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Abstract–This paper highlights the extrac-
tion of micro-Doppler (m-D) features from
radar signal returns of helicopter and human
targets using the wavelet transform method in-
corporated with time-frequency analysis. In or-
der for the extraction of m-D features to be re-
alized, the time domain radar signal is decom-
posed into a set of components that are repre-
sented at different wavelet scales. The compo-
nents are then reconstructed by applying the
inverse wavelet transform. After the separa-
tion of m-D features from the target’s original
radar return, time-frequency analysis is then
used to estimate the target’s motion parame-
ters. The autocorrelation of the time sequence
data is also used to measure motion parameters
such as the vibration/rotation rate. The find-
ings show that the results have higher precision
after the m-D extraction rather than before
it, since only the vibrational/rotational com-
ponents are employed. This proposed method
of m-D extraction has been successfully applied
to helicopter and human data.

I. I������	�
��

When a radar transmits an electromagnetic
signal to a target, the signal interacts with the
target and then returns to the radar. Any
changes in the properties of the returned sig-
nal are generally due to its interaction with
the target. This being the case, the charac-
teristics of the target in question are reflected
in the returned signal, and it follows that var-
ious properties of the target can be extracted
from the returned signal. For example, when
the target is moving, the carrier frequency of
the returned signal will be shifted due to the
Doppler effect. This Doppler frequency shift
can then be used to determine the radial ve-
locity of the moving target.

IEE Proc. Radar, Sonar and Navigation„ Vol. 1,
No. 4, Aug. 2007

It frequently occurs that a target or some
structure on the target is vibrating or ro-
tating in addition to the target’s translation.
These vibrations and rotations are referred to
as micro-motion dynamics [1-7]. The micro-
motion dynamics of a target generate fre-
quency modulations of the returned signal
in addition to the Doppler frequency shift
caused by the target’s translational motion.
In fact, the frequency modulations of the re-
turned signal induced by the micro-motions
produce sidebands about the target’s Doppler
frequency. The frequency modulation due to
micro-motion dynamics is called the micro-
Doppler (m-D) phenomenon [1-7].

While the Doppler frequency shift created
by the translational motion of the target
is time-invariant at a constant velocity, the
Doppler frequency shift generated by micro-
motion dynamics is a time-varying function
that imposes a periodic time-varying modu-
lation onto the carrier frequency. The modu-
lation contains harmonic frequencies that de-
pend on the carrier frequency, the vibration or
rotation rate, and the angle between the di-
rection of vibration and the direction of the
radar’s incident wave.

The m-D phenomenon is of interest because
information regarding a target’s micro-motion
dynamics is preserved in the returned radar
signal. The m-D phenomenon is commonly en-
countered in radar returns because real world
targets (e.g., helicopter, vehicle, rotating an-
tenna) are usually engaged in complicated ma-
noeuvres that incorporate translation, vibra-
tional and rotational motions. The mechani-
cal vibration/rotation of a target or part of the
target’s structure appears in a radar image as
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smeared features and induces frequency mod-
ulation on radar returns [1-11]. On the other
hand, m-D features could provide distinctive
information for recognition of targets of in-
terest. They have been used to identify the
natural resonant frequency of a tractor-trailer
truck [8]. The m-D features of the Jet Engine
Modulation (JEM) lines in a Mi-24 Hind-D he-
licopter are also used to estimate the turbine
rotation rate and the number of turbine blades
[9].

One of the problems with helicopter identi-
fication using JEM signatures is the complex-
ity of the signal [12]. Due to this complex-
ity, its exact nature is difficult to define. This
requires more refined signal processing tech-
niques in order to extract the relevant informa-
tion from background noise, clutter and extra-
neous harmonics. Traditional spectral analy-
sis techniques have been developed, however,
the signal-processing task is often complicated
by a low signal-to-noise ratio (SNR) and the
presence of spurious spectral lines introduced
by the radar. Traditional analyses, such as
Fourier analysis or the sliding window FFT
(short time Fourier transform), lack the nec-
essary resolution for extracting and process-
ing these unique features. Therefore, high-
resolution analysis is necessary for analyzing
m-D information. Promising alternatives for
these cases are techniques that are based on
time-frequency analysis methods [1-7].

Obtaining radar signatures of personnel is
another important application of m-D. The hu-
man walking gait is a complex motion behav-
ior that comprises different movements of indi-
vidual body parts. Since September 11, 2001,
Automatic Gait Recognition (AGR) technol-
ogy has grown in significance. Because gait
recognition technology is so new, researchers
are assessing its uniqueness and methods by
which it can be evaluated. Various computer
vision and ultrasound techniques have been de-
veloped to measure gait parameters [13-18].
Real-Time AGR radar systems have recently
been recognized as advantageous solutions for
detecting, classifying and identifying human
targets at distances in all light and weather
conditions. Radar has certain advantages over
electro-optical (EO) systems and video cam-

eras in that it can penetrate clothes, does
not require light, and operates in fog and
other low-visibility weather conditions. How-
ever, radar-based recognition is such a new
approach that much fundamental research has
yet to be done in this area. The radar sends
out a signal and then measures the echo that
contains rich information about the various
parts of the moving body. There are different
shifts for different body parts, because they
are moving at different velocities. For exam-
ple, a walking man with swinging arms may
induce frequency modulation of the returned
signal and generate sidebands about the body
Doppler. In this paper, we develop the prelim-
inary ground work for this challenging field of
research.

It is reasonable to expect that the m-D fea-
tures representing the micro-motions of a tar-
get can be extracted from the returned signal,
much in the same way as properties are ex-
tracted from radar returns of targets undergo-
ing only translational motion. Since different
targets produce different micro-motions, every
target would have its own "m-D signature",
making it possible to distinguish and identify
targets under consideration based on the ad-
ditional information provided by the m-D fea-
tures. Hence, an effective method is needed
for extracting m-D features in order to fully
exploit the additional and unique information
they provide.

Although there have been studies of micro-
Doppler effects in radar in the past few years
[1-7], there are only a few experimental tri-
als performed so far that are specifically dedi-
cated to helicopter and human micro-Doppler
research. As such, this paper contributes ad-
ditional experimental micro-Doppler data and
analysis which should help in developing a
better picture of the micro-Doppler effect in
radar in the future. Furthermore, instead
of using the conventional Fourier transform
or the high-resolution time-frequency trans-
form alone, as was done in the past [1-7],
the wavelet transform method combined with
time-frequency analysis is used in this paper
to analyze the time-varying micro-Doppler fea-
tures. Section 2 briefly provides an introduc-
tion to the basic mathematical description of
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the m-D phenomenon. Section 3 discusses the
method of m-D feature extraction, which is
based on wavelet digital filter banks and time-
frequency methods. Results are presented in
Section 4 and show that m-D features can be
accurately extracted using the wavelet trans-
form method. The motion parameters are es-
timated with the time-frequency analysis and
autocorrelation techniques. Conclusions and
recommendations for future studies are given
in Section 5.
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The basic mathematical description of the
m-D phenomenon induced by vibrational mo-
tions is discussed in this section. Rotation
can be seen as a special case of vibration. In
coherent radar, the variations in range cause
a phase change in the returned signal from
a target. A half-wavelength change in range
can cause 360-degree phase change. It is con-
ceivable that the vibration of a reflecting sur-
face may be measured with the phase change.
Thus, the Doppler frequency shift that repre-
sents the change of phase function with time
can be used to detect vibrations or rotations of
structures in a target [1]. Mathematics of the
m-D effect can be derived by introducing vi-
bration or rotation (micro-motion) to the con-
ventional Doppler analysis. A target can be
represented as a set of point scatterers, which
are the primary reflecting points on the tar-
get. The point scattering model can simplify
the analysis while preserving the m-D induced
by micro-motions. In our case, there exists a
vibrating point scatterer in a returned radar
signal. The received Doppler from a target as
a function of time is modeled by the following
equation

s(t) = Ae(j(2πf0t+φ(t))), (1)

where A is the reflectivity of the vibrating
point scatterer and f0 is the carrier frequency
of the transmitted signal. The φ(t) is the time-
varying phase change of the vibrating scat-
terer. Assuming that the vibrating scatterer
is set to a radian frequency oscillation of ων ,
the time-varying phase is

φ(t) = β sin(ων), (2)

where β = 4πDν/λ, Dν is amplitude of the
vibration and λ is the wavelength of the trans-
mitted signal [3]. Substituting eq. (2) into eq.
(1) yields

s(t) = Ae(j(2πf0t+β sin(ωνt))). (3)

Equation (3) may be written in a Fourier
series expansion as follows

s(t) = A
∞∑

n=−∞

cne
j(2πf0+nων)t. (4)

The Fourier coefficient cn will be expressed
as

cn =
1

2π

π∫

−π

ejβ sinωνte−jnωνtdt = Jn(β), (5)

which is an nth-order Bessel function of the
first kind [5]. Substituting eq. (5) into (3)
yields

s(t) = A
∞∑

n=−∞

Jn(β)e
(j(2πf0+nων)t). (6)

Equation (6) shows a m-D frequency spec-
trum that consists of pairs of harmonic spec-
tral lines around the center frequency f0.
The spacing between adjacent spectral lines
is ων/2π. Furthermore, since the phase term
function in eq. (3) is time varying, the instan-
taneous frequency fD, i.e. the m-D frequency
induced by the vibration of the scatterer, may
be expressed as

fD =
1

2π

dφ

dt
=
1

2π
βων cos(ωνt) =

=
2

λ
Dνων cos(ωνt). (7)

Note that the maximum m-D frequency
change is (2/λ)Dνων , which is used to esti-
mate the displacement of a vibrating scatterer.
The m-D induced by vibration is a sinusoidal
function of time at the vibrating frequency
ων . Usually, when the vibrating modulation is
small, it is difficult to detect the vibration in
the frequency domain. Thus, a method that
is able to separate the radar return induced
by the target body from that induced by its
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vibrating structure might help to isolate the
vibrating spectrum from other contributions.

This new technology can be developed for
m-D applications of military significance (e.g.,
helicopter rotors, aircraft propellers, JEM of
an air target, rotating ship or aircraft anten-
nas, human walking gait analysis, vibrations
of a vehicle/tank, etc.).

Modulation induced by rotating structures
can be regarded as a unique signature of a
target. This m-D signature is an important
feature for identifying targets of interest (i.e.
helicopters, ships or aircraft with rotating an-
tennas). When there is a rotating scatterer on
a target, the phase term in eq. (2) may be
expanded as follows

φ(t) = β sin(Ωt+ θ0), (8)

where Ω is the rotation rate and θ0 is the ro-
tating angle of the scatterer on the rotating
structure at t = 0, called initial rotating an-
gle. Therefore, the received Doppler from one
rotating scatterer may be expressed by eq. (9),
which is an expansion of a vibrating structure,
i.e.

s(t) = Ae(j(2πf0t+β sin(Ωt+θ0))). (9)

Equation (9) may also be expressed by the
Bessel function of the first kind. Similar to eq.
(6), m-D consists of harmonic spectral lines
around the center frequency. If there are N
rotating scatterers on a target (such as the ro-
tor blades of a helicopter), there will be N dif-
ferent initial rotating angles, i.e.

θk = θ0 + k2π/N, (10)

for k = 0, ..., N−1; and thus the total received
signal becomes

s(t) =
N−1∑

k=0

Ae(j(2πf0t+β sin(Ωt+θ0+k2π/N))).

(11)

A detailed mathematical description of
micro-Doppler modulations induced by several
typical basic micro-motions is derived in [1,7].
This description is beyond the scope of this
paper.

III. M����� �� M
	��-D������
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The Fourier transform is the most com-
mon method to analyze the properties of
a signal waveform in the frequency do-
main. However, due to lack of localized
time information, the Fourier transform can-
not provide more complicated time-varying
frequency modulation information [19]. A
joint time-frequency analysis that provides lo-
calized time-dependent frequency information
is needed for extracting time-varying motion
dynamic features [20-23]. To analyze the
time-varying frequency characteristics of the
micro-Doppler modulation and visualize the
localized joint time and frequency informa-
tion, the signal must be analyzed by using
a high-resolution time-frequency transform,
which characterizes the temporal and spectral
behavior of the analyzed signal. For exam-
ple, by examining the time information and
the sign of the micro-Doppler shift caused by
a movement, the direction of the movement at
the specific time could be found.
Joint time-frequency analysis is the basis of

most of the existing methods used to extract
m-D features [1-7]. Another viable approach
to extracting m-D features is wavelet analy-
sis. The main motivation for applying wavelet
analysis in the extraction of m-D features is
that the micro-motion dynamics of a target
that induce m-D features change at a rate
much faster than the target itself. Wavelet
analysis has the capability of detecting rapid
changes of a signal [24-25]. Therefore, wavelet
analysis seems ideal for the extraction of m-
D features and the wavelet transform can be
considered a powerful tool for this task.
The tree of digital filter banks for comput-

ing the discrete wavelet transform is given in
Figure 1a (this is a four-level decomposition
tree). L and H represent pairs of discrete low-
pass and high-pass filters. As demonstrated
in this figure, the original signal S is decom-
posed into its constituent parts consisting of
cd1, cd2, cd3, cd4, and ca4. In other words, af-
ter decomposition S = ca4 + cd1 + cd2 + cd3
+ cd4. Now, the wavelet transform has decom-
posed the signal into five parts; the four detail
levels and the stationary approximation. Gen-
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Fig. 1. (a) The tree of filter banks for computing the discrete wavelet transform; (b) time-frequency repre-
sentation of a considered signal and its wavelet resolution scheme; (c) signal with sinusoidally frequency
modulated component and its wavelet resolution scheme.

erally, these decomposed parts, by themselves,
do not represent motion dynamics of the tar-
get in question. Depending on the physical
quantity that one wishes to estimate, the de-
composed parts of the signal may need to be
combined in various ways in order to represent
the m-D features for which motion parameters
are required. After the comparison and evalua-
tion of different wavelets [25], the results show
that four-level decomposition and reconstruc-
tion with db1 wavelet is sufficient to extract
m-D features in this study.

Now, let us consider a signal whose time-
frequency description is given in Figure 1b.
We can easily conclude that this signal is well
suited for the wavelet analysis. Its high fre-
quency components are short in time, while
its low frequency components are of long dura-
tion. This is exactly as the standard wavelets
require. Therefore, the application of the
wavelets for its analysis and separation will
produce good results, as in our experimental
helicopter data. Let us now consider another
signal, with a sinusoidally frequency modu-

lated component as in Figure 1c. We can see
that the wavelet scheme (on the right) does
not fit the analysis for these kind of signals.
This signal has short and fast crossings at the
low frequencies (where the wavelet has very
low time resolution) and the signal resolution
at the high frequencies will be extremely low,
which is not good for the analysis. Therefore,
if we want to analyze the signals as in Figure
1b, the wavelets could be used with good re-
sults, but in the cases of FM signals over the
entire frequency scale as in Figure 1c, the stan-
dard wavelets are not appropriate.

In this paper, we are not using the wavelet
analysis alone, or the time-frequency analy-
sis alone. Rather, we are using the wavelet
analysis to separate the rotating part signal
from the main body signal. The wavelet
analysis considerably "cleans up" the signal.
Thereafter, the time-frequency analysis is em-
ployed to analyze the oscillation and to esti-
mate the motion parameters. There are many
different time-frequency transforms that in-
clude linear transforms, such as the short-time
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Fourier transform (STFT), and bilinear trans-
forms, such as the Wigner-Ville distribution
(WVD), available in the literature [1-7,20-23].
Each transform offers advantages and disad-
vantages. Certain transforms provide excellent
resolution, but are slow to calculate. Others
provide poor resolution, but are quick to calcu-
late. Some transforms provide a good balance
of speed and resolution, but have interference
cross-terms. In principle, any time-frequency
transform can be used to analyze the micro-
Doppler modulation. However, a desired time-
frequency transform should satisfy the require-
ments for high-resolution in both the time and
frequency domains and low cross-term inter-
ference. After the comparison and evaluation
of many different time-frequency transforms,
we found that the smoothed pseudo Wigner-
Ville distribution is a good candidate for our
experimental data sets for analyzing micro-
Doppler modulation due to its slightly reduced
time-frequency resolution and largely reduced
cross-term interference. However, other high-
resolution time-frequency transforms also pro-
duce the same results in determining the mo-
tion parameters. The data analysis procedure
is summarized in Table 1.

IV. E����
������ D���

In this section we demonstrate examples of
micro-Doppler signatures of targets that can
be used as radar signatures for target identi-
fication. Experimental trials were conducted
to investigate and resolve the micro-Doppler
radar signatures of targets using an X-band
radar. Two types of data collection were per-
formed. The targets in these experiments are
a helicopter and a walking man with swinging
arms.

A. Helicopter Data

The experimental data used in the analysis
that follows is of a hovering helicopter. For
a helicopter, the main rotor blades, the tail
rotor blades, and the hub have unique signa-
tures suitable for target identification [9,26-
27]. Generally, radar returns from a helicopter
are back-scattered from the fuselage, the ro-
tor blades, the tail blades, and the hub among
other structures. The motion of the rotor

blades depends upon the coupling between the
aerodynamics and the rotor dynamics. Each
blade is a rotating aerofoil having bending,
flexing, and twisting motion. The radar cross
section of a segment of the blade depends upon
its distance from the centre of rotation, its an-
gular position, and the aspect angle of the ro-
tor [26]. For simplicity, the rotor blade can be
modelled as a rigid, linear, and homogeneous
rod rotating about a fixed axis with a constant
rotation rate.

The rotational motion of rotor blades in a
helicopter imparts a periodic modulation on
radar returns. The rotation-induced Doppler
shifts relative to the Doppler shift of the fuse-
lage (or body) occupy unique locations in the
frequency domain. Whenever a blade has
specular reflection such as at the advancing
or receding point of rotation, the particular
blade transmits a short flash to the radar re-
turn. The rotation rate of the rotor is di-
rectly related to the time interval between
these flashes. The duration of a flash is de-
termined by the radar wavelength and by the
length and rotation rate of the blades. A flash
resulting from a blade with a longer length and
a radar with a shorter wavelength will have a
shorter duration [1].

The helicopter employed in the experiment
is hovering above the ground at a height of
approximately 60 m and at a range of 2.5 km
from the radar. The main rotor is comprised
of five blades and the tail rotor consists of six
blades. The rotation rate of the main rotor
blades is known to be 203 rpm for this he-
licopter. The rotation rate of the tail rotor
blades is known to be 1030 rpm for this heli-
copter. The experiment was conducted using
an X-band radar. Two trials were conducted,
both with a time interval of 96.5 ms.

In order to demonstrate the procedure of
m-D analysis, the results for trial 1 are now
presented. First, the Fourier transform of the
original radar returned data is computed and
the image obtained is shown in Figure 2a. As
can be seen from the image, a main frequency
bin with a large amplitude exists in the middle
of the spectrum representing the helicopter’s
body vibration. Surrounding this frequency
bin, one can observe two other less promi-
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Fig. 2. (a) The Fourier spectrum of helicopter Trial 1; (b) The TF signature of the original data from helicopter
Trial 1; (c) The TF signature of the extracted large oscillation from helicopter Trial 1; (d) The TF signature
of the extracted small oscillation from helicopter Trial 1.

Fig. 3. (a) The autocorrelation of the original data from helicopter Trial 1; (b) The autocorrelation of the
extracted large oscillation from helicopter Trial 1; (c) The autocorrelation of the extracted small oscillation
from helicopter Trial 1.
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TABLE I
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.

Step 1. Perform a 4 level decomposition of the signal s(t) using the db1 wavelet: s(t) →
[ca4, cd1, cd2, cd3, cd4].

Step 2. Reconstruct the signal using coefficients from decomposition step 1: [ca4, ca1, ca2,
ca3, ca4] → [A4, D1, D2, D3, D4].

Step 3. Perform time-frequency analysis for selective component A4 to get stationary target
body.

Step 4. Perform time-frequency analysis for selective components [D3,D4] to get large oscil-
lation present in the signal.

Step 5. Perform time-frequency analysis for selective components [D1, D2] to get small
oscillation present in the signal.

nent peaks representing the frequency of the
main rotor and tail rotor rotation rate. These
are the m-D features that are to be extracted.
By applying the wavelet analysis as described
above, the m-D features are obtained. The
next step in the procedure is to make use of
time-frequency analysis in order to depict the
m-D oscillations and to estimate the target’s
motion parameters. The time-frequency sig-
nature of the original returned signal using
the smoothed pseudo Wigner-Ville distribu-
tion is given in Figure 2b. The stationary
body is observed as a fairly constant signal at
0 Hz on the frequency axis. The micro-motion
dynamics of the tail rotor are seen as small,
quick flashes just below the constant station-
ary body. The micro-motions of the main rotor
are visible as the three large flashes with the
large period. The same time-frequency trans-
form is applied to the extracted m-D feature
representing the main rotor obtained from the
wavelet analysis, and the resulting image is
shown in Figure 2c. Here, not only are the
flashes made clearer, but the flashes are in
fact stronger peaks than those observed in the
time-frequency signature of the original signal
in Figure 2b. The rotation rate of the main
rotor blades is calculated from Figure 2c as
follows. It is known that the main rotor of
this helicopter has five blades. This is an im-
portant point as it means that the specular
reflection at the advancing and receding point
of rotation do not coincide with one another.
Therefore, the resulting time-frequency plot

will show alternating strong and weak flashes.
This is indeed the case in Figure 2c. The pe-
riod between the two strong flashes, i.e. the
period between two blades at the advancing
point of rotation, is 0.0591 s. Since there are
five blades, this value is multiplied by five in
order to obtain 0.2955 s, the length of time
taken by a single blade to complete one full ro-
tation. The number of rotations in one minute
is given by (60 s/min)/(0.2955 s/rotation) =
203.05 rpm, which is in agreement with the
actual value known to be 203 rpm. Similarly,
the smoothed pseudo Wigner-Ville distribu-
tion has been applied to the wavelet-extracted
m-D feature representing the tail rotor. Fig-
ure 2d illustrates the end result. In this case,
the flashes caused by the tail rotor have been
made obvious by the removal of the stationary
body and the main rotor components. Know-
ing that the tail rotor consists of six blades, the
rotation rate of the tail rotor is measured using
Figure 2d in a similar manner as it was com-
puted for the main rotor. The rotation rate is
calculated to be approximately 1031 rpm.

The rotation rate can also be estimated
by taking the autocorrelation of the time se-
quence data of the extracted m-D features.
The autocorrelation of the original signal is
given in Figure 3a. It is evident that not much
information can be easily extracted from this
plot. However, looking at the plots of the au-
tocorrelations for the extracted m-D features
of the main rotor and tail rotor obtained us-
ing the wavelet decomposition method in Fig-
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Fig. 4. (a) The TF signature of the original data from helicopter Trial 2; (b) The TF signature of the
extracted large oscillation from helicopter Trial 2; (c) The TF signature of the extracted small oscillation
from helicopter Trial 2.

ure 3b and Figure 3c, respectively, the oscilla-
tions are unmistakable. The distances between
the peaks describe the period of the rotation,
which in turn allows one to estimate the rota-
tion rate. Using Figure 3b, the rotation rate
of the main rotor blades is calculated to be
203 rpm, which is consistent with the value
from the time-frequency analysis. Both results
agree with the actual value. Note that without
m-D extraction, it is more difficult to estimate
the rotation rate from the autocorrelation of
the original data as shown in Figure 3a. The
peaks are much less prominent due to higher
interference. The signal-to-noise ratio (SNR)
is significantly enhanced after m-D extraction
as compared to the original data.

Similar results are obtained in Trial 2. Fig-
ure 4a gives the time-frequency signature of
the original radar returned data. Figure 4b
shows the extracted m-D features representing
the main rotor, while Figure 4c shows those
representing the tail rotor. A scenario similar
to Trial 1 is seen, where the plots after m-D ex-
traction provide a much higher SNR and give

clearer results. The rotation rate of the main
rotor blades is calculated to be 203 rpm using
the time-frequency plot of Figure 4b. The ro-
tation of the tail rotor blades is calculated to
be 1025 rpm.

B. Human Data

The human data used in this experiment was
collected using the EARS (Experimental Ar-
ray Radar System) employing a stepped fre-
quency radar waveform [21,23]. The experi-
ment was conducted with the radar operating
at frequencies of 8.9 to 9.4 GHz, providing a
500 MHz bandwidth. The frequency step size
was 10 MHz and a pulse repetition frequency
(PRF) of 1 kHz was used. Thus, it required 50
ms to generate a single high-range resolution
(HRR) profile (i.e. an effective HRR PRF of
20 Hz). The integration time for each data set
was 60 seconds.

Experimental human data is used in the
analysis that follows. The human gait is a
complex motion that is comprised of the many
movements of individual body parts. These
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moving body parts are the “structures” that
exhibit unique m-D signatures suitable for tar-
get recognition. Hence, the information of
interest contained in radar returns from hu-
man targets is the data representing the micro-
motion dynamics of the various parts of the
moving body. Since the body parts are moving
at different velocities, a number of different fre-
quency shifts will be obtained in the returned
signal. Take, for example, a man walking and
swinging his arms. The swinging motion of the
arms may induce frequency modulation of the
returned signal and generate sidebands about
the body Doppler.
In particular, one would suspect that the

motion of the swinging arms would cause a
more prominent frequency modulation than
the other components contributing to the
radar returned signal due to the size and shape
of the arms and the periodic nature of their
motion in the walking gait. This being true,
the experiment was conducted with an empha-
sis on the swinging motion of the human arms.
The following 4 trials were conducted:

1) A human marching on the spot at 30
degrees to the radar, swinging two arms, with
corner reflectors

2) A human marching on the spot at 60
degrees to the radar, swinging one arm, with-
out a reflector

3) A human marching on the spot at 45
degrees to the radar, swinging two arms, with-
out any reflectors

Note that the time interval for each trial was
60 seconds.

As the results obtained from the human gait
experiments are acquired in a slightly differ-
ent manner than those from the experimental
helicopter data, the means by which the find-
ings are attained must first be explained. The
data from the radar returned signals for each
trial are spread over a number of different 51
range cells. In order to proceed with the m-D
analysis, a single range cell from the set of 51
must be selected so as to permit wavelet and
time-frequency analysis. A range cell must be
chosen that best represents the m-D feature
that is being extracted. In this case, the de-
sired m-D feature is the swinging arm. Thus,
a range cell that captures the peaks of the

arm swings (either the maximum or minimum
points) should be selected so that the period of
oscillation can be measured. Note that the pe-
riod of oscillation of arm swings from all trials
is known to be between 1.5 and 2.5 seconds.
This is done deliberately in order to verify the
results obtained from the experiments.

Now, the results of the experiment are pre-
sented starting with Trial 1 (the human march-
ing on the spot and swinging two arms with
reflectors). The image in Figure 5a shows the
time series of the radar returned data. The
image in Figure 5b shows a zoomed version
of the time series over the time interval that
will be considered in the m-D analysis. In a
double arm swing, the frequency shift is seen
as two oscillations, one from each arm, phase
shifted from one another by half the period
of the oscillation of one arm; this is assuming
that the maximum amplitude (strong specu-
lar reflection) of the oscillation of one arm oc-
curs at the same time as the weak specular
reflection of the other arm (peak position of
the arm behind the body). This is what is
observed in the image of Figure 5b where a
smaller, weaker, second oscillation is visible in
the middle of the larger, stronger oscillation.
The weaker oscillation represents the arm fur-
ther away from the radar on the opposite side
of the human body.

As described above, a range cell is selected
in order to carry on with the wavelet analy-
sis. In this case, range cell 30 is used, and the
time-frequency signature of the resulting data
using the smoothed pseudo Wigner-Ville dis-
tribution is given in Figure 5c. Range cell 30 is
chosen because the maxima of the oscillations
are all situated across that range, thereby al-
lowing the oscillations to be represented by the
six observed flashes in Figure 5c. By applying
the wavelet analysis as described earlier, the
m-D features of the signal at the selected range
are obtained. Finally, time-frequency analy-
sis is utilized in order to depict the m-D arm
swing oscillations and to estimate the human
gait motion parameters. The time-frequency
signature of the extracted arm swing feature
using the smoothed pseudo Wigner-Ville dis-
tribution is shown in Figure 5d. The period of
the oscillation of the arm swing from the image
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Fig. 5. (a) Time series of human Trial 1; (b) image shows the time interval under consideration for the m-D
analysis; (c) TF signature at range cell 30; (d) TF signature after wavelet decomposition at range 30.

in Figure 5b is measured to be approximately
2.2 seconds. When the measurement is made
using Figure 5c and Figure 5d separately, the
same value of 2.2 seconds is obtained.

Trials 2 and 3 are analogous to Trail 1 ex-
cept that they are both conducted without us-
ing any reflectors whatsoever. The images cor-
responding to Trial 2 (marching on the spot,
one arm without reflector) are shown in Fig-
ures 6a, 6b, 6c, and 6d with range cell 19 hav-
ing been selected. The time-series plot shown
in Figure 6b reveals three distinguishable os-
cillations. Figure 6c gives the time-frequency
signature of the signal obtained after select-
ing range cell 19 and the three oscillations are
evident in the three strong flashes. However,
the signal is much too noisy. Wavelet analysis
is performed in order to extract the m-D fea-
tures and the time-frequency signature of the
resulting feature representing the arm swing
is given in Figure 6d. Note the dramatic im-
provement of the SNR from Figure 6c to Fig-
ure 6d. Comparing Figures 6c and 6d, one
observes a substantial decrease in noise after
wavelet and time-frequency analysis. The rea-

son is that during the reconstruction process of
the detail levels, only the wavelet coefficients
that are related to the m-D features (in this
case arm swings) of the signal are used while
other coefficients are set to zero. This process
considerably "cleans up" the signal. There-
after, when the time-frequency analysis is em-
ployed to analyse the arm swing oscillation,
the results have higher precision after the m-
D extraction since only arm swing components
are employed. This procedure is different from
traditional methods where the wavelet analysis
and the time-frequency analysis are used inde-
pendently. Here, we use the wavelet transform
method combined with time-frequency analy-
sis to extract m-D features. The period of the
oscillation of the arm swings is measured to
be 1.5 seconds from Figure 6b, from Figure
6c, and from Figure 6d.

Similarly, the images for Trial 3 (marching
on the spot, two arms without any reflectors)
are given in Figures 7a, 7b, 7c, and 7d. Here,
the time interval under consideration includes
six oscillations as is visible from the image in
Figure 7b. Figure 7c gives the time-frequency
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Fig. 6. (a) Time series of human Trial 2; (b) image shows the time interval under consideration for the m-D
analysis; (c) TF signature at range cell 19; (c) TF signature after wavelet decomposition at range 19.

Fig. 7. (a) Time series of human Trial 3; (b) image shows the time interval under consideration for the m-D
analysis; (b) TF signature at range cell 20; (c) TF signature after wavelet decomposition at range 20.
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representation of the data at range cell 20.
Again, wavelet analysis is performed in order
to extract the m-D feature indicating the mo-
tion of the arm swing, and the time-frequency
signature of the feature is shown in Figure
7d. One can see that there exists much less
background noise in this image than that of
the original signal given in Figure 7c. The
six flashes representing the six oscillations are
clearly identifiable in this image. Keeping in
mind that this trial includes two arms swing-
ing, the period of oscillation of the arm swings
is measured to be 1.5 seconds from Figure 7b,
from Figure 7c, and from Figure 7d.
We can see that the body’s Doppler shift is

almost constant but the arm’s micro-Doppler
shift becomes time-varying and has an oscilla-
tion. All of the results demonstrate that the
m-D features are made substantially clearer af-
ter m-D analysis has taken place and establish
that the period of oscillation of the arm swings
is completely verified. These results show that
the radar gait image analysis integrated with
m-D can provide new identification methods
for remote detection of walking personnel ei-
ther in battlefield or urban scenarios, deal-
ing with hostage acts, detecting humans (sol-
diers) in a forest, through wall human detec-
tion, search and rescue scenarios, perimeter
protection, border monitoring etc.

V. C��	��

��

This paper presents a procedure for m-
D analysis in order to extract the m-D fea-
tures of radar returned signals from targets.
The method combines both wavelet and time-
frequency analysis in order to extract the m-D
features of radar target returns. By applying
the proposed procedure to helicopter and hu-
man gait data, the effectiveness of this analysis
technique is confirmed. From the extracted m-
D signatures, information about the target’s
micro-motion dynamics, such as rotation rate
and period of oscillation, has been obtained.
The wavelet transform method is applied

during the m-D analysis process in order to
extract m-D features from radar returns. The
various signal components are obtained at
different wavelet scales in the decomposition
process. The extraction of m-D features is

completed by the reconstruction process in
which the inverse wavelet transform is applied.
This methodology has been applied to heli-
copter data with rotational motion and human
gait data. The results show that the wavelet
transform methodology is an effective tool for
extracting m-D features. After the extrac-
tion of m-D features, time-frequency analysis
is employed in order to depict the oscillation
and estimate the motion parameters. The ro-
tation rates of the main rotor and tail rotor
blades of the helicopter are successfully com-
puted as are the periods of oscillation of the
arm swings of the human gait. The vibra-
tion/rotation rate of the helicopter is also es-
timated by taking the autocorrelation of the
time sequence data. In general, it is shown
that the results are much improved after the
m-D extraction has taken place since only
the vibrational/rotational components are em-
ployed. The experimental results agree with
the expected outcome. In a future study,
we intend to develop a new adaptive time-
frequency and scale transform for feature ex-
traction and recognition purpose.

The detection and extraction of m-D fea-
tures in radars is still immature. No known
comprehensive model of the m-D phenomenon
applied to radar exists in open literature. The
analysis of m-D detection and extraction us-
ing time-frequency techniques or wavelets is
relatively new and has to be explored further.
The current decomposition methods are not
designed to fully represent “deep level" infor-
mation from radar signatures such as the m-D
effect, which affects radar Automatic Target
Recognition (ATR), especially for weak mov-
ing targets buried in noise and target returns
with strong vibration or rotational compo-
nents. These methods are not designed to deal
with a variety of targets of interest and often
do not offer the flexibility of selective feature
composition during the reconstruction process
(i.e. inverse transform). Therefore new algo-
rithms, adaptive transforms and methods will
be investigated in the future to address these
issues.
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