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Abstract– We introduce a new and simple
technique for human gait classification based on
the time-frequency analysis of radar data. The
focus is on the classification of arm movements
to discern free vs. confined arm swinging mo-
tion. The latter may arise in hostage situation
or may be indicative to carrying objects with
one or both hands. The motion signatures cor-
responding to the arm and leg movements are
both extracted from the time-frequency rep-
resentation of the micro-Doppler. The time-
frequency analysis is performed using the mul-
tiwindow S-method. With the Hermite func-
tions acting as multiwindows, it is shown that
the Hermite S-method provides an efficient rep-
resentation of the complex Doppler associated
with human walking. The proposed human gait
classification technique utilizes the arm positive
and negative Doppler frequencies and their rel-
ative time of occurrence. It is tested on various
real radar signals and shown to provide an ac-
curate classification.

I. I������	�
��

Among several possible technologies, includ-
ing acoustics, thermal, optical, and radio fre-
quency, RF based technology is considered an
attractive modality for human motion detec-
tion and classifications, as it can be applied
under all weather, light, smoke, and for tar-
gets obstructed by opaque material. Recently,
radar has been successfully used in urban sens-
ing applications and through wall imaging [1]-
[5].
This paper considers radars for the classi-

fication of human gait based on distinctions
in the walking person’s arm movements. In
particular three types of walking motions are
of interest: 1) Free arm-motion (FAM) char-
acterized by swinging of both arms, 2) Par-
tial arm-motion (PAM) which corresponds to
a motion of only one arm, and 3) No arm-
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motion (NAM) which corresponds to no mo-
tion of either arm. The NAM is referred to as
a stroller or saunterer [6]. The last two classes
are commonly associated with a person walk-
ing with his/her hand(s) in the trouser pockets
or a person carrying light small or large heavy
objects, respectively. All three categories are
considered important in law enforcement and
homeland security operations.

The radar micro-Doppler for human gait
has been an active area of research for the
last decade [7], [8]. In addition to the main
Doppler shift due to the motion of the human
torso, the relative motions of the limbs to the
body introduce micro-Doppler which presents
itself as a time-varying frequency shift. The
complex nonstationary Doppler signature of
human walking can be revealed via a joint
time-frequency signal representation in lieu of
the traditional Fourier transform, of the radar
return. The degree of clarity and depiction
of the time-dependent Doppler frequency for
each part of the human body in motion can
vary depending on the time-frequency analy-
sis tool employed. Compared to other meth-
ods, time-frequency distributions, which cap-
ture the instantaneous frequency laws are most
suitable for the underlying application [9]-[13].

Classifications of the above types of human
gait were considered in [6], [14]-[16]. The work
in [6] only dealt with FAM and NAM types
and used Spectrogram for the distribution of
Doppler signal power in the time-frequency do-
main. This work, though important, did not
consider distinctions in the types of motion,
but rather estimated the human walking para-
meters by minimizing the difference between
simulated Thalmann model [16] and real mea-
surements. Human gait classifications of the
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three types FAM, PAM, and NAM, were dis-
cussed in [14] based on subspace learning us-
ing principal component analysis (PCA). The
training set consists of feature vectors defined
as either time or frequency snapshots taken
from the spectrogram of radar backscatter.
This method, although generated promising
classification results, is nonparametric and did
not explicitly utilize the periodic and evolving
nature of the human gait in the three motion
types. The time-frequency classifier in [15] ap-
plied distance measures between training and
test sets represented by the time-frequency dis-
tributions of the corresponding Doppler sig-
nals. This classifier is also a nonparametric
method. It neither selects nor does it sepa-
rate the key and distinctive Doppler features,
associated with the arms’ motions. The clas-
sifier employed in [17] was based on SVM and
considered several types of human motions, in-
cluding running and crawling. It is a paramet-
ric technique and used different numerical fea-
tures of the human motion. This technique,
however, did not consider the classification of
the above three classes and their correspond-
ing salient feature.

Our contribution to the above gait classifi-
cation problem is twofold. We apply the re-
cently introduced multiwindow S-method [18]
as a high time-frequency concentration tech-
nique, in lieu of Wigner distribution, spectro-
grams, or other time-frequency signal repre-
sentations. It is shown that this method, ap-
plied to the three types of human gait, effec-
tively reveals the arm motions in the time-
frequency domain. The result of the multiwin-
dow S-method is used to provide the perime-
ter of the arm motions. A simple classification
technique is then employed which acts on the
arm perimeters and incorporates the positive
and negative strides of the arm swings as well
as their relative time of occurrences. In this re-
spect, the proposed method does not predicate
on learning or reference sets, as in the case in
both [14], [15] and, as such, avoids the poten-
tial mismatch between learning and test sets
which is likely responsible for the rather high
classification errors exhibited in applying those
methods. It is noted that the multiple win-
dows are obtained by using the Hermite func-

tions, which have good time-frequency local-
ization property [19], [20]. By employing only
a few Hermite functions (of lowest orders), the
complexity of realization is slightly increased
comparing to the standard S-method.
The paper is organized as follows. Section

II provides the theoretical background on the
time-frequency analysis. A brief mathematical
model of Micro-Doppler phenomenon induced
by human motion is given in Section III.A,
while the time-frequency based classification
procedure is proposed in Section III.B. The ap-
plication of the proposed procedure is demon-
strated through the examples with real radar
signals in Section IV. This Section also con-
tains a performance comparison between the
Hermite S-method and both the spectrograms
and S-method applied alone without the multi-
windowing. The concluding remarks are given
in Section V.
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�
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The time-frequency representation of a sig-
nal s(t) = Aejφ(t) that provides the energy
distribution along the instantaneous frequency
may be written as [21]:

TFR(t, ω) = 2πA2

×δ(ω− φ′(t)) ∗ω FT
{
ejQ(t,τ)

}
∗ωW (ω), (1)

whereQ(t, τ)is a spread factor defining the dis-
tribution spread around the instantaneous fre-
quency, the Fourier transform is denoted by
FT, while W (ω)is the Fourier transform of a
window in time domain. The simplest time-
frequency representation is obtained by using
the short-time Fourier transform (STFT):

STFT (t, ω) =

∞∫

−∞

s(t+ τ)w(τ)e−jωτdτ, (2)

where w(τ)is a window function. The ener-
getic version of the STFT is called spectro-
gram, and it is the squared module of the
STFT: SPEC(t, ω) = |STFT (t, ω)|2. The
spectrogram can be successfully used in many
applications. However, there is always a trade
off between time and frequency resolution.
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Also, the spread factor contains all higher
phase derivatives:

Q(t, τ) = φ(2)(t)
τ2

2!
+φ(3)(t)

τ3

3!
+φ(4)(t)

τ4

4!
+...

(3)
The resolution in the time-frequency domain

is improved by introducing quadratic time-
frequency distributions, such as the Wigner
distribution.

WD(t, ω) =

∞∫

−∞

w
(τ
2

)
w∗
(
−τ
2

)

×s
(
t+
τ

2

)
s∗
(
t− τ

2

)
e−jωτdτ. (4)

Note that, in the case of the Wigner distri-
bution, the even phase derivatives disappear
from the spread factor:

Q(t, τ) = φ(3)(t)
τ3

223!
+ φ(5)(t)

τ5

245!

+φ(7)(t)
τ7

267!
+ ... (5)

The S-method is defined as a quadratic dis-
tribution that combines good properties of the
spectrogram and the Wigner distribution [22].
It preserves the auto-terms concentration as in
the Wigner distribution and additionally re-
duces the noise influence [23] (the spread fac-
tor is also given by (5)). Furthermore, the S-
method can be implemented in a numerically
very efficient way, which makes it attractive
for applications. It is given by:

SM(t, ω) =

=

∫

θ

P (θ)STFT (t, ω + θ)STFT ∗(t, ω − θ)dθ,

(6)
where P (θ)is the frequency domain window of
finite length.
The convergence within P(θ) is very fast,
providing high auto-terms concentration with
only a few convolution terms. At the same
time, it reduces (or removes) the cross-terms
in the Wigner distribution [22].
Additional concentration improvement for

time-varying spectrum has been achieved

by introducing multiwindow time-frequency
analysis [23]-[26]. Because of their orthogonal-
ity and attractive localization properties [26],
the Hermite functions can be used as optimal
windows. The k-th function is recursively cal-
culated as:

Ψk(t) =

= t

√
2

k
Ψk−1(t)−

√
k − 1
k

Ψk−2(t), ∀k ≥ 2,
(7)

where Ψ0(t) =
1
4
√
π
e−t

2/2, Ψ1(t) =
√
2t

4
√
π
e−t

2/2.

The multiple windows have been initially used
for the multiwindow spectrogram, given by
[23]-[26]:

MSPEC(t, ω) =

=
1

2π

K−1∑

k=0

dk(t)

∣∣∣∣

∫
s(τ)Ψk(τ − t)e−jωτdτ

∣∣∣∣
2

,

(8)
where dk are the weighting coefficients, and
K is the number of employed Hermite func-
tions. The weighting coefficients are obtained
by solving the system:

K−1∑

k=0

dk(t)

∫
A2(t+ τ)Ψ2k(τ)τ

ndτ∫
A2(t+ τ)Ψ2k(τ)dτ

=

=

{
1 for n = 0
0 for n > 0

.

All higher phase derivatives up to (K+1)th are
removed from the spread factor, which is given
in the form:

Q(t, τ) =

= φ(K+1)(t)
τK+1

(K + 1)!
+ φ(K+2)(t)

τK+2

(K + 2)!

+φ(K+3)(t)
τK+3

(K + 3)!
+ ... (9)

Similarly, a multiwindow version of the stan-
dard S-method, i.e. the Hermite S-method,
has been introduced as a convolution of Her-
mite based STFTs [18]:

MSM(t, ω) =

=
K−1∑

k=0

∫

θ

P (θ)dk(t)STFTk(t, ω + θ)
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×STFT ∗k (t, ω − θ)dθ, (10)

where STFTk(t, ω)is the STFT calculated by
using the k-th order Hermite function Ψk(t).
The spread factor for multiwindow S-method
contains only half of the terms that exists
within the spread factor of the multiwindow
spectrogram.
Although the multiwindow approach has

been derived by using the concept of condi-
tional mean frequency, it can be used for radar
signals considered in this paper. Namely, the
experiments show that the multiwindow S-
method may additionally reduce the inner-
interferences and noise, and thus, with only
a few window functions it produces slightly
better representation than the standard S-
method.

III. A���
	��
�� �� ��

�
�
-��
��
�	� ������
� 
� H����

W���
�� C����	�
�
���
��

Here, we consider the problem of signatures
extraction that would allow one to distinguish
between the three different types of human
gait described in the Introduction, namely the
FAM, PAM, and NAM. We, therefore, focus
on radar signal components corresponding to
the arms swinging. We assume that the arm
motion is pronounced in the human walking
which means that the person has a full swing
of the arm when it is in motion. We also as-
sume that the motion is regular and homoge-
nous, in the sense that for FAM, the two arms
are moving approximately in the same man-
ner. It means that both arms pass by the body
(through the P points in Fig 1), in opposite di-
rections, approximately in the same moment
(the time difference ∆tis small). The same
holds for the points (M in Fig 1) where the
arms reach the maximum in both directions.

A. Basic mathematical description of Micro-

Doppler phenomenon induced by the hu-

man motion

In the coherent radar applications, the sig-
nal is returned from the target with a phase
change due to the variations in range. Differ-
ent body parts are moving with different ve-
locities and thus, produce different shifts. The

Fig. 1. Main motion — B, swinging arms A1 and A2

signal returned from the swinging arms may
include frequency modulation that will pro-
duce the sidebands around the body Doppler.
The received Doppler can be modeled as fol-
lows [27]:

s(t) = Aej(2πf0t+φ(t)), (11)

where A is the reflectivity of the chosen re-
flecting point, f 0 is the carrier frequency
of the transmitted signal, whileφ(t)is the
time-varying phase change. For an oscillat-
ing/vibrating object,

φ(t) =
4πDv
λ

sin(ωvt). (12)

The parameter Dv represents the amplitude
of vibration, or maximum deviation from the
center of the motion, and λ is the wavelength
of the transmitted signal. The corresponding
induced micro-Doppler frequency is the deriv-
ative of the phase and is given by:

fD(t) =
1

2π

dφ(t)

dt
=
1

2π

2

λ
Dvωv cos(ωvt).

(13)
Hence, in this case, micro-Doppler represents
the sinusoidal function of time at the frequency
ωv.
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B. The classification procedure for real radar

signals based on the time-frequency analy-

sis

A features extraction scheme is proposed. It
does not measure distances as in [6], [15], nei-
ther does it apply any subspace projection as
in [14]. As such, the proposed scheme avoids
the construction of learning or reference sets,
as in [17], which could be behind the undesired
classification performance by these methods.
Our method, in essence, recognizes that the
time-frequency representation exhibits some
symmetry or anti-symmetry for each type of
arms swinging. The features extracted are
based on the envelopes or the perimeters of
the arms depicted in the time-frequency do-
main which is generated using the Hermite S-
method. The use of the envelops bears similar-
ity to the SVM method proposed in [17]. The
difference is in the features underlying these
envelopes and the way it is used and processed
by the classifier.
In the first step of this procedure, the

strongest components corresponding to the
main motion (torso and legs motion), will
be removed. It is obtained by using time-
frequency based support function defined as:

S1(t, ω) =

=

{
0, for (t, B(t)− δ)<(t, ω)<(t, B(t) + δ)
1, elsewhere,

(14)
where the width of main motion region along
frequency axis is 2δ+1, and

B(t) = arg
{
max
ω
|MSM(t, ω)|

}
. (15)

Here it is assumed that the maximal value
is centered, which might not be always true.
However, even the rough approximation of the
main motion region is sufficient, since the aim
is just to remove the relative strong compo-
nents in order to highlight the weaker arms
movements. An illustration of the region
that will be removed by the support function
S1(t, ω) is given in Fig 2.

In order to reduce the influence from other
moving parts (apart from arms), the addi-

Fig. 2. An illustration of the region corresponding to
the main motion

tional support function is defined as:

S2(t, ω) =

=

{
1, for (t, ω) : ξ < |MSM(t, ω)| < Thr
0, elsewhere,

(16)
where Thr is an energy floor, while ξ is
used to remove small noise outside the region
with signal components. Finally, S1(t, ω)and
S2(t, ω)are combined to obtain the resulting
support function:

S(t, ω) = S1(t, ω) ∩ S2(t, ω). (17)

The points within ∆tcould be divided into
two sets: positive frequency points and nega-
tive frequency points, respectively, above and
below the main trajectory (torso motion com-
ponent). If arms are swinging during walk-
ing, these sets of points describe the envelopes
of the swinging motion. However, since they
are noisy data sets, some additional process-
ing is required in order to expose their fea-
tures. Thus, a curve smoothing procedure is
applied on both data sets. This procedure can
be observed as a nonparametric local fit that
can be done by filtering (averaging) or local
regression. The smoothness is controlled by
the span ψ, i.e., by the window width used in
the smoothing procedure. Here, the procedure
based on the moving average filter is used and
smooth curves i.e., modeling functions, are ob-
tained:

{S(t, ω)} ω>B(t)−→ f1(t), (18)

{S(t, ω)} ω<B(t)−→ f2(t).
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Fig. 3. Modeling functions f 1 and f 2

Note that the parametric modeling can be
used, as well. For example, Gaussian type
of fit (up to the seventh order: a1exp(-((x -
b1)/c1)2)+...+ a7exp(-((x -b7)/c7)2) provides
very similar results.
The modeling functions for walking with both
arms swinging (FAM) and walking without
arms swinging (PAM) are illustrated in Fig 3
and Fig 4, respectively.

Let us first consider the following two hy-
potheses: h1 —(NAM), h2— (PAM, FAM). The
functions f 1 and f 2 could be generally written
as:

f1(t) = B(t) + δ ± ξf1(t),
f2(t) = B(t)− δ ± ξf2(t), (19)

where δ is a constant defined in (14) to approx-
imate the main motion width (2δ+1) along fre-
quency axis, whileξf1(t)and ξf2(t) represent
variations with respect to the main motion.
Note that, ξf1(t) and ξf2(t) are mainly the
consequence of arms swinging. Otherwise, if
no arm swinging is present, the variations may
appear due to the noise or some legs’ move-
ments, and they are quite lower than in the
case of arms swinging. An illustration is given
in Fig 4. Thus, a decision rule can be defined
as:

MSE =MSE1 +MSE2 =

=
1

T

∑

t

ξ2f1(t) +
1

T

∑

t

ξ2f2(t)

h2
≥ ξThr
<
h1
ξThr

, (20)

where MSE is the total mean square error,
while ξThris a predefined value of the mean
square error. If h2 is true, then the two ad-
ditional hypotheses are considered: h21 — one

Fig. 4. Signal with no arms movements: f 1 and f 2
should be on a distance δ from B (t) with small
variationsξf1and ξf2, respectively

arm swinging (PAM), h22 — both arms swing-
ing (FAM). If h22 is true, the curves f 1(t) and
f 2(t) look “symmetrical” across the walking
trajectory B(t). Here, the “symmetrical” be-
havior is described as follows: each local maxi-
mum on f 1 has a corresponding local minimum
on f 2 which is located in time vicinity∆t.

Otherwise, the functions f 1(t) and f 2(t) are
“asymmetrical” and the hypothesis h21 is true.
This classification rule can be written as:

arg {lmax(f1(t))}−arg {lmin(f2(t))}
h22
≤
>
h21

∆tT
∆tT

(21)
where lmax(f1(t))represents the local maxi-
mum of f 1(t), lmin(f2(t))is a local minimum
of f 2(t), while ∆tT is a threshold value for ∆t.

IV. E"����
�

Example 1 : In this Section, the proposed
classification scheme is tested on the set of real
data collected at the Radar Imaging Lab, Cen-
ter for Advanced Communications, Villanova
University. The experiments were performed
with the radar operating at a carrier frequency
2.4 GHz, with a transmit power level 5 dBm.
The instantaneous frequency bandwidth is 70
kHz. The sampling frequency of the original
signals is 1 kHz. For the calculation of the Her-
mite S-method, the signals are further down-
sampled by factor of 4.
The radar data are collected from different

human targets. Also, the data were collected
at angles 0 and 30 degrees with respect to the
radar’s line-of-sight. Three types of human
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Fig. 5. Both arms swinging: a) Hermite S-method, b) time-frequency signatures, c) support function, d)
functions f 1 and f 2

motions were considered: NAM, i.e., walking
with no arm swinging, PAM, i.e., walking with
one arm swinging, and FAM, i.e., walking with
both arms swinging.

For all tested signals, the Hermite S-method
is calculated by using three Hermite functions
of the lowest order: k=0,1,2, with 512 sam-
ples within the windows. The parameter L=3
is used to define the width of frequency win-
dow P(l). Furthermore, the value of parame-
ter δ=6 (approximately 1.5Hz) is used to ap-
proximate the width of signal components rep-
resenting the main motion. The same value is
used for all tested signals. The approximation
of the main motion width could be further con-
sidered in some future work.

The energy floor Thr within S2(t, ω) is ob-
tained experimentally and it is set to the value
2 ·10−4 for all tested signals. The implementa-
tion of the proposed procedure is performed by
using Matlab 7. The smooth curves f 1 and f 2
are obtained by applying the moving average
method with smoothing span ψ=45.

In order to distinguish human walking with
and without arms, the mean square errors
(MSE) are calculated according to (20). The

TABLE I

MSE� �%��
�
� ��� �
��
� �
����� &
����� ����

��'
�
��� (NAM) ��� �
����� &
�� ����

��'
�
��� (PAM ��� FAM)

No arms
(NAM)

One or both arms
(PAM or FAM)

Signals MSE Signals MSE
Sig 1 5.1 Sig 9 (1 arm) 69.7
Sig 2 4.2 Sig 10 (2 arms) 57.5
Sig 3 16.6 Sig 11 (1 arm) 211
Sig 4 13.6 Sig 12 (2 arms) 127.8
Sig 5 13.4 Sig 13 (2 arms) 146.4
Sig 6 10.3 Sig 14 (1 arm) 112
Sig 7 5.9 Sig 15 (1 arm) 83.3
Sig 8 3.2 Sig 16 (2 arms) 46.5

results are presented in Table I. The signif-
icantly lower MSEs are obtained for signals
that do not contain arms swinging. Thus, ac-
cording to the results for the considered set of
signals ξThr = 20can be used for classification.

The classification between one arm (PAM)
and both arms swinging (FAM) is now consid-
ered. The results for these types of signals are
illustrated in Fig 5 and Fig 6. The Hermite S-
method of signal containing both arms swing-
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Fig. 6. One arm swinging: a) Hermite S-method, b) time-frequency signatures, c) support function, d) functions
f 1 and f 2

ing is shown in Fig 5.a. The time-frequency
signatures, used in the classification process
are illustrated in Fig 5.b, while the correspond-
ing support function is given in Fig 5.c. The
curves f 1 and f 2 are given in Fig 5.d. Note
that in these experiments, the time distance
∆t between the local maximum on f 1 and cor-
responding minimum on f 2 is around 20 sam-
ples. On the other hand, in the case of walk-
ing with one arm swinging, ∆t is higher, since
both maximum on f 1 and minimum on f 2 are
from the same arm swinging. The Hermite
S-method, time-frequency signatures and cor-
responding support function, for walking with
one arm swinging, are illustrated in Fig 6.a
to Fig 6.c, respectively. The functions f 1 and
f 2 are illustrated in Fig 6.d. It can be ob-
served that ∆tis significantly higher than 20
samples (between 100 and 200 samples for the
considered signal). The minimal and maximal
values of ∆t are given in Table II. Note that
there is a significant gap between the values
of ∆t for one and two arms swinging. The
threshold value ∆tT could be set between the

lowest min(∆t) for one arm swinging (Signal
5, value 109, in Table II) and highestmax(∆t)
for both arms swinging (Signal 4, value 25, in
Table II). Thus, ∆tT = 67can be used. Also,
the mean values m and standard deviations σ,
for min(∆t) and max(∆t) are given in Table
III.

For each of the two classification procedures
the probability of error is calculated as follows:

Perr =

∞∫

T

p1P1(λ)dλ+

T∫

−∞

p2P2(λ)dλ =

=
1

4
erfc

(
T − µ1√
2σ1

)
+
1

2
− 1
4
erfc

(
T − µ2√
2σ2

)
,

where p1=p2=1/2 and the normal distribution
is assumed for P1 and P2. The mean values
and standard deviations of classification para-
meters (MSE for the first and ∆t for the sec-
ond classification) are denoted as µ and σ, re-
spectively. They are calculated from the values
obtained in the experiments. The parameter
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TABLE II

M
�
��� ��� ��"
��� '���
� �� ∆t��� � �
� �� �
��
� �
�����

Angle min(∆t)in samples max(∆t)in samples No of arms
Signal 1 30 19 22 2
Signal 2 0 0 20 2
Signal 3 0 2 22 2
Signal 4 0 5 25 2
Signal 5 30 7 20 2
Signal 6 0 2 27 2
Signal 7 30 109 140 1
Signal 8 0 100 160 1
Signal 9 30 120 200 1
Signal 10 0 115 140 1
Signal 11 0 125 140 1
Signal 12 30 140 150 1

TABLE III

M
�� '���
� ��� �������� �
'
��
��� �� �
�
��� ��� ��"
��� ∆t

No of arms 2 arms 1 arm
m{min(∆t)}in samples 5.83 118.16
σ{min(∆t)}in samples 6.91 13.79
m{max(∆t)}in samples 22.66 155
σ{max(∆t)}in samples 2.8 23.45

TABLE IV

P��%�%
�
�

� �� 
���� ��� ��
 �&� 	����
�
	��
�� ���	
���
�

Classification between NAM and PAM/FAM
Classification parameter MSE Threshold T Total probability of error

MSE{NAM} MSE{PAM or FAM}
µ1 σ1 µ2 σ2 T=ξThr=20 Perr=3.54%

9.037 5.091 106.77 54.62
Classification between PAM and FAM

Classification parameter ∆t Threshold T Total probability of error
∆t{FAM-2 arm} ∆t {PAM-1 arm}
µ1 σ1 µ2 Σ2 T=∆tT=67 Perr=0.22%

14.25 10.12 136.58 26.57

T is threshold, which is equal to ξThr for the
first and ∆tT for the second procedure. The
results are shown in Table IV.

Example 2 : The advantage of the Hermite
S-method over the spectrogram and the stan-
dard S-method, for the considered application,
is illustrated in this example.

The noisy radar signal is considered (white
Gaussian noise is added), with SNR≈25dB.
The considered signal describes walking with
both arms swinging. The Hermite S-method,
the spectrogram and the standard S-method
are given in Fig 7.a-c, respectively. The cor-
responding time-frequency signatures are plot-
ted in Fig 7.d-f, while the modeling functions

are presented in Fig 7.g-i. Due to the noise
and lower concentration in the case of spectro-
gram and the standard S-method some anom-
alies may appear in the modeling functions f 1
and f 2.Note that by using the spectrogram,
some of the local maxima could be lost as it
is the case with points 1, 2 and 3 in Fig 7.h.
Thus, f 1 and f 2 are no longer “symmetrical”,
which leads to the incorrect results.

Similarly, in the case of the standard S-
method, the local extremis denoted as 1, 3
and 4 are weak and difficult to detect. Fur-
thermore, max(∆t)≈100 samples i.e., the dis-
tance between local maximum 2 and local min-
imum 5 is almost 100 samples, which is close
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Fig. 7. A comparison of different time-frequency distributions: a) Hermite S-method, b) Spectrogram, c) S-
method; Time-frequency signatures obtained by using: d) Hermite S-method, e) Spectrogram, f) S-method;
Modeling functions based on the: g) Hermite S-method, h) Spectrogram, i) S-method

to the one arm swinging case (Table II). How-
ever, the experiments show that the interfer-
ences will be better reduced by the Hermite
S-method. Consequently, time-frequency rep-
resentation is improved in comparison with
the spectrogram and the standard S-method.
Note that in case of the Hermite S-method,
the “symmetrical” structure, typical for the
case of both arms swinging, is preserved, with
max(∆t)=22 samples. The Hermite S-method
is less error-prone and hence, more suitable for
the classification procedure.

V. C��	���
��

A simple but yet effective time-frequency
based procedure for classification of radar sig-
nals received from human target in motion is
proposed. The signatures extracted from the
time-frequency domain are used to distinguish
between three different types of human walk-
ing, namely, human walking without any arm
swinging, human walking with one arm swing-
ing, and human walking with both arms swing-
ing. By using the Hermite S-method, a suit-
able time-frequency representation for radar
data analysis is obtained. A good concentra-
tion in the time-frequency domain provided
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easier extraction of the specific motion fea-
tures and signatures employed in the proposed
classifier. The perimeters of the arm micro-
Doppler signatures are first captured. The fol-
low up classification procedure, acting on these
perimeters, consists of two subroutines: the
first one distinguishes between walking with
and without arms swinging, while the second
renders a classification between one and both
arms swinging. The proposed scheme is tested
on a set of real radar data collected from dif-
ferent human targets and from two different
aspect angles, and shown to provide very de-
sirable classification rates.
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