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Abstract– In many cases, a target or a struc-
ture on a target may have micro-motions, such
as vibrations or rotations. Micro-motions of
structures on a target may introduce frequency
modulation on the returned radar signal and
generate sidebands on the Doppler frequency
shift of the target’s body. The modulation due
to micro-motion is called the micro-Doppler
(m-D) phenomenon. In this paper, we present
an effective quadratic time-frequency S-method
based approach in conjunction with the Viterbi
algorithm to extract m-D features. For tar-
get recognition applications, mainly those in
military surveillance and reconnaissance oper-
ations, micro-Doppler features have to be ex-
tracted quickly so that they can be used for
real-time target identification. The S-method
is computationally simple, requiring only slight
modifications to the existing Fourier transform-
based algorithm. The effectiveness of the S-
method in extracting m-D features is demon-
strated through the application to indoor and
outdoor experimental data sets such as rotating
fan and human gait. The Viterbi algorithm for
the instantaneous frequency estimation is used
to enhance the weak human micro-Doppler fea-
tures in relatively high noise environments. As
such, this paper contributes additional experi-
mental micro-Doppler data and analysis, which
should help in developing a better picture of
the human gait micro-Doppler research and its
applications to indoor and outdoor imaging and
automatic gait recognition systems.

I. I������	�
��

The ongoing war on terror is quickly becom-
ing asymmetric in nature wherein the old rules
of conflict are no longer applicable. The ad-
versary is usually dispersed and attacks come
from non-conventional theaters, such as the ur-
ban and littoral zones where detection of the
well-concealed adversary is impossible by con-
ventional means. Adversaries or criminals hide
within and behind building walls and dense fo-
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liage making it impossible to detect them by
optical means. The only technology that has
a reasonable chance of success is microwave
radar, which has the ability to penetrate build-
ing wall materials, such as concrete, brick,
plaster, cloths, and dense foliage.

There is continuing interest in being able to
detect illegal activity behind opaque walls [1],
[2], [3]. Radar signals reflected from individ-
ual humans contain biometric information re-
lated to periodic contraction of a heart, blood
vessels, lungs, other fluctuations of the skin
in the process of breathing and heart beat-
ing [1]. These processes are cyclical and range
in frequency from 0.8 to 2.5 Hz for heartbeat
and 0.2-0.5 Hz for breathing [1]. Such micro-
Doppler (m-D) signals are concealed within
other naturally varying signals making detec-
tion extremely difficult.

Obtaining radar signatures of humans is an-
other important application of m-D. The hu-
man walking gait is a complex motion behav-
ior that comprises different movements of indi-
vidual body parts. Recently, the development
of automatic radar gait recognition technol-
ogy has grown. Because radar gait recognition
technology is so new, researchers are assessing
its uniqueness and methods by which it can be
evaluated. Various computer vision and ultra-
sound techniques have been developed to mea-
sure gait parameters [4]-[10]. However, real-
time automatic gait recognition radar systems
have recently been recognized as advantageous
solutions for detecting, classifying and identi-
fying human targets from stand-off distances
under conditions of multipath, clutter, and fo-
liage obstruction in all light and weather con-
ditions. Radar has certain advantages over
electro-optical (EO) systems and video cam-
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eras in that it can penetrate clothes, does not
require light, and operates in fog and other
low-visibility weather conditions. Several re-
search labs and universities have been involved
in radar-based gait recognition technology for
the past years; nevertheless, more fundamen-
tal research is still needed in this area. The
radar sends out a signal and then measures
the echo that contains rich information about
the various parts of the moving human body.
Body parts cause different shifts since they are
moving with various velocities. In this case,
the micro-Doppler refers to Doppler scatter-
ing returns produced by non-rigid human body
motion. Micro-Doppler gives rise to many de-
tailed radar image features in addition to those
associated with bulk human body motion. For
example, a walking man with swinging arms
may induce frequency modulation (FM) of the
returned signal and generate sidebands about
the body Doppler. In this paper, we develop
the preliminary groundwork for this challeng-
ing field of research.

It is reasonable to expect that the m-D fea-
tures representing the micro-motions such as
swinging arms of a human can be extracted
from the returned signal, much in the same
way as properties are extracted from radar re-
turns of targets undergoing only translational
motion. Since different humans can have dif-
ferent micro-motions, every human would have
its own "m-D signature", making it possible
to distinguish and identify humans under con-
sideration based on the additional information
provided by the m-D features. Hence, an ef-
fective method is needed for extracting m-D
features in order to fully exploit the additional
and unique information they provide.

Traditional techniques, such as Fourier
analysis or the sliding window FT (short
time Fourier transform - STFT), lack the re-
quired resolution for extracting and processing
these unique m-D features. Therefore, high-
resolution linear and quadratic time-frequency
(TF) analysis techniques are recently em-
ployed for extracting m-D features [11]-[21].
Several papers have been written about the
ways to deal with the m-D effect. The wavelet
analysis of helicopter and human data, along
with the TF representation based imaging sys-

tem, is presented in [14]-[16]. Details on the m-
D effect physics, with some typical examples,
are given in [17]-[18]. A method for the sepa-
ration of the m-D effect from the radar image,
based on the chirplet transform, is proposed
in [19]. Both wavelet-based and chirplet based
procedures are used in [20] to extract the m-D
features such as the rotating frequency of the
antenna from SAR data. Recently, two tech-
niques for the separation of the target rigid
body from m-D parts have been proposed in
[21]. The first approach is based on order sta-
tistics of the spectrogram samples. The sec-
ond approach is based on the Radon trans-
form processing of obtained radar signals. The
analysis of the TF representations application
in radar target identification is presented in
[22]. The reduced interference distributions
from the Cohen class are applied as a tool for
the target identification. A technique for the
m-D effect estimation from the reflected sig-
nal, based on the TF signatures and decompo-
sition of basis functions, is presented in [23].
This technique can be used for m-D effect sig-
nals that can be represented as sinusoidal FM
signals. The goal of this paper is to find an
improved method, which gives enhanced reso-
lution and suppresses most of the cross-terms
in relatively high noise environments.

Micro-Doppler features have great potential
for use in automatic target classification algo-
rithms. Although there have been studies of
m-D effects in radar in the past few years [11]-
[21], there are only a few experimental trials
performed so far that are specifically dedicated
to human m-D research. The experimental
trails used in this paper can be considered as
precursors to the more advanced through-wall
radar imaging applications. As such, this pa-
per contributes additional experimental m-D
data and analysis, which should help in devel-
oping a better picture of the human m-D re-
search and its applications to indoor and out-
door radar imaging and automatic gait recog-
nition system.

In this paper, we apply the S-method (SM)
based approach, which appears to have great
promise to recognize the m-D features such as
rotating fan, human gait in indoor and out-
door environments. The SM is also numeri-
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cally very simple and requires just a few more
operations than the standard FT based algo-
rithm. This technique can improve a radar
image with simple postprocessing of the stan-
dard radar image. In addition, signal oversam-
pling is avoided while spurious interferences
common for some other bilinear TF represen-
tations are significantly reduced or removed.
Since the m-D signature caused by the human
motion consists of several components (FM
signals) for feature extraction we need to de-
velop some techniques that are able to esti-
mate the instantaneous frequency (IF) of all
components. This is a challenging task since
these components could be very different in
magnitude and crossing in the TF plane. As a
potential technique for feature extraction, we
proposed the Viterbi algorithm for IF estima-
tion applied to the TF representations. This
technique is able to track signal components
in the TF plane, even in the case of relatively
high noise, and it is able to track the IF of
crossing components.
The manuscript is organized as follows. Sec-

tion 2 briefly provides an introduction to
the basic mathematical description of the m-
D phenomenon. Section 3 introduces the
SM based approach from basic principle and
demonstrates its application for extracting m-
D features. The Viterbi algorithm for IF es-
timation is reviewed in Section 4. Results are
presented in Section 5 and show that m-D fea-
tures can be accurately extracted using the
SM. Conclusions and recommendations for fu-
ture studies are given in Section 6.

II. B�
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The basic mathematical description of the
m-D phenomenon induced by vibrational mo-
tions is discussed in this section. Rotation
can be seen as a special case of vibration. In
coherent radar, the variations in range cause
a phase change in the returned signal from
a target. A half-wavelength change in range
can cause 360-degree phase change. It is con-
ceivable that the vibration of a reflecting sur-
face may be measured with the phase change.
Thus, the Doppler frequency shift that repre-

sents the change of phase function with time
can be used to detect vibrations or rotations of
structures in a target [11]. The mathematics
of the m-D effect can be derived by introduc-
ing vibration or rotation (micro-motion) to the
conventional Doppler analysis. A target can be
represented as a set of point scatterers, which
are the primary reflecting points on the tar-
get. The point scattering model can simplify
the analysis while preserving the m-D induced
by micro-motions. In our case, there exists a
vibrating point scatterer in a returned radar
signal. The received Doppler from a target as
a function of time is modeled by the following
equation

s(t) = Ae[j(2πf0t+φ(t))], (1)

where A is the reflectivity of the vibrating
point scatterer and f0 is the carrier frequency
of the transmitted signal. The φ(t) is the time-
varying phase change of the vibrating scat-
terer. Assuming that the vibrating scatterer
is set to a radian frequency oscillation of ων ,
the time-varying phase is

φ(t) = β sin(ωνt), (2)

where β = 4πDν/λ, Dν is amplitude of the
vibration and λ is the wavelength of the trans-
mitted signal. Substituting (2) into (1) yields
s(t) = A exp[j(2πf0t+ β sin(ωνt))].
The phase term function in (3) is time vary-

ing, the instantaneous frequency fD(t) (IF),
i.e. the m-D frequency induced by the vibra-
tion of the scatterer, may be expressed as

fD(t) =
1

2π

dφ

dt

=
1

2π
βων cos(ωνt) =

2

λ
Dνων cos(ωνt). (3)

Note that the maximum m-D frequency
change is (2/λ)Dνων , which is used to esti-
mate the displacement of a vibrating scatterer.
The m-D induced by vibration is a sinusoidal
function of time at the vibrating frequency
ων . Usually, when the vibrating modulation
is small, it is difficult to detect the vibration
in the frequency domain. Thus, a method
that is able to separate the radar return in-
duced by the target body from that induced
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by its vibrating structure might help to isolate
the vibrating spectrum from other contribu-
tions. This vibration-induced m-D signature
is an important feature for identifying targets
of interest. An example is the human walking
gait.
Modulation induced by rotating structures

can also be regarded as a unique signature of
a target. This m-D signature is an important
feature for identifying targets of interest (e.g.,
helicopters, ships or aircraft with rotating an-
tennas). When there is a rotating scatterer
on a target, the phase term in (2) may be ex-
panded as follows

φ(t) = β sin(Ωt+ θ0), (4)

where Ω is the rotation rate and θ0 is the ro-
tating angle of the scatterer on the rotating
structure at t = 0, called initial rotating an-
gle. Therefore, the received Doppler from one
rotating scatterer may be expressed by (1),
which is an expansion of a vibrating structure.
A detailed mathematical description of m-D
modulations induced by several typical basic
micro-motions is derived in [11], [18]. This de-
scription is beyond the scope of this paper.

III. S-������: T�����

In this section, we develop the SM from the
basic principle. The SM based approach can
be derived from the relationship between the
STFT and Wigner Distribution (WD).

A. Short-Time Fourier Transform (STFT)

The most frequently used TF representation
is the STFT. The idea behind the STFT is to
introduce a window function w(t) that trun-
cates the analyzed signal x(t) and then cal-
culates the FT of the truncated signal. The
STFT is obtained by sliding the window along
the signal. The mathematical formulation of
the STFT in the analog form is:

STFT (t, ω) =

∞∫

−∞

x(t+ τ)w(τ)e−jωτdτ (5)

where x(t+τ) is the signal shifted in time and
w(τ) is a window function. The discrete form

of the STFT is given:

STFT (n, k) =
∞∑

m=−∞

w(m)x(n+m)e−j
2π
N
mk.

(6)
An energetic version of the STFT is called
spectrogram. It is defined by:

SPEC(t, ω) = |STFT (t, ω)|2 . (7)

The following example illustrates the STFT
for different signals with different window
widths. The STFT corresponds to standard
FT-based radar imaging.

Example 1

Consider a Linear FM (LFM) signal x(t):

x(t) = e−j160πt
2

. (8)

The STFT, at the time instant t = 0, for differ-
ent window widths T , is given in Figure 1. The
Hanning window function w(t) is used in this
example. In this example, the STFT is depen-
dent on the window width and non-stationary
feature of the signal. To explain the above
mentioned, we will use the IF, which is the
first derivative of the phase. The IF of the
considered signal x(t) is:

ωi(t) = −320πt. (9)

If considered time t interval (defined by the
window function) is within the range −T

2 ≤

t ≤ T
2 , it follows that ωi(t) will be in the range:

−
320πT

2
≤ ωi(t) ≤

320πT

2
. (10)

The STFT for considered instant has the
bandwidth that depends on the signal band-
width and width of the window function in the
frequency domain:

Wtot =Wwindow +Wsignal, (11)

where for the Hanning window has a width of
that main lobe in the frequency domain equal
to Wwindow = 4π

T . The signal bandwidth is
determined by (10) and it exhibits Wsignal =
320πT , resulting in:

Wtot =
4π

T
+ 320πT (12)
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Fig. 1. The spectrogram of the linear FM signal in the time instant t = 0 and for various window widths.

In order to have the best possible resolution
the STFT should be as narrow as possible,
i.e., Wtot should be minimal. Then we ob-
tain that the optimal window width follows
from ∂Wtot/∂T |T=Toptimal

= 0, as Toptimal =
1/8.94. The spectrogram calculated using this
window width is close to the one depicted in
Figure 1 with T = 1/8. The width of the spec-
trogram component for a small T (for exam-
ple T = 1/32), is determined by the first term
Wwindow = 4π/T = 128π = 402 (see Figure 1),
while for the wide window (for example T =
1), the spectrogram width is determined by the
second term Wsignal = 320πT = 320π = 1005
(see Figure 1). Note that the optimal window
width is highly signal dependent. When the
analyzed signal is unknown, the optimal win-
dow width is also unknown. This is always the
case in practice.

In addition to this, STFT does not yield
sufficient time and frequency resolution simul-

taneously. Improving the frequency resolu-
tion by means of narrow windows results in
a loss of time resolution. Short-time windows
give adequate localization in time, but lead to
poor frequency resolution. For improved fre-
quency resolution, long segments of the time
data must be Fourier transformed, which will
then degrade the time localization.

This example clearly demonstrates that for
human m-D signature analysis the STFT, i.e.,
spectrogram, is not a suitable tool due to
the problem of resolution and concentration of
components.

B. Wigner Distribution (WD)

TheWD is developed as the optimal TF rep-
resentation for monocomponent LFM signals.
The mathematical formulation of the WD in
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the analog pseudo form is [24]:

WD(t, ω) =

∞∫

−∞

w(
τ

2
)w(−

τ

2
)

×x(t+
τ

2
)x∗(t−

τ

2
)e−jωτdτ. (13)

In the discrete domain the WD reads:

WD(n, k) =
∞∑

m=−∞

w(m)w(−m)

×x(n+m)x∗(n−m)e−j
4π
N
mk. (14)

Example 2.

Consider the LFM signal given width (8).
The WD of this signal is calculated in the sub-
sequent manner:

WD(t, ω) =

∞∫

−∞

we(τ)e
−j160π(t+ τ

2
)2

×ej160π(t−
τ
2
)2e−jωτdτ =We(ω + 320πt)

where we(τ) = w( τ2 )w(−
τ
2 ) and We(ω) =

FT{we(τ)}. Thus we can conclude that the
WD of the LFM signal behaves in the same
way as the spectrogram of a signal with con-
stant frequency (sinusoid). The position of the
WD is determined by the IF, while its width
is equal to the width of the FT of the window
only. It tends to a delta function for wide win-
dows w(τ). This is important advantage of the
WD with respect to the spectrogram.

Example 3.

Consider the signal with two LFM compo-
nents:

x(t) = x1(t) + x2(t)

= e−j12πt
2
−j10πt + e−j12πt

2+j10πt. (15)

The WD of this signal is:

WD(t, ω)

=

∞∫

−∞

we(τ)x1(t+
τ

2
)x1(t−

τ

2
)∗e−jωτdτ+

∞∫

−∞

we(τ)x2(t+
τ

2
)x∗2(t−

τ

2
)e−jωτdτ

+2Re{

∞∫

−∞

we(τ)x1(t+
τ

2
)x∗2(t−

τ

2
)e−jωτdτ}

where we(τ) = w( τ2 )w(−
τ
2 ) and We(ω) =

FT{we(τ)}. From the last formula it can
be seen that besides the WD of auto-

terms:
∞∫

−∞

we(τ)x1(t+
τ
2 )x

∗
1(t−

τ
2 )
∗e−jωτdτ

and
∞∫

−∞

we(τ)x2(t+
τ
2 )x

∗
2(t−

τ
2 )e

−jωτdτ, there

exists a cross-term: 2Re{
∞∫

−∞

we(τ)x1(t+
τ
2 )

x∗2(t−
τ
2 )e

−jωτdτ}. The WD of two signal
components for various window widths at the
time instant t = 0 is shown in Figure 2.
From this experiment, it can clearly be con-

cluded that the WD is not suitable for the
TF analysis of multicomponent signals. Since
radar signals are inherently multicomponent
and the m-D signature of humans can be rep-
resented as the sum of the FM components
the WD is generally useless for their analysis.
Thus, we are looking for a TF tool that is able
to combine favorable properties of the STFT
and WD: eliminated or reduced interferences
and high concentration of signals components.
In addition, from the radar signal process-
ing perspective, it is very important that this
transform can be evaluated with small calcula-
tion burden. We believe that the SM described
in the next subsection is close to the trade-off
between accuracy of representation and calcu-
lation efficiency.

C. S-method

In order to suppress cross-terms, a class
of so-called reduced interference distributions
is proposed. They are based on the Cohen
definition of the quadratic TF distributions,
with a kernel function being a low pass two-
dimensional function. These distributions are
in fact forms of the two-dimensional smoothed
WD [24]. By smoothing the WD, oscillatory
cross-terms are reduced. In reduced inter-
ference distributions, two important problems
arise and should be stressed:
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Fig. 2. The Wigner distribution of two LFM signal components x(t) at the instant t = 0, for various window
widths.

First: By smoothing the WD the auto-
terms are also smoothed [25].

Second: The calculation complexity is very
high, including the need for oversampling or
analytic signal extension in most of the cases.

Here, we will present a computationally
simple method, that can produce the same
auto-terms as in the WD, but without cross-
terms. It called as the SM [26]. The SM is de-
rived from the relationship between the STFT
and the WD, which reads:

WD(t, ω) =

1

π

∞∫

−∞

STFT (t, ω + θ)STFT ∗(t, ω − θ)dθ.

(16)
A discrete version of the previous relation

reads:
WD(n, k) =

N/2∑

i=−N/2

STFT (n, k + i)× STFT ∗(n, k − i)

= |STFT (n, k)|2 (17)

+2Re






N/2∑

i=1

STFT (n, k + i)STFT ∗(n, k − i)





.

The mathematical formulation of the SM in
the discrete form is:

SM(n, k) =

=

N/2∑

i=−N/2

P (i)STFT (n, k + i)STFT ∗(n, k − i)

where P (i) = 1 for |i| ≤ L and P (i) = 0 for
other values of i. The SM with L terms can
be written in the form:

SML(n, k) =
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Fig. 3. The illustration for the S-method calculation for L=2: Signal (first row), STFT calculated as the signal’s
FFT (second row), STFT shifted for one sample left and right (third and fourth rows), STFT shifted for
two samples left and right (fifth and sixth rows). The S-method is equal to the sum of the squared second
row + double real part of the product of third and fourth rows + double real part of the product of fifth
and sixth rows.

=
L∑

i=−L

STFT (n, k + i)STFT ∗(n, k − i).

(18)
In particular, for L = 0, the SM is identical to
the spectrogram

SM0(n, k) = |STFT (n, k)|2

= STFT (n, k)STFT ∗(n, k),

while for L = N , the SM is identical to the
WD. The illustration of the SM vector calcu-
lation for L = 2 is given in Figure 3. Note
that SM with L terms is obtained by adding
one more term to the SM with L− 1 terms:

SML(n, k) = SML−1(n, k)

+2Re{STFT (n, k + L)STFT ∗(n, k − L)}.
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The SM will produce the same auto terms
as the WD if we take L such that (2L + 1) is
equal to the auto terms width in the discrete
domain (i.e., to the number of samples within
the auto term). In practice it means fewer are
needed terms, for example L ∈ [3, 10], since
most of the auto-term energy is located around
its maximal value. It is shown in the next ex-
amples, that the performance of the SM is in-
sensitive to L values in a wide range of L val-
ues. The precise mathematical proof that the
the SM produces the WD of each component
separately, in those regions of the TF plane
where the components do not overlap, is given
in [26]-[27].

Example 4

Consider three LFM signal components:

x(t) = x1(t) + x2(t)

= e−j8πt
2
−j15πt + e−j8πt

2

+ e−j8πt
2+j15πt.

(19)
The SM of this signal is calculated for, N =
128, and different L values. The S-method for
all instants in the TF domain is presented in
Figure 4. Figure 5 shows the SM of three com-
ponents (linear and two nonlinear FM signals):

x(t) = e−j80πt
2
−j120πt+j10 sin(2πt)−j20πt

+e−j160πt
2+j4 cos(3πt)+j50π + ej80πt

2+j80πt,
(20)

with fixed window width N = 128, and
various L values. These results demonstrate
that the S-method can be used to extract the
m-D signatures since these signals are com-
monly represented as a sinusoidal FM signals
(see Section 2). In addition, the technique is
quite simple since the common STFT evalu-
ator is improved with just addition of small
post-processing blocks. Furthermore, the SM
does not require oversampling as other bilin-
ear representation from the Cohen class [28]
and results are not as sensitive to the selection
of the parameter L. All these favorable prop-
erties motivated us to apply the SM in radar
signal processing and in the m-D analysis [21].

IV. M-D F������ E����	�
��: T��

V
��� 
 A�"��
���

The m-D signatures associated to human
motion are multicomponent FM signals. The
extraction of the human motion features can
be performed through the component sepa-
ration. The analysis of components is com-
monly performed through the IF estimation
since it contains important features of human
motion such as velocity. The TF representa-
tion based IF estimators can be divided into
two groups: parametric and nonparametric. In
the case of parametric estimations, we can as-
sume that m-D features are sinusoidal FM sig-
nals and for the extraction of parameters we
can apply some techniques that are close to
the maximum likelihood estimation or projec-
tion (Radon transform) based technique [21].
This can be applied only in the case that the
number of components’ parameter is relatively
small or in the case when we have exact model
of motion. As it can later be seen in the pa-
per, some experimental human motions can-
not be modeled as a simple sum of sinusoidal
FM components. For general motion we can
assume that the non-parametric IF estima-
tion technique should be applied. The sim-
plest non-parametric IF estimation technique
is based on the position of the TF maxima:

k̂(n) = argmax
k

TF (n, k). (21)

This technique is simple and well-known but it
is suitable for monocomponent signals or mul-
ticomponent signals that are non-overlapping
in the TF plane. In the latter case, we should
perform the separation of signals from distinct
regions or in the case when components signif-
icantly differ in magnitude we can perform the
estimation of the dominant component. After
that we can calculate the new TF representa-
tion with removed (peeled off) dominant com-
ponent:

TF ′(n, k) =

{
0 |k − k̂(n)| ≤ ∆
TF (n, k) elsewhere,

(22)
where (2∆ + 1) is the width of the neigh-
borhood of the dominant component removed
from the TF representation. Then IF esti-
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Fig. 4. SM of three LFM signal components with fixed window width N = 128, and different L values.

Fig. 5. The SM of three nonlinear FM signal components with fixed window width N = 128, and various L
values.
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mation of the next component can be per-
formed by using the position of the maxima
of TF ′(n, k). The algorithm for peeling com-
ponent and IF estimation should be performed
for each component. However, for multicom-
ponent signals intersecting in the TF plane we
need some more sophisticated analysis proce-
dure. Since m-D features of the human mo-
tion have interesting components in the TF
plane, both parametric techniques or simple
techniques based on the position of maxima
are not appropriate for its analysis and fea-
ture extraction. That is the reason for using
the Viterbi algorithm for IF estimation pro-
posed in [31] in this research.
The Viterbi algorithm is a common tech-

nique for the estimation of hidden states in
the signal. The Viterbi algorithm is essen-
tially a shortest length path algorithm that has
found numerous applications in coding theory
[34], image processing [35], etc. The IF es-
timator based on the Viterbi algorithm and
TF representations is recently proposed in [31],
[32]. This estimator has shown excellent accu-
racy for high noise environments. In develop-
ment of this estimator, two assumptions are
adopted:
(1) If the TF maximum at the considered

instant is not at the IF point, there is a high
probability that the IF is at a point having
one of the largest TF values (for example sec-
ond, third, but not as far as, for example, the
hundredth position);
(2) The IF variation between two consecu-

tive points is not extremely large.
Then the IF estimate can be written as the

line minimizing k(n), the corresponding sum
of the path penalty functions p(k(n);n1, n2):

ω̂(n) = arg min
k(n)∈K

[
n2−1∑

n=n1

g(k(n), k(n+ 1))

+
n2∑

n=n1

f(TF (n, k(n)))

]

(23)

= arg min
k(n)∈K

p(k(n);n1, n2),

where p(k(n);n1, n2) is a sum of the penalty
functions g(x, y) and f(x), along the line k(n),

from the instant n1 to n2. The penalty func-
tion f(x) corresponds to the first assump-
tion, while the penalty function g(x, y) corre-
sponds to the second assumption. The func-
tion g(x, y) = g(|x−y|) is a nonincreasing one,
with respect to the absolute difference between
x and y (between the IF values in the con-
secutive points x = k(n) and y = k(n − 1)),
while f(x) is a nondecreasing function of x =
TF (n, k(n)). In this way, the larger values of
the TF are more important candidates for the
position of the IF at the considered instant.
For a considered n, the function f(x) can be
formed as follows. The TF values, TF (n, k),
for considered instant:

TF (n, k1) ≥ TF (n, k2) ≥ .... ≥

TF (n, kj) ≥ ... ≥WD(n, kM) (24)

where j = 1, 2, ...,M , is the position within
this sequence. Then, the function f(x) is
formed as:

f(TF (n, kj)) = j − 1. (25)

For g(x, y) = const, the IF estimation (23)
is reduced to the position of the TF maxima,
i.e., the function f(x) completely determines
minimum of (23). In this paper, we use a linear
form of g(x, y), for the difference between two
points greater than an assumed threshold ∆:

g(x, y) =

{
0 |x− y| ≤ ∆

c(|x− y| −∆) |x− y| > ∆.
(26)

The reasonable choice for∆ would be the max-
imal expected value of the IF variation be-
tween consecutive points. It means that there
is no additional penalty due to this function
for small IF variation (within ∆ points, for
two consecutive instants). In the realization
we obtained good results by taking ∆ which
corresponds to a few neighboring points (for
example, values around ∆ = 3). For ∆→∞,
the estimation given by (23) will reduce to the
estimation based on the TF maxima. Note
that this is one possible form of the penalty
functions f(x) and g(x, y).
The reasoning for the selection of path

penalty functions is described in detail in [31].
The proposed algorithm can be realized in
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recursive manner with reasonable calculation
complexity.
As far as we know, the proposed algorithm

outperforms all other non-parametric IF es-
timators based on the TF representation for
high noise environment. For multicomponent
signals we should perform estimation compo-
nent by component, peeling detected compo-
nents. However, the Viterbi algorithm has the
ability to connect components even in the case
that some of its parts are removed. This algo-
rithm can be expanded by the third penalty
function related to the amplitude variation of
the signal components. This algorithm exten-
sion is proposed in [31] where it has demon-
strated its accuracy in tracking intersecting
components.

V. R�
���


In this section we demonstrate the appli-
cation and effectiveness of the S-method and
Viterbi algorithm as an m-D Doppler feature
extraction technique with four different types
of experimental radar data obtained in differ-
ent indoor and outdoor scenarios.

A. Rotation-induced micro-Doppler

A.1 Rotating corner reflector

Experimental trials were conducted to in-
vestigate and determine the m-D radar signa-
tures of targets using an X-band radar. The
target used for this experimental trial was a
spinning blade with corner reflectors attached
that were designed to reflect electromagnetic
radiation with minimal loss. These controlled
experiments can simulate the rotating types of
objects generally found in an indoor environ-
ment, for example, rotating fan, and outdoor
environment, for example, rotating antenna or
rotors. Controlled experiments will allow us to
set the desired rotation rate and then permit
us to cross check and assess the results.
A picture of the target is shown in Figure 6.

The blade was set up to simulate real data that
might be collected from a similar target such as
a rotating antenna or rotating fan or any other
rotation of structures on a target. The experi-
ment was conducted with the radar operating
at 9.2 GHz. The pulse repetition frequency

(PRF) was 1 kHz. The target employed in this
experiment was at a range of 300 m from the
radar. The SM is utilized in order to depict
the m-D oscillation. The results in Figure 7a
is obtained using one rotating corner reflector
facing the radar. Details of the figure clearly
show the sinusoidal motion of the corner reflec-
tor. The second weaker oscillation represents
the reflection from the counter weight that was
used to stabilize the corner reflector during op-
eration. From the TF signature we can see
that the m-D of the rotating corner reflector
is a time-varying frequency spectrum. The ro-
tation rate of the corner reflector is directly
related to the time interval of the oscillations.
From the additional time information, the ro-
tation rate of the corner reflector is estimated
and is about 60 rpm. Figure 7b shows the re-
sult when the blade is rotating with two corner
reflectors. In this case, the rotation rate of the
corner reflector is 40 rpm. Rotation rates esti-
mated by the TF analysis agree with the actual
values. These results demonstrate that the SM
can be used to extract m-D features and esti-
mate motion parameters. In a future study we
will quantitatively compare the SM with other
traditional m-D analysis techniques.

A.2 Rotating fan

Experimental trials were conducted to in-
vestigate and determine the m-D radar sig-
natures of objects that could be found in in-
door radar imaging. The object in these ex-
periments is rotating fan data supplied to us
by Prof. Moeness Amin, Villanova University.
The rotational motion of blades in a fan im-
parts a periodic modulation on radar returns.
The rotation-induced Doppler shifts relative to
the Doppler shift of the body occupy unique
locations in the frequency domain. Whenever
a blade has specular reflection such as at the
advancing or receding point of rotation, the
particular blade transmits a short flash or pe-
riodic modulation to the radar return. The
rotation rate of the blade is directly related to
the time interval between these flashes. The
duration of a flash is determined by the radar
wavelength and by the length and rotation rate
of the blades. A flash resulting from a blade
with a longer length and radar with a shorter
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Fig. 6. Picture of the target simulator experimental apparatus.

wavelength will have a shorter duration [9].

The fan in this experiment is rotating at a
height of approximately 2 m and at a range
of 3 m from the radar. The fan has 4 metal-
lic blades. The rotation rate of the blades is
known to be 1050 rpm for this data. The ex-
periment was conducted with the radar oper-
ating at frequency of 903 Hz. The sampling
frequency is 5000 Hz.

The original rotating fan data behaves like
a very low pass in the frequency domain and
it is quite difficult to extract any information.
In order to obtain the inner micro-Doppler fea-
tures, we perform down-sampling on the signal
by a factor of 4 and then use a relatively nar-
row window of 16 samples. Figure 8a shows
the S-method of the down-sampled signal with
N=16 samples and L=2. When L=3 is used for
the S-method, Figure 8b shows further concen-
tration improvement. Figure 8b also exhibits
that S-method can accurately describe the sig-
nal’s features showing the sinusoidal behavior
not just amplitude. The image in Figure 8c
shows a zoomed version of the time interval
between 0.13 and 0.25 seconds. This figure

distinctly depicts the sinusoidal oscillation of
the fan blade. From Figure 8c, the period of
oscillation is 0.1/7.0 seconds. Since there are
four blades, the period per blade is (0.1*4)/7.
The number of rotations in one minute is given
by (7*60)/(0.1*4) =1050 rpm/blade, which is
in agreement with the actual value known to
be 1050 rpm.

B. Vibration-induced micro-Doppler

B.1 Human walking

Gait recognition by radar focuses on the
gait cycle formed by the movements of a per-
son’s various body parts over time. Radar
echoes contain rich information about the var-
ious parts of the moving body. Various body
parts have different shifts since they are mov-
ing with various velocities. For example, a
walking man with swinging arms may in-
duce frequency modulation of the returned sig-
nal and generate side-bands about the body
Doppler. There are often multiple physical
movements taking place simultaneously and it
is the interaction of these that produces the
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Fig. 7. S-method of experimental data: (a) m-D effects from one rotating corner reflectors facing the radar; (b)
m-D effects from two rotating corner reflectors facing the radar. Note that 3650 time samples correspond
to 5.2 seconds of data.

particular characteristics of a “gait”. Radar
experiments were conducted and the proposed
SM based approach is used to analyze the
Doppler shift of the body and the m-D sig-
nature of the swinging arms and to estimate
gait parameters such as swinging rate.
In this experiment we considered the human

data. The main part of a human body causes
the strongest component as it can be seen from
the SM of the considered signal Figure 9a. For
the analysis of other components, caused by
swinging arms and moving legs, we need to
remove the main body component. The clas-
sical IF estimator based on the position of the
TF representation maxima is used in the first
stage of the algorithm [30]:

k̂(n) = argmax
k

SM(n, k). (27)

This IF estimate corresponds to the strongest
component, in this case the main body com-

ponent. Figure 9b depicts that the IF estima-
tion is superposed onto the same TFR graph.
Then, classical peeling techniques can be em-
ployed to remove the main body component
from the rest of the TF representation:

SM ′(n, k) =

{
0 |k − k̂(n)| ≤ ∆
SM(n, k) elsewhere,

(28)
where 2∆+1 is number of samples around the
IF of the main component removed from the
SM. The TF representation with ‘the peeled-
off’ main body component is depicted in Fig-
ure 9c. Now other weaker components can be
clearly seen. These components correspond to
the moving legs and arms. Components with
smaller amplitude correspond to the moving
arms while components with larger amplitude
(larger frequency variations) correspond to the
moving of legs. It can be easily noticed that
the moving leg produces sinusoidal FM signal
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Fig. 8. Time-frequency representations of fan data: (a) SM with L=2; (b) SM with L=3; and (c) Zoomed
version of (b).

during the relative motion of the leg but in the
next step this component has slowly a varying
component and we have that the second leg
produces ‘semi-period’ of the sinusoidally FM
signal. This clearly shows that in this case
it is not possible to use the radon transform
or parametric estimator for extraction of the
component.

In this case we cannot claim that one compo-
nent is dominant over others since their mag-
nitudes are similar and they are crossing in the
TF plane. The algorithm based on the posi-
tion of the TF representation maxima would
give a line that is a combination of the IFs
of different components. Then a more sophis-
ticated algorithm for the IF estimation and
segmentation of these components is required.
A simple scheme such as (27) cannot produce
accurate results for separation of these com-
ponents. Here, the Viterbi algorithm for the
IF estimation is used [31]. This algorithm is
able to track the component in the TF plane

that are intersected even for relatively high
noise environment. Figure 9d depicts the IF
estimation of the next component associated
with the leg motion based on the Viterbi al-
gorithm. It can be seen that the component
is recognized in a proper manner except for
the small part around the intersection of this
component, which is caused by both the sec-
ond leg component and the main body motion
component. After peeling of this component,
the next component can be determined in a
similar manner. However, complicated signa-
tures such as those produced by human motion
require a very detailed analysis of the Viterbi
algorithm parameters with possible alternative
techniques for selecting the path penalty func-
tions. This topic remains for future research.

B.2 Human walking in a high noise environ-
ment

In order to demonstrate the effectiveness of
the Viterbi algorithm in a high noise envi-



1432 TIME-FREQUENCY SIGNAL ANALYSIS

Fig. 9. Time-frequency representations and IF estimation for human data: (a) Time-frequency representation
of m-D of a walking man signal; (b) Instantaneous frequency estimation of the main body component; (c)
Time-frequency representation of m-D of a walking man signal, after removing the main body component;
(d) Instantaneous frequency estimation of the weak component by using the Viterbi algorithm.

ronment, an experimental human data is an-
alyzed. The human data used in this exper-
iment was collected in a relatively high noise
real environment using the EARS experimen-
tal array Rrdar system (EARS) employing a
stepped frequency radar waveform [21,23]. In
this experiment, a human is marching on the
spot towards the radar swinging one arm. The
distance of the human from the radar is about
300 m. The experiment was conducted with
the radar operating at frequencies of 8.9 to 9.4
GHz, providing a 500 MHz bandwidth. The
frequency step size was 10 MHz and a pulse
repetition frequency (PRF) of 1 kHz was used.
Thus, it required 50 ms to generate a single
high-range resolution (HRR) profile (i.e. an
effective HRR PRF of 20 Hz). The integra-
tion time for each data set was 60 seconds.

Figure 10a shows the image using the S-
method. No feature information can be ex-

tracted from this figure. Figure 10b shows
the same image using the S-method but the
high frequency content is filtered. The IF esti-
mation based on the position of the maxima
is depicted in Figure 10c by the solid line,
while the output of the Viterbi algorithm is
given by the dash line. The arrows repre-
sent the position of the obvious mistakes in
the case of the algorithm based on the posi-
tion of the SM maximum. These mistakes are
caused by the small amplitude of the TF rep-
resentation in the considered interval. In Fig-
ure 10d we added artificial noise in order to
describe the situation when recordings are cor-
rupted by high amounts of noise. The SNR ra-
tio between recordings and added noise in this
case is just 1.5 dB. In this case the algorithm
based on the position of the maximum (Fig-
ure 10e, solid line) is useless since it produces
numerous mistakes. However the VA based al-
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Fig. 10. Time-frequency representations and IF estimation for human experimental data in noisy environment:
(a) SM with no added noise; (b) SM with IF estimation (solid line position of the maxima, dash line Viterbi
algorithm, arrows obvious errors in the algorithm with position of maximum); (c) SM method with signal
corrupted by noise; (d) SM with IF estimation for noisy signal (solid line position of the maxima, dash line
Viterbi algorithm).

gorithm remains very accurate at least in the
central part of the recording (between samples
300 and 600) where the signature of the useful
signal is relatively large. These results suggest
that the VA algorithm and SM are promising
in this application even under non-ideal con-
ditions. It should be noted that the EARS is
not built for micro-Doppler type experiments
and does not possess the coherency necessary
to extract the full range of micro-motions. A
highly coherent (low-phase noise) radar is de-
sirable to extract human m-D features.

VI. C��	��

��

Micro-Doppler features have great poten-
tial for use in automatic target recognition
algorithms. Although the potential benefit
of using a micro-Doppler in recognition algo-
rithms is high, relatively little experimental m-

D data exists. This paper involves data collec-
tion and analysis of indoor and outdoor m-D
radar signatures. In order to extract and en-
hance the m-D features, the S-method based
approach and the Viterbi algorithm are pro-
posed to analyze and resolve radar m-D sig-
natures of targets. The S-method is computa-
tionally simple, requiring only slight modifica-
tions to the existing Fourier transform-based
algorithm. It is shown that the S-method
based approach provides an effective method
of achieving improved resolution, highly con-
centrated and readable representation with-
out the auto-term distortion and cross-term
artifacts. This method in conjunction with
the Viterbi algorithm are suitable for m-D
data where multiple scatterers are present, and
noise and artifact reduction are essential for
target identification applications. The effec-
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tiveness of the S-method in conjunction with
Viterbi algorithm in extracting m-D features
is demonstrated through the application to ex-
perimental indoor rotating fan data and out-
door human data. We hope that this new ap-
proach will also find a wide range of uses and
will emerge as a powerful tool for time-varying
spectral analysis.
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