in Fig. 8a. Radar image ob-
tained by applying the same procedure as the
one described in the previous example is de-
picted in Fig. 8b. By comparing these two
figures, it can be concluded that the proposed
procedure successfully performs focusing of all

targets even in the presence of noise. More-
over, it can be seen that, by the proposed pro-
cedure, significant portion of noise is rejected
from the SAR image.

Example 6.4. The 2D FT of radar data
produces samples (intensities of a radar im-
age) distributed on a polar grid (R, θ), [17].
These samples correspond to intensities of the
SAR image in the range/cross-range plane (the
Cartesian coordinate system) along a straight-
line at an angle θ from the range direction. For
a far-field radar scenario analyzed in Examples
6.2-6.3 these lines could be considered to be
parallel. Therefore, an error induced by de-
picting SAR image, obtained by using the 2D
FT, in the Cartesian coordinate system is very
small [17]. However, for near-field radar sce-
narios, this error cannot be neglected. Thus,
in this example, a near-field scenario is used.
The same radar setup as the one in the pre-
vious examples is considered, except that the
radar altitude is 1 km, while radar ground dis-
tance to the origin of the Cartesian coordinate
system at time t = 0 is 3 km. In addition, num-
ber of samples within a one pulse is N = 256,
while there is M = 256 pulses in one revisit.
The radar scene is composed of six targets with
initial positions and motion parameters given
in Table II.

As a result of motion they are performing,
targets could be dislocated from the proper po-
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TABLE I

M��
�� ���������� ��� ��� ������� ���� 
� E������� 6.2 ��� 6.3.

Scatterer No. 1 2 3 4 5
x0 [m] 0 150 0 -150 150
y0 [m] 90 90 0 -90 -90
vx [m/ s] 0 0 6 0 8
ax [m/ s2] 0 2.2 0 2.4 0

TABLE II

M��
�� ���������� ��� ��� ������� ���� 
� E������ 6.4.

Scatterer No. 1 2 3 4 5 6
x0 [m] -54 54 -54 54 -54 54
y0 [m] 90 90 0 0 -90 -90
vx [m/ s] 12 0 10 0 12 14
ax [m/ s2] 1 0 0.5 0 0 0
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Fig. 8. SAR image of five targets embedded in white complex Gaussian noise: (a) obtained by using the 2D
FT; (b) after focusing by using parameters estimated by the proposed technique.

sition in the SAR image [12]. Thus, in order
to examine an error induced solely by depict-
ing a SAR image, obtained by using the 2D
FT, in the range/cross-range plane (instead of
depicting it in polar coordinate system), all
targets are considered to be stationary in the
first part of this example. Their positions in
the SAR image therefore should coincide to
the positions given in Table II. The SAR im-
age, obtained by using the 2D FT, is depicted
in Fig. 9a. The targets with equal cross-
range coordinate are on a radial line, instead
of straight line, i.e. they are not at the true

positions. One of the widely used methods
for obtaining image intensities in the Carte-
sian coordinate system from its projection on
a straight-line at an angle θ from x−axis is
convolution back projection (CBP) image re-
construction method [18]. Details of the CBP
can be found in [18]. The SAR image obtained
by using the CBP method is shown in Fig. 9b.
It is obtained in the Cartesian coordinate sys-
tem. Targets with the same cross-range coor-
dinate are on a straight line, i.e. at the true
positions. The center of coordinate systems
used for depicting SAR images given in Figs.
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Fig. 9. SAR image obtained by using: (a) the 2D FT, depicted in corresponding polar coordinate system; (b)
the CBP image reconstruction method, depicted in the Cartesian coordinate system.

9a,b coincide to the ground projection of the
radar position at t = 0. A part of a polar
coordinate system θ ∈ [−1.8715o, 1.8715o] and
R ∈ [2.1905 km, 3.8032 km] is depicted in Fig.
9a.

In the second part of this example, the tar-
gets with motion parameters given in Table II
are considered. As a result of motion, some
of the targets are defocused in the SAR image
shown in Fig. 10a. Here, the SAR image is ob-
tained by using the CBP image reconstruction
method. The radar image obtained by apply-
ing the same procedure as the one described
in the previous SAR examples is depicted in
Fig. 10b. The CBP image reconstruction
method is used here, as well, in order to ob-
tain the final SAR image in the range/cross-
range plane. One can see that performance
of the proposed technique is independent of
the CBP image reconstruction method. The
proposed technique successfully performs fo-
cusing of all targets, while by using the CBP
image reconstruction method, their positions
are obtained in the Cartesian coordinate sys-
tem, instead of polar one. These two parts of
procedure for forming a final SAR image can
be performed separately. Namely, the aim of
the proposed algorithm for SAR imaging is to
demodulate a radar signal (in order to remove
higher order phase terms) by using parame-
ters estimated by the CPF. Then, the obtained
(demodulated) radar signal can be used in the

CBP algorithm for radar imaging.

VII. C��	���
���

The CPF evaluation technique for multi-
component signals is presented. The proposed
technique is based on the STFT. Accuracy
of the proposed approach is demonstrated for
sum of linear FM signals, sum of nonlinear
FM signals, and for noisy signals. Moreover,
it is applied to the parameters estimation in
the case when motion performed by the tar-
gets in SAR systems induces the second and
third order terms in the phase of the cor-
responding signals. The proposed technique
produces good results in these cases. Signif-
icant direction in further research is problem
of components overlapping in the TF plane.
Our current investigation are going in direc-
tion of projection based techniques. Further-
more, the proposed technique should be com-
bined with an appropriate technique for detec-
tion and segmentation of signal components in
the TF plane.
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Fig. 10. SAR image of six targets: (a) the CBP image reconstruction method; (b) after focusing by using
parameters estimated by the proposed technique with the CBP image reconstruction method.

Foundation of China under Grant 60802062.

R������	��

[1] Porat, B.: ‘Digital processing of random sig-
nals: Theory and methods’ (Englewood Cliffs,
NJ: Prentice-Hall, 1994).

[2] Peleg, S. and Friedlander, B.: ‘The discrete
polynomial phase transform’, IEEE Trans. Signal
Process., 1995, 8, (43), pp. 1901—1914.

[3] Reid, D.C., Zoubir, A.M. and Boashash, B.: ‘Air-
craft flight parameter estimation based on passive
acoustic techniques using the polynomial Wigner—
Ville distribution’, J. Acoust. Soc. Amer., 1997,
(102), pp. 207—223.

[4] O’Shea, P.: ‘A fast algorithm for estimating
the parameters of a quadratic FM signal’, IEEE
Trans. Signal Process., 2004, 2, (52), pp. 385-393.

[5] Farquharson, M. and O’Shea P.: ‘Extending the
performance of the cubic phase function algo-
rithm’, IEEE Trans. Signal Process., 2007, 10,
(55), pp. 4767-4774.

[6] Farquharson, M., O’Shea, P. and Ledwich, G.: ‘A
computationally efficient technique for estimating
the parameters of polynomial phase signals from
noisy observations’, IEEE Trans. Signal Process.,
2005, 8, (53), pp. 3337-3342.

[7] O’Shea, P.: ‘A new technique for instantaneous
frequency rate estimation’, IEEE Signal Process.
Let., 2002, 8, (9), pp. 251-252.

[8] Wang, P., Djurovíc, I. and Yang, J.: ‘Instan-
taneous frequency rate estimation based on ro-
bust cubic phase function’, Proc. Int. Conf.
on Acoustics, Speech, and Signal Processing,
Toulouse, France, May 2006, pp. 89—92.

[9] Jeong, J. and Williams, W.J.: ‘Mechanism of the
cross-terms in spectrograms’, IEEE Trans. Signal
Process., 1992, 10, (40), pp. 2608-2613.

[10] Hlawatsch, F. and Boudreaux-Bartels, G.F.: ‘Lin-
ear and quadratic time-frequency signal represen-
tations’, IEEE Signal Process. Mag., 1992, 2, (9),
pp. 21-67.

[11] Sharma, J.J., Gierull, C.H. and Collins, M.J.:
‘Compensating the effects of target acceleration
in dual-channel SAR-GMTI’, IEE Proc. of Radar,
Sonar and Navigation, 2006, 1, (153), pp. 53-62.

[12] Chen V. C. and Ling H.: ‘Time-frequency trans-
forms for radar imaging and signal analysis’
(Artech House, Boston, USA, 2002).

[13] Stankovíc, LJ.: ‘A method for time-frequency sig-
nal analysis’, IEEE Trans. Signal Process., 1994,
1, (42), pp. 225-229.

[14] Stankovíc, LJ.: ‘Quadratic and higher order
time-frequency analysis based on the STFT’,
in Boashash, B. (Ed.): ‘Time-Frequency Signal
Analysis and Processing’ (Elsevier, 2003), pp.
242-250.

[15] Gonzalez, R.C. and Woods, R.E.: ‘Digital image
processing’ (Prentice Hall, 2002).

[16] Stankovíc, LJ., Thayaparan, T., Popovíc, V.,
Djurovíc, I. and Dakovíc, M.: ‘Adaptive S-
method for SAR/ISAR imaging’, EURASIP
Journal on Advances in Signal Processing,
2008, (2008), Article ID 593216, 10 pages,
doi:10.1155/2008/593216.

[17] Xiao, S., Munson, D.C., Jr., Basu. S. and Bresler,
Y.: ‘An N2logN back-projection algorithm for
SAR image formation’, Conf. Rec. of the Thirty-
Fourth Asilomar Conference on Signals, Systems
and Computers, Pacific Grove, CA, USA, Octo-
ber 2000, (1), pp. 3-7.

[18] Desai, M.D. and Jenkins, W. K.: ‘Convolution
backprojection image reconstruction for spotlight
mode synthetic aperture radar’, IEEE Trans. Im-
age Processing, 1992, 4, (1), pp. 505-517.


